Colour sensors calibrated

Dependencies:   mbed-rtos mbed Servo QEI

Fork of ICRSEurobot13 by Thomas Branch

Committer:
rsavitski
Date:
Wed Apr 10 22:30:09 2013 +0000
Revision:
39:c9058a401410
Parent:
38:6ecf0d21e492
moving to waypoints reliably

Who changed what in which revision?

UserRevisionLine numberNew contents of line
madcowswe 16:52250d8d8fce 1 //***************************************************************************************
madcowswe 16:52250d8d8fce 2 //Kalman Filter implementation
madcowswe 16:52250d8d8fce 3 //***************************************************************************************
madcowswe 16:52250d8d8fce 4 #include "Kalman.h"
madcowswe 16:52250d8d8fce 5 #include "rtos.h"
madcowswe 16:52250d8d8fce 6 #include "math.h"
madcowswe 16:52250d8d8fce 7 #include "supportfuncs.h"
madcowswe 20:70d651156779 8 #include "Encoder.h"
madcowswe 22:167dacfe0b14 9 #include "globals.h"
madcowswe 22:167dacfe0b14 10 #include "Printing.h"
madcowswe 16:52250d8d8fce 11
madcowswe 20:70d651156779 12 #include "tvmet/Matrix.h"
madcowswe 16:52250d8d8fce 13 using namespace tvmet;
madcowswe 16:52250d8d8fce 14
madcowswe 16:52250d8d8fce 15
madcowswe 16:52250d8d8fce 16
madcowswe 16:52250d8d8fce 17 namespace Kalman
madcowswe 16:52250d8d8fce 18 {
madcowswe 16:52250d8d8fce 19
madcowswe 20:70d651156779 20 Ticker predictticker;
madcowswe 20:70d651156779 21
rsavitski 39:c9058a401410 22 DigitalOut OLED4(LED4);
rsavitski 39:c9058a401410 23 DigitalOut OLED1(LED1);
madcowswe 27:7cb3a21d9a2e 24 DigitalOut OLED2(LED2);
madcowswe 20:70d651156779 25
madcowswe 16:52250d8d8fce 26 //State variables
madcowswe 19:4b993a9a156e 27 Matrix<float, 3, 1> X;
madcowswe 16:52250d8d8fce 28 Matrix<float, 3, 3> P;
madcowswe 16:52250d8d8fce 29 Mutex statelock;
madcowswe 16:52250d8d8fce 30
madcowswe 16:52250d8d8fce 31 float RawReadings[maxmeasure+1];
madcowswe 32:ada943ecaceb 32 int sensorseenflags = 0;
madcowswe 23:6e3218cf75f8 33 float IRphaseOffset;
madcowswe 16:52250d8d8fce 34
madcowswe 20:70d651156779 35 bool Kalman_inited = 0;
madcowswe 16:52250d8d8fce 36
madcowswe 16:52250d8d8fce 37 struct measurmentdata {
madcowswe 16:52250d8d8fce 38 measurement_t mtype;
madcowswe 16:52250d8d8fce 39 float value;
madcowswe 16:52250d8d8fce 40 float variance;
madcowswe 19:4b993a9a156e 41 };
madcowswe 16:52250d8d8fce 42
madcowswe 16:52250d8d8fce 43 Mail <measurmentdata, 16> measureMQ;
madcowswe 16:52250d8d8fce 44
madcowswe 20:70d651156779 45 Thread* predict_thread_ptr = NULL;
madcowswe 16:52250d8d8fce 46
madcowswe 16:52250d8d8fce 47
madcowswe 16:52250d8d8fce 48 //Note: this init function assumes that the robot faces east, theta=0, in the +x direction
madcowswe 16:52250d8d8fce 49 void KalmanInit()
madcowswe 16:52250d8d8fce 50 {
madcowswe 20:70d651156779 51 printf("kalmaninit \r\n");
madcowswe 20:70d651156779 52
madcowswe 30:00e1493b44f0 53 //WARNING: HARDCODED! TODO: fix it so it works for both sides!
