mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_Freescale/TARGET_KPSDK_MCUS/TARGET_KPSDK_CODE/hal/dspi/fsl_dspi_hal.c

Committer:
mbed_official
Date:
2014-09-18
Revision:
324:406fd2029f23
Parent:
149:1fb5f62b92bd

File content as of revision 324:406fd2029f23:

/*
 * Copyright (c) 2013 - 2014, Freescale Semiconductor, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_dspi_hal.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/*******************************************************************************
 * Variables
 ******************************************************************************/

/*******************************************************************************
 * Code
 ******************************************************************************/

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_Init
 * Description   : Restore DSPI to reset configuration.
 * This function basically resets all of the DSPI registers to their default setting including
 * disabling the module.
 *
 *END**************************************************************************/
void DSPI_HAL_Init(uint32_t baseAddr)
{
    /* first, make sure the module is enabled to allow writes to certain registers*/
    DSPI_HAL_Enable(baseAddr);

    /* Halt all transfers*/
    DSPI_HAL_StopTransfer(baseAddr);

    /* set the registers to their default states*/
    /* clear the status bits (write-1-to-clear)*/
    HW_SPI_SR_WR(baseAddr, BM_SPI_SR_TCF | BM_SPI_SR_EOQF | BM_SPI_SR_TFUF |
                                          BM_SPI_SR_TFFF | BM_SPI_SR_RFOF | BM_SPI_SR_RFDF);
    HW_SPI_TCR_WR(baseAddr, 0);
    HW_SPI_CTARn_WR(baseAddr, 0, 0x78000000); /* CTAR0*/
    HW_SPI_CTARn_WR(baseAddr, 1, 0x78000000); /* CTAR1*/
    HW_SPI_RSER_WR(baseAddr, 0);

    /* Clear out PUSHR register. Since DSPI is halted, nothing should be transmitted. Be
     * sure the flush the FIFOs afterwards
     */
    HW_SPI_PUSHR_WR(baseAddr, 0);

    /* flush the fifos*/
    DSPI_HAL_SetFlushFifoCmd(baseAddr, true, true);

    /* Now set MCR to default value, which disables module: set MDIS and HALT, clear other bits */
    HW_SPI_MCR_WR(baseAddr, BM_SPI_MCR_MDIS | BM_SPI_MCR_HALT);
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_SetBaudRate
 * Description   : Set the DSPI baud rate in bits per second.
 * This function will take in the desired bitsPerSec (baud rate) and will calculate the nearest
 * possible baud rate without exceeding the desired baud rate, and will return the calculated
 * baud rate in bits-per-second. It requires that the caller also provide the frequency of the
 * module source clock (in Hz).
 *
 *END**************************************************************************/
uint32_t DSPI_HAL_SetBaudRate(uint32_t baseAddr, dspi_ctar_selection_t whichCtar,
                              uint32_t bitsPerSec, uint32_t sourceClockInHz)
{
    /* for master mode configuration, if slave mode detected, return 0*/
    if (!DSPI_HAL_IsMaster(baseAddr))
    {
        return 0;
    }

    uint32_t prescaler, bestPrescaler;
    uint32_t scaler, bestScaler;
    uint32_t dbr, bestDbr;
    uint32_t realBaudrate, bestBaudrate;
    uint32_t diff, min_diff;
    uint32_t baudrate = bitsPerSec;

    /* find combination of prescaler and scaler resulting in baudrate closest to the */
    /* requested value */
    min_diff = 0xFFFFFFFFU;
    bestPrescaler = 0;
    bestScaler = 0;
    bestDbr = 1;
    bestBaudrate = 0; /* required to avoid compilation warning */

    /* In all for loops, if min_diff = 0, the exit for loop*/
    for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
    {
        for (scaler = 0; (scaler < 16) && min_diff; scaler++)
        {
            for (dbr = 1; (dbr < 3) && min_diff; dbr++)
            {
                realBaudrate = ((sourceClockInHz * dbr) /
                                (s_baudratePrescaler[prescaler] * (s_baudrateScaler[scaler])));

