mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_Freescale/TARGET_KPSDK_MCUS/TARGET_KPSDK_CODE/hal/dspi/fsl_dspi_hal.c

Committer:
mbed_official
Date:
2014-04-03
Revision:
149:1fb5f62b92bd
Parent:
targets/hal/TARGET_Freescale/TARGET_KSDK_MCUS/TARGET_KSDK_CODE/hal/dspi/fsl_dspi_hal.c@ 146:f64d43ff0c18
Child:
324:406fd2029f23

File content as of revision 149:1fb5f62b92bd:

/*
 * Copyright (c) 2013 - 2014, Freescale Semiconductor, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_dspi_hal.h"

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/*******************************************************************************
 * Code
 ******************************************************************************/

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_master_init
 * Description   : Configure the DSPI peripheral in master mode.
 * This function will initialize the module to user defined settings and default settings in master
 * mode.  Here is an example demonstrating how to define the dspi_master_config_t structure and call
 * the dspi_hal_master_init function:
 *    dspi_master_config_t dspiConfig;
 *    dspiConfig.isEnabled = false;
 *    dspiConfig.whichCtar = kDspiCtar0;
 *    dspiConfig.bitsPerSec = 0;
 *    dspiConfig.sourceClockInHz = dspiSourceClock;
 *    dspiConfig.isSckContinuous = false;
 *    dspiConfig.whichPcs = kDspiPcs0;
 *    dspiConfig.pcsPolarity = kDspiPcs_ActiveLow;
 *    dspiConfig.masterInSample = kDspiSckToSin_0Clock;
 *    dspiConfig.isModifiedTimingFormatEnabled = false;
 *    dspiConfig.isTxFifoDisabled = false;
 *    dspiConfig.isRxFifoDisabled = false;
 *    dspiConfig.dataConfig.bitsPerFrame = 16;
 *    dspiConfig.dataConfig.clkPolarity = kDspiClockPolarity_ActiveHigh;
 *    dspiConfig.dataConfig.clkPhase = kDspiClockPhase_FirstEdge;
 *    dspiConfig.dataConfig.direction = kDspiMsbFirst;
 *    dspi_hal_master_init(instance, &dspiConfig, calculatedBaudRate);
 *
 *END**************************************************************************/
dspi_status_t dspi_hal_master_init(uint32_t instance, const dspi_master_config_t * config,
                       uint32_t * calculatedBaudRate)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    /* Enable or disable the module. */
    /* Note, to enable the module, MDIS must be cleared.  However, the member isEnabled*/
    /* must be true (1) to enable module, hence we negate the value of isEnabled to properly*/
    /* configure the MDIS bit*/
    BW_SPI_MCR_MDIS(instance, ~(config->isEnabled == true));

    /* Configure baud rate if a value is provided.*/
    if (config->bitsPerSec != 0U)
    {
        *calculatedBaudRate = dspi_hal_set_baud(instance, config->whichCtar, config->bitsPerSec,
                                               config->sourceClockInHz);
    }
    else
    {
        *calculatedBaudRate = 0;
    }

    /* Set master or slave mode.*/
    dspi_hal_set_master_slave(instance, kDspiMaster);

    /* Configure data format.*/
    if (dspi_hal_configure_data_format(instance, config->whichCtar, &config->dataConfig)
        != kStatus_DSPI_Success)
    {
        return kStatus_DSPI_InvalidBitCount;
    }

    /* Configure for continuous SCK operation*/
    dspi_hal_configure_continuous_sck(instance, config->isSckContinuous);

    /* Configure for peripheral chip select polarity*/
    dspi_hal_configure_pcs_polarity(instance, config->whichPcs,config->pcsPolarity);

    /* Configure sample point for data in, master mode*/
    dspi_hal_set_datain_samplepoint(instance, config->masterInSample);

    /* Configure for modified timing format*/
    dspi_hal_configure_modified_timing_format(instance, config->isModifiedTimingFormatEnabled);

    /* Configure for fifo operation*/
    dspi_hal_configure_fifos(instance, config->isTxFifoDisabled, config->isRxFifoDisabled);