madcowswe 20:70d651156779 54
madcowswe 32:ada943ecaceb 55 printf("waiting for all sonar, and at least 1 IR\r\n");
madcowswe 32:ada943ecaceb 56 while( ((sensorseenflags & 0x7)^0x7) || !(sensorseenflags & 0x7<<3) );
madcowswe 32:ada943ecaceb 57
madcowswe 16:52250d8d8fce 58 //solve for our position (assume perfect bias)
madcowswe 20:70d651156779 59 const float d = beaconpos[2].y - beaconpos[1].y;
madcowswe 20:70d651156779 60 const float i = beaconpos[2].y - beaconpos[0].y;
madcowswe 20:70d651156779 61 const float j = beaconpos[2].x - beaconpos[0].x;
madcowswe 20:70d651156779 62 float r1 = RawReadings[SONAR2];
madcowswe 19:4b993a9a156e 63 float r2 = RawReadings[SONAR1];
madcowswe 20:70d651156779 64 float r3 = RawReadings[SONAR0];
madcowswe 20:70d651156779 65
madcowswe 20:70d651156779 66 printf("ranges: 0: %0.4f, 1: %0.4f, 2: %0.4f \r\n", r1, r2, r3);
madcowswe 17:6263e90bf3ba 67
madcowswe 19:4b993a9a156e 68 float y_coor = (r1*r1-r2*r2+d*d)/(2*d);
madcowswe 17:6263e90bf3ba 69 float x_coor = (r1*r1-r3*r3+i*i+j*j)/(2*j) - (i*y_coor)/j;
madcowswe 20:70d651156779 70
madcowswe 20:70d651156779 71 //coordinate system hack (for now)
madcowswe 20:70d651156779 72 x_coor = beaconpos[2].x - x_coor;
madcowswe 20:70d651156779 73 y_coor = beaconpos[2].y - y_coor;
madcowswe 20:70d651156779 74
madcowswe 20:70d651156779 75 printf("solved pos from sonar: %f, %f \r\n", x_coor, y_coor);
madcowswe 20:70d651156779 76
madcowswe 16:52250d8d8fce 77 //IR
madcowswe 16:52250d8d8fce 78 float IRMeasuresloc[3];
madcowswe 16:52250d8d8fce 79 IRMeasuresloc[0] = RawReadings[IR0];
madcowswe 16:52250d8d8fce 80 IRMeasuresloc[1] = RawReadings[IR1];
madcowswe 16:52250d8d8fce 81 IRMeasuresloc[2] = RawReadings[IR2];
madcowswe 20:70d651156779 82 printf("IR 0: %0.4f, 1: %0.4f, 2: %0.4f \r\n", IRMeasuresloc[0]*180/PI, IRMeasuresloc[1]*180/PI, IRMeasuresloc[2]*180/PI);
madcowswe 16:52250d8d8fce 83
madcowswe 32:ada943ecaceb 84 float IR_Offsets[3] = {0};
madcowswe 32:ada943ecaceb 85 float frombrefoffset = 0;
madcowswe 32:ada943ecaceb 86 int refbeacon = 0;
madcowswe 32:ada943ecaceb 87
madcowswe 32:ada943ecaceb 88 for (int i = 0; i < 3; i++){
madcowswe 32:ada943ecaceb 89 if (sensorseenflags & 1<<(3+i)){
madcowswe 32:ada943ecaceb 90 refbeacon = i;
madcowswe 32:ada943ecaceb 91 break;
madcowswe 32:ada943ecaceb 92 }
madcowswe 32:ada943ecaceb 93 }
madcowswe 32:ada943ecaceb 94
madcowswe 32:ada943ecaceb 95 printf("refbeacon is %d\r\n", refbeacon);
madcowswe 32:ada943ecaceb 96
madcowswe 32:ada943ecaceb 97 int cnt = 0;
madcowswe 16:52250d8d8fce 98 for (int i = 0; i < 3; i++) {
madcowswe 16:52250d8d8fce 99
madcowswe 32:ada943ecaceb 100 if (sensorseenflags & 1<<(3+i)){
madcowswe 32:ada943ecaceb 101 cnt++;
madcowswe 32:ada943ecaceb 102
madcowswe 32:ada943ecaceb 103 //Compute IR offset
madcowswe 32:ada943ecaceb 104 float angle_est = atan2(beaconpos[i].y - y_coor,beaconpos[i].x - x_coor);
madcowswe 32:ada943ecaceb 105
madcowswe 32:ada943ecaceb 106 //printf("Angle %d : %f \n\r",i,angle_est*180/PI );
madcowswe 32:ada943ecaceb 107 IR_Offsets[i] = constrainAngle(IRMeasuresloc[i] - angle_est);
madcowswe 32:ada943ecaceb 108
madcowswe 32:ada943ecaceb 109 frombrefoffset += constrainAngle(IR_Offsets[i] - IR_Offsets[refbeacon]);
madcowswe 32:ada943ecaceb 110 }