                /* calculate the baud rate difference based on the conditional statement*/
                /* that states that the calculated baud rate must not exceed the desired baud rate*/
                if (baudrate >= realBaudrate)
                {
                    diff = baudrate-realBaudrate;
                    if (min_diff > diff)
                    {
                        /* a better match found */
                        min_diff = diff;
                        bestPrescaler = prescaler;
                        bestScaler = scaler;
                        bestBaudrate = realBaudrate;
                        bestDbr = dbr;
                    }
                }
            }
        }
    }

    /* write the best dbr, prescalar, and baud rate scalar to the CTAR*/
    BW_SPI_CTARn_DBR(baseAddr, whichCtar, (bestDbr - 1));
    BW_SPI_CTARn_PBR(baseAddr, whichCtar, bestPrescaler);
    BW_SPI_CTARn_BR(baseAddr, whichCtar, bestScaler);

    /* return the actual calculated baud rate*/
    return bestBaudrate;
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_SetBaudDivisors
 * Description   : Configure the baud rate divisors manually.
 * This function allows the caller to manually set the baud rate divisors in the event that
 * these dividers are known and the caller does not wish to call the DSPI_HAL_SetBaudRate function.
 *
 *END**************************************************************************/
void DSPI_HAL_SetBaudDivisors(uint32_t baseAddr,
                              dspi_ctar_selection_t whichCtar,
                              const dspi_baud_rate_divisors_t * divisors)
{
    /* these settings are only relevant in master mode*/
    if (DSPI_HAL_IsMaster(baseAddr))
    {
        BW_SPI_CTARn_DBR(baseAddr, whichCtar, divisors->doubleBaudRate);
        BW_SPI_CTARn_PBR(baseAddr, whichCtar, divisors->prescaleDivisor);
        BW_SPI_CTARn_BR(baseAddr, whichCtar, divisors->baudRateDivisor);
    }
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_SetPcsPolarityMode
 * Description   : Configure DSPI peripheral chip select polarity.
 * This function will take in the desired peripheral chip select (PCS) and it's
 * corresponding desired polarity and will configure the PCS signal to operate with the
 * desired characteristic.
 *
 *END**************************************************************************/
void DSPI_HAL_SetPcsPolarityMode(uint32_t baseAddr, dspi_which_pcs_config_t pcs,
                                 dspi_pcs_polarity_config_t activeLowOrHigh)
{
    uint32_t temp;

    temp = BR_SPI_MCR_PCSIS(baseAddr);

    if (activeLowOrHigh == kDspiPcs_ActiveLow)
    {
        temp |= pcs;
    }
    else  /* kDspiPcsPolarity_ActiveHigh*/
    {
        temp &= ~(unsigned)pcs;
    }

    BW_SPI_MCR_PCSIS(baseAddr, temp);
}


/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_SetFifoCmd
 * Description   : Enables (or disables) the DSPI FIFOs.
 * This function with allow the caller to disable/enable the TX and RX FIFOs (independently).
 * Note that to disable, the caller must pass in a logic 0 (false) for the particular FIFO
 * configuration.  To enable, the caller must pass in a logic 1 (true).
 *
 *END**************************************************************************/
void DSPI_HAL_SetFifoCmd(uint32_t baseAddr, bool enableTxFifo, bool enableRxFifo)
{
    /* first see if MDIS is set or cleared */
    uint32_t isMdisSet = BR_SPI_MCR_MDIS(baseAddr);

    if (isMdisSet)
    {
        /* clear the MDIS bit (enable DSPI) to allow us to write to the fifo disables */
        DSPI_HAL_Enable(baseAddr);
    }

    /* Note, the bit definition is "disable FIFO", so a "1" would disable. If user wants to enable
     * the FIFOs, they pass in true, which we must logically negate (turn to false) to enable the
     * FIFO
     */
    BW_SPI_MCR_DIS_TXF(baseAddr, ~(enableTxFifo == true));
    BW_SPI_MCR_DIS_RXF(baseAddr, ~(enableRxFifo == true));