    /* finally, clear the DSPI CONFIGURATION (DCONF), even though this is cleared in some IPs*/
    /* by default and other bit settings are reserved*/
    HW_SPI_MCR_CLR(instance, BM_SPI_MCR_DCONF);

    return kStatus_DSPI_Success;
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_slave_init
 * Description   : Configure the DSPI peripheral in slave mode.
 * This function initializes the DSPI module for slave mode. Here is an example demonstrating how
 * to define the dspi_slave_config_t structure and call the dspi_hal_slave_init function:
 *    dspi_slave_config_t dspiConfig;
 *    dspiConfig.isEnabled = false;
 *    dspiConfig.isTxFifoDisabled = false;
 *    dspiConfig.isRxFifoDisabled = false;
 *    dspiConfig.dataConfig.bitsPerFrame = 16;
 *    dspiConfig.dataConfig.clkPolarity = kDspiClockPolarity_ActiveHigh;
 *    dspiConfig.dataConfig.clkPhase = kDspiClockPhase_FirstEdge;
 *    dspi_hal_slave_init(instance, &dspiConfig);
 *
 *END**************************************************************************/
dspi_status_t dspi_hal_slave_init(uint32_t instance, const dspi_slave_config_t * config)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    /* Enable or disable the module.
     * Note, to enable the module, MDIS must be cleared.  However, the member isEnabled
     * must be true (1) to enable module, hence we negate the value of isEnabled to properly
     * configure the MDIS bit
     */
    BW_SPI_MCR_MDIS(instance, ~(config->isEnabled == true));

    /* Set master or slave moe. */
    dspi_hal_set_master_slave(instance, kDspiSlave);

    /* Configure data format. For slave mode, only CTAR0 is available for use */
    if (dspi_hal_configure_data_format(instance, kDspiCtar0, &config->dataConfig)
        != kStatus_DSPI_Success)
    {
        return kStatus_DSPI_InvalidBitCount;
    }

    /* Configure for fifo operation */
    dspi_hal_configure_fifos(instance, config->isTxFifoDisabled, config->isRxFifoDisabled);

    /* finally, clear the DSPI CONFIGURATION (DCONF), even though this is cleared in some IPs
     * by default and other bit settings are reserved
     */
    HW_SPI_MCR_CLR(instance, BM_SPI_MCR_DCONF);

    return kStatus_DSPI_Success;
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_reset
 * Description   : Restore DSPI to reset configuration.
 * This function basically resets all of the DSPI registers to their default setting including
 * disabling the module.
 *
 *END**************************************************************************/
void dspi_hal_reset(uint32_t instance)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    /* first, make sure the module is enabled to allow writes to certain registers*/
    dspi_hal_enable(instance);

    /* Halt all transfers*/
    HW_SPI_MCR_WR(instance, BM_SPI_MCR_HALT);

    /* flush the fifos*/
    dspi_hal_flush_fifos(instance, true, true);

    /* set the registers to their default states*/
    /* clear the status bits (write-1-to-clear)*/
    HW_SPI_SR_WR(instance, BM_SPI_SR_TCF | BM_SPI_SR_EOQF | BM_SPI_SR_TFUF | BM_SPI_SR_TFFF |
                           BM_SPI_SR_RFOF | BM_SPI_SR_RFDF);
    HW_SPI_TCR_WR(instance, 0);
    HW_SPI_CTARn_WR(instance, 0, 0); /* CTAR0*/
    HW_SPI_CTARn_WR(instance, 1, 0); /* CTAR1*/
    HW_SPI_RSER_WR(instance, 0);
    /* disable the module*/
    HW_SPI_MCR_WR(instance, BM_SPI_MCR_MDIS | BM_SPI_MCR_HALT);
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_set_baud
 * Description   : Set the DSPI baud rate in bits per second.
 * This function will take in the desired bitsPerSec (baud rate) and will calculate the nearest
 * possible baud rate without exceeding the desired baud rate, and will return the calculated
 * baud rate in bits-per-second. It requires that the caller also provide the frequency of the
 * module source clock (in Hz).
 *
 *END**************************************************************************/
uint32_t dspi_hal_set_baud(uint32_t instance, dspi_ctar_selection_t whichCtar, uint32_t bitsPerSec,
                        uint32_t sourceClockInHz)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    /* for master mode configuration, if slave mode detected, return 0*/
    if (HW_SPI_MCR(instance).B.MSTR != 1)
    {
        return 0;
    }