madcowswe 16:52250d8d8fce 111 }
madcowswe 20:70d651156779 112
madcowswe 32:ada943ecaceb 113 IRphaseOffset = constrainAngle(IR_Offsets[refbeacon] + frombrefoffset/cnt);
madcowswe 16:52250d8d8fce 114
madcowswe 16:52250d8d8fce 115 //debug
madcowswe 23:6e3218cf75f8 116 printf("Offsets IR: %0.4f\r\n",IRphaseOffset*180/PI);
madcowswe 16:52250d8d8fce 117
madcowswe 16:52250d8d8fce 118 statelock.lock();
madcowswe 27:7cb3a21d9a2e 119 X(0,0) = x_coor-TURRET_FWD_PLACEMENT; //assume facing east
madcowswe 19:4b993a9a156e 120 X(1,0) = y_coor;
madcowswe 19:4b993a9a156e 121 X(2,0) = 0;
madcowswe 22:167dacfe0b14 122
madcowswe 22:167dacfe0b14 123 P = 0.02*0.02, 0, 0,
madcowswe 22:167dacfe0b14 124 0, 0.02*0.02, 0,
madcowswe 22:167dacfe0b14 125 0, 0, 0.04;
madcowswe 16:52250d8d8fce 126 statelock.unlock();
madcowswe 20:70d651156779 127
madcowswe 20:70d651156779 128 Kalman_inited = 1;
madcowswe 16:52250d8d8fce 129 }
madcowswe 16:52250d8d8fce 130
madcowswe 20:70d651156779 131
madcowswe 20:70d651156779 132 State getState(){
madcowswe 20:70d651156779 133 statelock.lock();
madcowswe 20:70d651156779 134 State state = {X(0,0), X(1,0), X(2,0)};
madcowswe 20:70d651156779 135 statelock.unlock();
madcowswe 20:70d651156779 136 return state;
madcowswe 20:70d651156779 137 }
madcowswe 20:70d651156779 138
madcowswe 20:70d651156779 139
madcowswe 22:167dacfe0b14 140 void predictloop(void const*)
madcowswe 16:52250d8d8fce 141 {
madcowswe 16:52250d8d8fce 142
madcowswe 22:167dacfe0b14 143 OLED4 = !Printing::registerID(0, 3);
madcowswe 22:167dacfe0b14 144 OLED4 = !Printing::registerID(1, 4);
madcowswe 16:52250d8d8fce 145
madcowswe 16:52250d8d8fce 146 float lastleft = 0;
madcowswe 16:52250d8d8fce 147 float lastright = 0;
madcowswe 16:52250d8d8fce 148
madcowswe 16:52250d8d8fce 149 while (1) {
madcowswe 16:52250d8d8fce 150 Thread::signal_wait(0x1);
madcowswe 16:52250d8d8fce 151 OLED1 = !OLED1;
madcowswe 16:52250d8d8fce 152
madcowswe 20:70d651156779 153 float leftenc = left_encoder.getTicks() * ENCODER_M_PER_TICK;
madcowswe 20:70d651156779 154 float rightenc = right_encoder.getTicks() * ENCODER_M_PER_TICK;
madcowswe 16:52250d8d8fce 155
madcowswe 20:70d651156779 156 float dleft = leftenc-lastleft;
madcowswe 20:70d651156779 157 float dright = rightenc-lastright;
madcowswe 16:52250d8d8fce 158
madcowswe 16:52250d8d8fce 159 lastleft = leftenc;
madcowswe 16:52250d8d8fce 160 lastright = rightenc;
madcowswe 16:52250d8d8fce 161
madcowswe 16:52250d8d8fce 162
madcowswe 16:52250d8d8fce 163 //The below calculation are in body frame (where +x is forward)
madcowswe 16:52250d8d8fce 164 float dxp, dyp,d,r;
madcowswe 20:70d651156779 165 float thetap = (dright - dleft) / ENCODER_WHEELBASE;
madcowswe 20:70d651156779 166 if (abs(thetap) < 0.01f) { //if the rotation through the integration step is small, approximate with a straight line to avoid numerical error
madcowswe 16:52250d8d8fce 167 d = (dright + dleft)/2.0f;
madcowswe 16:52250d8d8fce 168 dxp = d*cos(thetap/2.0f);
madcowswe 16:52250d8d8fce 169 dyp = d*sin(thetap/2.0f);
madcowswe 16:52250d8d8fce 170
madcowswe 16:52250d8d8fce 171 } else { //calculate circle arc
madcowswe 16:52250d8d8fce 172 //float r = (right + left) / (4.0f * PI * thetap);
madcowswe 16:52250d8d8fce 173 r = (dright + dleft) / (2.0f*thetap);