    /* set MDIS (disable DSPI) if it was set to begin with */
    if (isMdisSet)
    {
        DSPI_HAL_Disable(baseAddr);
    }
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_SetFlushFifoCmd
 * Description   : Flush DSPI fifos.
 *
 *END**************************************************************************/
void DSPI_HAL_SetFlushFifoCmd(uint32_t baseAddr, bool enableFlushTxFifo, bool enableFlushRxFifo)
{
    BW_SPI_MCR_CLR_TXF(baseAddr, (enableFlushTxFifo == true));
    BW_SPI_MCR_CLR_RXF(baseAddr, (enableFlushRxFifo == true));
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_SetDataFormat
 * Description   : Configure the data format for a particular CTAR.
 * This function configures the bits-per-frame, polarity, phase, and shift direction for a
 * particular CTAR. An example use case is as follows:
 *    dspi_data_format_config_t dataFormat;
 *    dataFormat.bitsPerFrame = 16;
 *    dataFormat.clkPolarity = kDspiClockPolarity_ActiveLow;
 *    dataFormat.clkPhase = kDspiClockPhase_FirstEdge;
 *    dataFormat.direction = kDspiMsbFirst;
 *    DSPI_HAL_SetDataFormat(baseAddr, kDspiCtar0, &dataFormat);
 *
 *END**************************************************************************/
dspi_status_t DSPI_HAL_SetDataFormat(uint32_t baseAddr,
                                     dspi_ctar_selection_t whichCtar,
                                     const dspi_data_format_config_t * config)
{
    /* check bits-per-frame value to make sure it it within the proper range*/
    /* in either master or slave mode*/
    if ((config->bitsPerFrame < 4) ||
        ((config->bitsPerFrame > 16) && (HW_SPI_MCR(baseAddr).B.MSTR == 1)) ||
        ((config->bitsPerFrame > 32) && (HW_SPI_MCR(baseAddr).B.MSTR == 0)))
    {
        return kStatus_DSPI_InvalidBitCount;
    }

    /* for master mode configuration*/
    if (DSPI_HAL_IsMaster(baseAddr))
    {
        BW_SPI_CTARn_FMSZ(baseAddr, whichCtar, (config->bitsPerFrame - 1));
        BW_SPI_CTARn_CPOL(baseAddr, whichCtar, config->clkPolarity);
        BW_SPI_CTARn_CPHA(baseAddr, whichCtar, config->clkPhase);
        BW_SPI_CTARn_LSBFE(baseAddr, whichCtar, config->direction);
    }
    else /* for slave mode configuration*/
    {
        BW_SPI_CTARn_SLAVE_FMSZ(baseAddr, whichCtar, (config->bitsPerFrame - 1));
        BW_SPI_CTARn_SLAVE_CPOL(baseAddr, whichCtar, config->clkPolarity);
        BW_SPI_CTARn_SLAVE_CPHA(baseAddr, whichCtar, config->clkPhase);
    }
    return kStatus_DSPI_Success;
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_SetDelay
 * Description   : Manually configures the delay prescaler and scaler for a particular CTAR.
 * This function configures the:
 * PCS to SCK delay pre-scalar (PCSSCK) and scalar (CSSCK),
 * After SCK delay pre-scalar (PASC) and scalar (ASC),
 * Delay after transfer pre-scalar (PDT)and scalar (DT).
 *
 * These delay names are available in type dspi_delay_type_t.
 *
 * The user passes which delay they want to configure along with the prescaler and scaler value.
 * This basically allows the user to directly set the prescaler/scaler values if they have
 * pre-calculated them or if they simply wish to manually increment either value.
 *END**************************************************************************/
void DSPI_HAL_SetDelay(uint32_t baseAddr, dspi_ctar_selection_t whichCtar, uint32_t prescaler,
                       uint32_t scaler, dspi_delay_type_t whichDelay)
{
    /* these settings are only relevant in master mode*/
    if (DSPI_HAL_IsMaster(baseAddr))
    {
        if (whichDelay == kDspiPcsToSck)
        {
            BW_SPI_CTARn_PCSSCK(baseAddr, whichCtar, prescaler);
            BW_SPI_CTARn_CSSCK(baseAddr, whichCtar, scaler);
        }

        if (whichDelay == kDspiLastSckToPcs)
        {
            BW_SPI_CTARn_PASC(baseAddr, whichCtar, prescaler);
            BW_SPI_CTARn_ASC(baseAddr, whichCtar, scaler);
        }