    uint32_t prescaler, bestPrescaler;
    uint32_t scaler, bestScaler;
    uint32_t dbr, bestDbr;
    uint32_t realBaudrate, bestBaudrate;
    uint32_t diff, min_diff;
    uint32_t baudrate = bitsPerSec;

    /* find combination of prescaler and scaler resulting in baudrate closest to the */
    /* requested value */
    min_diff = 0xFFFFFFFFU;
    bestPrescaler = 0;
    bestScaler = 0;
    bestDbr = 1;
    bestBaudrate = 0; /* required to avoid compilation warning */

    /* In all for loops, if min_diff = 0, the exit for loop*/
    for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
    {
        for (scaler = 0; (scaler < 16) && min_diff; scaler++)
        {
            for (dbr = 1; (dbr < 3) && min_diff; dbr++)
            {
                realBaudrate = ((sourceClockInHz * dbr) /
                                (s_baudratePrescaler[prescaler] * (s_baudrateScaler[scaler])));

                /* calculate the baud rate difference based on the conditional statement*/
                /* that states that the calculated baud rate must not exceed the desired baud rate*/
                if (baudrate >= realBaudrate)
                {
                    diff = baudrate-realBaudrate;
                    if (min_diff > diff)
                    {
                        /* a better match found */
                        min_diff = diff;
                        bestPrescaler = prescaler;
                        bestScaler = scaler;
                        bestBaudrate = realBaudrate;
                        bestDbr = dbr;
                    }
                }
            }
        }
    }

    uint32_t temp;
    /* write the best dbr, prescalar, and baud rate scalar to the CTAR*/
    temp = HW_SPI_CTARn_RD(instance, whichCtar); /* save register contents*/
    temp &= ~(BM_SPI_CTARn_DBR| BM_SPI_CTARn_PBR | BM_SPI_CTARn_BR);
    temp |= BF_SPI_CTARn_DBR(bestDbr - 1) |
            BF_SPI_CTARn_PBR(bestPrescaler) |
            BF_SPI_CTARn_BR(bestScaler);
    HW_SPI_CTARn_WR(instance, whichCtar, temp);

    /* return the actual calculated baud rate*/
    return bestBaudrate;
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_set_baud_divisors
 * Description   : Configure the baud rate divisors manually.
 * This function allows the caller to manually set the baud rate divisors in the event that
 * these dividers are known and the caller does not wish to call the dspi_hal_set_baud function.
 *
 *END**************************************************************************/
void dspi_hal_set_baud_divisors(uint32_t instance,
                                dspi_ctar_selection_t whichCtar,
                                const dspi_baud_rate_divisors_t * divisors)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    uint32_t temp;

    /* these settings are only relevant in master mode*/
    if (HW_SPI_MCR(instance).B.MSTR == 1)
    {
        temp = HW_SPI_CTARn_RD(instance, whichCtar); /* save register contents*/
        temp &= ~(BM_SPI_CTARn_DBR | BM_SPI_CTARn_PBR | BM_SPI_CTARn_BR); /* clear dividers*/
        temp |= BF_SPI_CTARn_DBR(divisors->doubleBaudRate) |
                BF_SPI_CTARn_PBR(divisors->prescaleDivisor) |
                BF_SPI_CTARn_BR(divisors->baudRateDivisor);
        HW_SPI_CTARn_WR(instance, whichCtar, temp);
    }
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_configure_pcs_polarity
 * Description   : Configure DSPI peripheral chip select polarity.
 * This function will take in the desired peripheral chip select (PCS) and it's
 * corresponding desired polarity and will configure the PCS signal to operate with the
 * desired characteristic.
 *
 *END**************************************************************************/
void dspi_hal_configure_pcs_polarity(uint32_t instance, dspi_which_pcs_config_t pcs,
                                     dspi_pcs_polarity_config_t activeLowOrHigh)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    uint32_t temp;

    temp = BR_SPI_MCR_PCSIS(instance);

    if (activeLowOrHigh == kDspiPcs_ActiveLow)
    {
        temp |= pcs;
    }
    else  /* kDspiPcsPolarity_ActiveHigh*/
    {
        temp &= ~(unsigned)pcs;
    }

    BW_SPI_MCR_PCSIS(instance, temp);
}


/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_configure_fifos
 * Description   : Configure DSPI fifos.
 * This function with allow the caller to disable/enable the TX and RX FIFOs (independently).
 * Note that to disable, the caller must pass in a logic 1 (true) for the particular FIFO
 * configuration.  To enable, the caller must pass in a logic 0 (false).  For example, to enable
 * both the TX and RX FIFOs, the caller will make this function call (where instance is the
 *
 *END**************************************************************************/
void dspi_hal_configure_fifos(uint32_t instance, bool disableTxFifo, bool disableRxFifo)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    /* first see if MDIS is set or cleared */
    uint32_t isMdisSet = HW_SPI_MCR(instance).B.MDIS;

    if (isMdisSet)
    {
        /* clear the MDIS bit to allow us to write to the fifo disables */
        HW_SPI_MCR_CLR(instance, BM_SPI_MCR_MDIS);
    }

    BW_SPI_MCR_DIS_TXF(instance, (disableTxFifo == true));
    BW_SPI_MCR_DIS_RXF(instance, (disableRxFifo == true));

    /* set MDIS if it was set to begin with */
    if (isMdisSet)
    {
        HW_SPI_MCR_SET(instance, BM_SPI_MCR_MDIS);
    }
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_flush_fifos
 * Description   : Flush DSPI fifos.
 *
 *END**************************************************************************/
void dspi_hal_flush_fifos(uint32_t instance, bool enableFlushTxFifo, bool enableFlushRxFifo)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    BW_SPI_MCR_CLR_TXF(instance, (enableFlushTxFifo == true));
    BW_SPI_MCR_CLR_RXF(instance, (enableFlushRxFifo == true));
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_configure_data_format
 * Description   : Configure the data format for a particular CTAR.
 * This function configures the bits-per-frame, polarity, phase, and shift direction for a
 * particular CTAR. An example use case is as follows:
 *    dspi_data_format_config_t dataFormat;
 *    dataFormat.bitsPerFrame = 16;
 *    dataFormat.clkPolarity = kDspiClockPolarity_ActiveLow;
 *    dataFormat.clkPhase = kDspiClockPhase_FirstEdge;
 *    dataFormat.direction = kDspiMsbFirst;
 *    dspi_hal_configure_data_format(instance, kDspiCtar0, &dataFormat);
 *
 *END**************************************************************************/
dspi_status_t dspi_hal_configure_data_format(uint32_t instance,
                                        dspi_ctar_selection_t whichCtar,
                                        const dspi_data_format_config_t * config)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    /* check bits-per-frame value to make sure it it within the proper range*/
    /* in either master or slave mode*/
    if ((config->bitsPerFrame < 4) ||
        ((config->bitsPerFrame > 16) && (HW_SPI_MCR(instance).B.MSTR == 1)) ||
        ((config->bitsPerFrame > 32) && (HW_SPI_MCR(instance).B.MSTR == 0)))
    {
        return kStatus_DSPI_InvalidBitCount;
    }

    uint32_t temp;