        if (whichDelay == kDspiAfterTransfer)
        {
            BW_SPI_CTARn_PDT(baseAddr, whichCtar, prescaler);
            BW_SPI_CTARn_DT(baseAddr, whichCtar, scaler);
        }
    }
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_CalculateDelay
 * Description   : Calculates the delay prescaler and scaler based on desired delay input in
 *                 nano-seconds.
 *
 * This function calculates the values for:
 * PCS to SCK delay pre-scalar (PCSSCK) and scalar (CSSCK), or
 * After SCK delay pre-scalar (PASC) and scalar (ASC), or
 * Delay after transfer pre-scalar (PDT)and scalar (DT).
 *
 * These delay names are available in type dspi_delay_type_t.
 *
 * The user passes which delay they want to configure along with the desired delay value in
 * nano-seconds.  The function will calculate the values needed for the prescaler and scaler and
 * will return the actual calculated delay as an exact delay match may not be acheivable. In this
 * case, the closest match will be calculated without going below the desired delay value input.
 * It is possible to input a very large delay value that exceeds the capability of the part, in
 * which case the maximum supported delay will be returned. It will be up to the higher level
 * peripheral driver to alert the user of an out of range delay input.
 *END**************************************************************************/
uint32_t DSPI_HAL_CalculateDelay(uint32_t baseAddr, dspi_ctar_selection_t whichCtar,
                                 dspi_delay_type_t whichDelay, uint32_t sourceClockInHz,
                                 uint32_t delayInNanoSec)
{
    /* for master mode configuration, if slave mode detected, return 0*/
    if (!DSPI_HAL_IsMaster(baseAddr))
    {
        return 0;
    }

    uint32_t prescaler, bestPrescaler;
    uint32_t scaler, bestScaler;
    uint32_t realDelay, bestDelay;
    uint32_t diff, min_diff;
    uint32_t initialDelayNanoSec;

    /* find combination of prescaler and scaler resulting in the delay closest to the
     * requested value
     */
    min_diff = 0xFFFFFFFFU;
    /* Initialize prescaler and scaler to their max values to generate the max delay */
    bestPrescaler = 0x3;
    bestScaler = 0xF;
    bestDelay = (1000000000/sourceClockInHz) * s_delayPrescaler[bestPrescaler] *
                 s_delayScaler[bestScaler];

    /* First calculate the initial, default delay */
    initialDelayNanoSec = 1000000000/sourceClockInHz * 2;

    /* If the initial, default delay is already greater than the desired delay, then
     * set the delays to their initial value (0) and return the delay. In other words,
     * there is no way to decrease the delay value further.
     */
    if (initialDelayNanoSec >= delayInNanoSec)
    {
        DSPI_HAL_SetDelay(baseAddr, whichCtar, 0, 0, whichDelay);
        return initialDelayNanoSec;
    }


    /* In all for loops, if min_diff = 0, the exit for loop*/
    for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
    {
        for (scaler = 0; (scaler < 16) && min_diff; scaler++)
        {
            realDelay = (1000000000/sourceClockInHz) * s_delayPrescaler[prescaler] *
                         s_delayScaler[scaler];

            /* calculate the delay difference based on the conditional statement
             * that states that the calculated delay must not be less then the desired delay
             */
            if (realDelay >= delayInNanoSec)
            {
                diff = realDelay-delayInNanoSec;
                if (min_diff > diff)
                {
                    /* a better match found */
                    min_diff = diff;
                    bestPrescaler = prescaler;
                    bestScaler = scaler;
                    bestDelay = realDelay;
                }
            }
        }
    }

    /* write the best dbr, prescalar, and baud rate scalar to the CTAR*/
    DSPI_HAL_SetDelay(baseAddr, whichCtar, bestPrescaler, bestScaler, whichDelay);