    /* for master mode configuration*/
    if (HW_SPI_MCR(instance).B.MSTR == 1)
    {
        temp = HW_SPI_CTARn_RD(instance, whichCtar); /* save register contents*/
        temp &= ~(BM_SPI_CTARn_FMSZ| BM_SPI_CTARn_CPOL | BM_SPI_CTARn_CPHA | BM_SPI_CTARn_LSBFE);
        temp |= BF_SPI_CTARn_FMSZ(config->bitsPerFrame - 1) |
                BF_SPI_CTARn_CPOL(config->clkPolarity) |
                BF_SPI_CTARn_CPHA(config->clkPhase) |
                BF_SPI_CTARn_LSBFE(config->direction);
        HW_SPI_CTARn_WR(instance, whichCtar, temp);
    }
    else /* for slave mode configuration*/
    {
        temp = HW_SPI_CTARn_SLAVE_RD(instance, whichCtar); /* save register contents*/
        temp &= ~(BM_SPI_CTARn_SLAVE_FMSZ| BM_SPI_CTARn_SLAVE_CPOL | BM_SPI_CTARn_SLAVE_CPHA);
        temp |= BF_SPI_CTARn_SLAVE_FMSZ(config->bitsPerFrame - 1) |
                BF_SPI_CTARn_SLAVE_CPOL(config->clkPolarity) |
                BF_SPI_CTARn_SLAVE_CPHA(config->clkPhase);
        HW_SPI_CTARn_SLAVE_WR(instance, whichCtar, temp);
    }
    return kStatus_DSPI_Success;
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_configure_delays
 * Description   : Configure the delays for a particular CTAR, master mode only.
 * This function configures the PCS to SCK delay prescalar (PCSSCK),
 * the PCS to SCK Delay scalar (CSSCK),
 * the After SCK delay prescalar (PASC),
 * the After SCK delay scalar (ASC),
 * the Delay after transfer prescalar (PDT),
 * and the Delay after transfer scalar (DT).
 * The following is an example use case of this function:
 *    dspi_delay_settings_config_t delayConfig;
 *    delayConfig.pcsToSckPre = 0x3;
 *    delayConfig.pcsToSck = 0xF;
 *    delayConfig.afterSckPre = 0x2;
 *    delayConfig.afterSck = 0xA;
 *    delayConfig.afterTransferPre = 0x1;
 *    delayConfig.afterTransfer = 0x5;
 *    dspi_hal_configure_delays(instance, kDspiCtar0, &delayConfig);
 *
 *END**************************************************************************/
void dspi_hal_configure_delays(uint32_t instance,
                               dspi_ctar_selection_t whichCtar,
                               const dspi_delay_settings_config_t * config)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    uint32_t temp;

    /* these settings are only relevant in master mode*/
    if (HW_SPI_MCR(instance).B.MSTR == 1)
    {
        temp = HW_SPI_CTARn_RD(instance, whichCtar); /* save register contents*/
        temp &= ~(BM_SPI_CTARn_PCSSCK | BM_SPI_CTARn_PASC | BM_SPI_CTARn_PDT |
                  BM_SPI_CTARn_CSSCK| BM_SPI_CTARn_ASC | BM_SPI_CTARn_DT);
        temp |= BF_SPI_CTARn_PCSSCK(config->pcsToSckPre) |
                BF_SPI_CTARn_PASC(config->afterSckPre) |
                BF_SPI_CTARn_PDT(config->afterTransferPre) |
                BF_SPI_CTARn_CSSCK(config->pcsToSck) |
                BF_SPI_CTARn_ASC(config->afterSck) |
                BF_SPI_CTARn_DT(config->afterTransfer);
        HW_SPI_CTARn_WR(instance, whichCtar, temp);
    }
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_configure_dma
 * Description   : Configure transmit and receive DMA requests.
 * This function configures the FIFOs to generate a DMA or interrupt request. Note that the
 * corresponding request enable must also be set.  For the Transmit FIFO Fill, in order
 * to generate a DMA request, the Transmit FIFO Fill Request Enable (TFFF_RE) must also be set.
 * Similarly for the Receive FIFO Drain Request, to generate a DMA request, the Receive FIFO Drain
 * Request Enable (RFDF_RE) must also be set.  These request enables can be configured via
 * the function dspi_hal_configure_interrupt().  So basically to enable DMA operation, first enable
 * the desired request enable using the dspi_hal_configure_interrupt() function and then use
 * the dspi_hal_configure_dma() to configure the request to generate a DMA reuqest.
 *
 *END**************************************************************************/
void dspi_hal_configure_dma(uint32_t instance, bool enableTransmit, bool enableReceive)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    BW_SPI_RSER_TFFF_DIRS(instance, enableTransmit);
    BW_SPI_RSER_RFDF_DIRS(instance, enableReceive);
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_configure_interrupt
 * Description   : Configure DSPI interrupts.
 * This function will configure the various interrupt sources of the DSPI.  The parameters to pass
 * in are instance, interrupt source, and enable/disable setting.
 * The interrupt source will be of a typedef enum whose value will be the bit position of the
 * interrupt source setting within the RSER register.  In the DSPI, all of the interrupt
 * configuration settings reside within the one register.  The typedef enum will equate each
 * interrupt source to the bit position defined in the device header file.
 * The function will use these bit positions in its algorithm to enable/disable the
 * interrupt source, where interrupt source is of type dspi_status_and_interrupt_request_t.
 *    temp = (HW_SPI_RSER_RD(instance) & ~interruptSrc) | (enable << interruptSrc);
 *    HW_SPI_RSER_WR(instance, temp);
 *
 *    dspi_hal_configure_interrupt(instance, kDspiTxComplete, true); <- example use-case
 *
 *END**************************************************************************/
void dspi_hal_configure_interrupt(uint32_t instance,
                                  dspi_status_and_interrupt_request_t interruptSrc,
                                  bool enable)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    uint32_t temp;

    temp = (HW_SPI_RSER_RD(instance) & ~(0x1U << interruptSrc)) | ((uint32_t)enable << interruptSrc);
    HW_SPI_RSER_WR(instance, temp);
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_get_fifo_data
 * Description   : Read fifo registers for debug purposes.
 *
 *END**************************************************************************/
uint32_t dspi_hal_get_fifo_data(uint32_t instance, dspi_fifo_t whichFifo, uint32_t whichFifoEntry)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    if (whichFifo == kDspiTxFifo)
    {
        return HW_SPI_TXFRn_RD(instance, whichFifoEntry);
    }
    else
    {
        return HW_SPI_RXFRn_RD(instance, whichFifoEntry);
    }
}

/*FUNCTION**********************************************************************
 *
 * Function Name : dspi_hal_write_data_master_mode
 * Description   : Write data into the data buffer, master mode.
 * In master mode, the 16-bit data is appended with the 16-bit command info. The command portion
 * provides characteristics of the data being sent such as: optional continuous chip select
 * operation between transfers, the desired Clock and Transfer Attributes register to use for the
 * associated SPI frame, the desired PCS signal to use for the data transfer, whether the current
 * transfer is the last in the queue, and whether to clear the transfer count (normally needed when
 * sending the first frame of a data packet). An example use case is as follows:
 *    dspi_command_config_t commandConfig;
 *    commandConfig.isChipSelectContinuous = true;
 *    commandConfig.whichCtar = kDspiCtar0;
 *    commandConfig.whichPcs = kDspiPcs1;
 *    commandConfig.clearTransferCount = false;
 *    commandConfig.isEndOfQueue = false;
 *    dspi_hal_write_data_master_mode(instance, &commandConfig, dataWord);
 *
 *END**************************************************************************/
void dspi_hal_write_data_master_mode(uint32_t instance,
                                     dspi_command_config_t * command,
                                     uint16_t data)
{
    assert(instance < HW_SPI_INSTANCE_COUNT);

    uint32_t temp;

    temp = BF_SPI_PUSHR_CONT(command->isChipSelectContinuous) |
           BF_SPI_PUSHR_CTAS(command->whichCtar) |
           BF_SPI_PUSHR_PCS(command->whichPcs) |
           BF_SPI_PUSHR_EOQ(command->isEndOfQueue) |
           BF_SPI_PUSHR_CTCNT(command->clearTransferCount) |
           BF_SPI_PUSHR_TXDATA(data);

    HW_SPI_PUSHR_WR(instance, temp);
}

/*******************************************************************************
 * EOF
 ******************************************************************************/