    /* return the actual calculated baud rate*/
    return bestDelay;
}


/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_SetTxFifoFillDmaIntMode
 * Description   : Configures the DSPI Tx FIFO Fill request to generate DMA or interrupt requests.
 * This function configures the DSPI Tx FIFO Fill flag to generate either
 * an interrupt or DMA request.  The user passes in which request they'd like to generate
 * of type dspi_dma_or_int_mode_t and whether or not they wish to enable this request.
 * Note, when disabling the request, the request type is don't care.
 *
 *  DSPI_HAL_SetTxFifoFillDmaIntMode(baseAddr, kDspiGenerateDmaReq, true); <- to enable DMA
 *  DSPI_HAL_SetTxFifoFillDmaIntMode(baseAddr, kDspiGenerateIntReq, true); <- to enable Interrupt
 *  DSPI_HAL_SetTxFifoFillDmaIntMode(baseAddr, kDspiGenerateIntReq, false); <- to disable
 *
 *END**************************************************************************/
void DSPI_HAL_SetTxFifoFillDmaIntMode(uint32_t baseAddr, dspi_dma_or_int_mode_t mode, bool enable)
{
    BW_SPI_RSER_TFFF_DIRS(baseAddr, mode);  /* Configure as DMA or interrupt */
    BW_SPI_RSER_TFFF_RE(baseAddr, (enable == true));  /* Enable or disable the request */
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_SetRxFifoDrainDmaIntMode
 * Description   : Configures the DSPI Rx FIFO Drain request to generate DMA or interrupt requests.
 * This function configures the DSPI Rx FIFO Drain flag to generate either
 * an interrupt or DMA request.  The user passes in which request they'd like to generate
 * of type dspi_dma_or_int_mode_t and whether or not they wish to enable this request.
 * Note, when disabling the request, the request type is don't care.
 *
 *  DSPI_HAL_SetRxFifoDrainDmaIntMode(baseAddr, kDspiGenerateDmaReq, true); <- to enable DMA
 *  DSPI_HAL_SetRxFifoDrainDmaIntMode(baseAddr, kDspiGenerateIntReq, true); <- to enable Interrupt
 *  DSPI_HAL_SetRxFifoDrainDmaIntMode(baseAddr, kDspiGenerateIntReq, false); <- to disable
 *
 *END**************************************************************************/
void DSPI_HAL_SetRxFifoDrainDmaIntMode(uint32_t baseAddr, dspi_dma_or_int_mode_t mode, bool enable)
{
    BW_SPI_RSER_RFDF_DIRS(baseAddr, mode);  /* Configure as DMA or interrupt */
    BW_SPI_RSER_RFDF_RE(baseAddr, (enable == true));  /* Enable or disable the request */
}


/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_SetIntMode
 * Description   : Configure DSPI interrupts.
 * This function configures the various interrupt sources of the DSPI.  The parameters are
 * baseAddr, interrupt source, and enable/disable setting.
 * The interrupt source is a typedef enum whose value is the bit position of the
 * interrupt source setting within the RSER register.  In the DSPI, all interrupt
 * configuration settings are in  one register.  The typedef enum  equates each
 * interrupt source to the bit position defined in the device header file.
 * The function  uses these bit positions in its algorithm to enable/disable the
 * interrupt source, where interrupt source is the dspi_status_and_interrupt_request_t type.
 * Note, for Tx FIFO Fill and Rx FIFO Drain requests, use the functions:
 * DSPI_HAL_SetTxFifoFillDmaIntMode and DSPI_HAL_SetRxFifoDrainDmaIntMode respectively as
 * these requests can generate either an interrupt or DMA request.
 *
 *   DSPI_HAL_SetIntMode(baseAddr, kDspiTxComplete, true); <- example use-case
 *
 *END**************************************************************************/
void DSPI_HAL_SetIntMode(uint32_t baseAddr,
                                  dspi_status_and_interrupt_request_t interruptSrc,
                                  bool enable)
{
    uint32_t temp;

    temp = (HW_SPI_RSER_RD(baseAddr) & ~(0x1U << interruptSrc)) |
                          ((uint32_t)enable << interruptSrc);
    HW_SPI_RSER_WR(baseAddr, temp);
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_GetFifoData
 * Description   : Read fifo registers for debug purposes.
 *
 *END**************************************************************************/
uint32_t DSPI_HAL_GetFifoData(uint32_t baseAddr, dspi_fifo_t whichFifo, uint32_t whichFifoEntry)
{
    if (whichFifo == kDspiTxFifo)
    {
        return HW_SPI_TXFRn_RD(baseAddr, whichFifoEntry);
    }
    else
    {
        return HW_SPI_RXFRn_RD(baseAddr, whichFifoEntry);
    }
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_WriteDataMastermode
 * Description   : Write data into the data buffer, master mode.
 * In master mode, the 16-bit data is appended with the 16-bit command info. The command portion
 * provides characteristics of the data being sent such as: optional continuous chip select
 * operation between transfers, the desired Clock and Transfer Attributes register to use for the
 * associated SPI frame, the desired PCS signal to use for the data transfer, whether the current
 * transfer is the last in the queue, and whether to clear the transfer count (normally needed when
 * sending the first frame of a data packet). An example use case is as follows:
 *    dspi_command_config_t commandConfig;
 *    commandConfig.isChipSelectContinuous = true;
 *    commandConfig.whichCtar = kDspiCtar0;
 *    commandConfig.whichPcs = kDspiPcs1;
 *    commandConfig.clearTransferCount = false;
 *    commandConfig.isEndOfQueue = false;
 *    DSPI_HAL_WriteDataMastermode(baseAddr, &commandConfig, dataWord);
 *
 *END**************************************************************************/
void DSPI_HAL_WriteDataMastermode(uint32_t baseAddr,
                                  dspi_command_config_t * command,
                                  uint16_t data)
{
    uint32_t temp;

    /* First, build up the 32-bit word then write it to the PUSHR */
    temp = BF_SPI_PUSHR_CONT(command->isChipSelectContinuous) |
           BF_SPI_PUSHR_CTAS(command->whichCtar) |
           BF_SPI_PUSHR_PCS(command->whichPcs) |
           BF_SPI_PUSHR_EOQ(command->isEndOfQueue) |
           BF_SPI_PUSHR_CTCNT(command->clearTransferCount) |
           BF_SPI_PUSHR_TXDATA(data);

    HW_SPI_PUSHR_WR(baseAddr, temp);
}

/*FUNCTION**********************************************************************
 *
 * Function Name : DSPI_HAL_WriteDataMastermode
 * Description   : Write data into the data buffer, master mode and waits till complete to return.
 * In master mode, the 16-bit data is appended with the 16-bit command info. The command portion
 * provides characteristics of the data being sent such as: optional continuous chip select
 * operation between transfers, the desired Clock and Transfer Attributes register to use for the
 * associated SPI frame, the desired PCS signal to use for the data transfer, whether the current
 * transfer is the last in the queue, and whether to clear the transfer count (normally needed when
 * sending the first frame of a data packet). An example use case is as follows:
 *    dspi_command_config_t commandConfig;
 *    commandConfig.isChipSelectContinuous = true;
 *    commandConfig.whichCtar = kDspiCtar0;
 *    commandConfig.whichPcs = kDspiPcs1;
 *    commandConfig.clearTransferCount = false;
 *    commandConfig.isEndOfQueue = false;
 *    DSPI_HAL_WriteDataMastermode(baseAddr, &commandConfig, dataWord);
 *
 * Note that this function will not return until after the transmit is complete. Also note that
 * the DSPI must be enabled and running in order to transmit data (MCR[MDIS] & [HALT] = 0).
 * Since the SPI is a synchronous protocol, receive data will be available when transmit completes.
 *
 *END**************************************************************************/
void DSPI_HAL_WriteDataMastermodeBlocking(uint32_t baseAddr,
                                          dspi_command_config_t * command,
                                          uint16_t data)
{
    uint32_t temp;

    /* First, clear Transmit Complete Flag (TCF) */
    BW_SPI_SR_TCF(baseAddr, 1);

    /* First, build up the 32-bit word then write it to the PUSHR */
    temp = BF_SPI_PUSHR_CONT(command->isChipSelectContinuous) |
           BF_SPI_PUSHR_CTAS(command->whichCtar) |
           BF_SPI_PUSHR_PCS(command->whichPcs) |
           BF_SPI_PUSHR_EOQ(command->isEndOfQueue) |
           BF_SPI_PUSHR_CTCNT(command->clearTransferCount) |
           BF_SPI_PUSHR_TXDATA(data);

    HW_SPI_PUSHR_WR(baseAddr, temp);

    /* Wait till TCF sets */
    while(BR_SPI_SR_TCF(baseAddr) == 0) { }
}

/*******************************************************************************
 * EOF
 ******************************************************************************/