madcowswe 20:70d651156779 174 dxp = r*sin(thetap);
madcowswe 16:52250d8d8fce 175 dyp = r - r*cos(thetap);
madcowswe 16:52250d8d8fce 176 }
madcowswe 16:52250d8d8fce 177
madcowswe 16:52250d8d8fce 178 statelock.lock();
madcowswe 16:52250d8d8fce 179
madcowswe 20:70d651156779 180 float tempX2 = X(2,0);
madcowswe 16:52250d8d8fce 181 //rotating to cartesian frame and updating state
madcowswe 20:70d651156779 182 X(0,0) += dxp * cos(X(2,0)) - dyp * sin(X(2,0));
madcowswe 20:70d651156779 183 X(1,0) += dxp * sin(X(2,0)) + dyp * cos(X(2,0));
madcowswe 20:70d651156779 184 X(2,0) = constrainAngle(X(2,0) + thetap);
madcowswe 16:52250d8d8fce 185
madcowswe 16:52250d8d8fce 186 //Linearising F around X
madcowswe 20:70d651156779 187 float avgX2 = (X(2,0) + tempX2)/2.0f;
madcowswe 16:52250d8d8fce 188 Matrix<float, 3, 3> F;
madcowswe 16:52250d8d8fce 189 F = 1, 0, (dxp * -sin(avgX2) - dyp * cos(avgX2)),
madcowswe 16:52250d8d8fce 190 0, 1, (dxp * cos(avgX2) - dyp * sin(avgX2)),
madcowswe 16:52250d8d8fce 191 0, 0, 1;
madcowswe 16:52250d8d8fce 192
madcowswe 16:52250d8d8fce 193 //Generating forward and rotational variance
madcowswe 16:52250d8d8fce 194 float varfwd = fwdvarperunit * abs(dright + dleft) / 2.0f;
madcowswe 16:52250d8d8fce 195 float varang = varperang * abs(thetap);
madcowswe 20:70d651156779 196 float varxydt = xyvarpertime * KALMAN_PREDICT_PERIOD;
madcowswe 20:70d651156779 197 float varangdt = angvarpertime * KALMAN_PREDICT_PERIOD;
madcowswe 16:52250d8d8fce 198
madcowswe 16:52250d8d8fce 199 //Rotating into cartesian frame
madcowswe 16:52250d8d8fce 200 Matrix<float, 2, 2> Qsub,Qsubrot,Qrot;
madcowswe 16:52250d8d8fce 201 Qsub = varfwd + varxydt, 0,
madcowswe 16:52250d8d8fce 202 0, varxydt;
madcowswe 16:52250d8d8fce 203
madcowswe 20:70d651156779 204 Qrot = Rotmatrix(X(2,0));
madcowswe 16:52250d8d8fce 205
madcowswe 16:52250d8d8fce 206 Qsubrot = Qrot * Qsub * trans(Qrot);
madcowswe 16:52250d8d8fce 207
madcowswe 16:52250d8d8fce 208 //Generate Q
madcowswe 16:52250d8d8fce 209 Matrix<float, 3, 3> Q;//(Qsubrot);
madcowswe 16:52250d8d8fce 210 Q = Qsubrot(0,0), Qsubrot(0,1), 0,
madcowswe 16:52250d8d8fce 211 Qsubrot(1,0), Qsubrot(1,1), 0,
madcowswe 16:52250d8d8fce 212 0, 0, varang + varangdt;
madcowswe 16:52250d8d8fce 213
madcowswe 16:52250d8d8fce 214 P = F * P * trans(F) + Q;
madcowswe 16:52250d8d8fce 215
madcowswe 20:70d651156779 216 //printf("x: %f, y: %f, t: %f\r\n", X(0,0), X(1,0), X(2,0));
madcowswe 22:167dacfe0b14 217 //Update Printing
madcowswe 22:167dacfe0b14 218 float statecpy[] = {X(0,0), X(1,0), X(2,0)};
madcowswe 22:167dacfe0b14 219 Printing::updateval(0, statecpy, 3);
madcowswe 16:52250d8d8fce 220
madcowswe 22:167dacfe0b14 221 float Pcpy[] = {P(0,0), P(0,1), P(1,0), P(1,1)};
madcowswe 22:167dacfe0b14 222 Printing::updateval(1, Pcpy, 4);
madcowswe 16:52250d8d8fce 223
madcowswe 16:52250d8d8fce 224 statelock.unlock();
madcowswe 16:52250d8d8fce 225 }
madcowswe 16:52250d8d8fce 226 }
madcowswe 16:52250d8d8fce 227
madcowswe 20:70d651156779 228
madcowswe 20:70d651156779 229 void predict_event_setter(){
madcowswe 20:70d651156779 230 if(predict_thread_ptr)
madcowswe 20:70d651156779 231 predict_thread_ptr->signal_set(0x1);
madcowswe 20:70d651156779 232 else
madcowswe 20:70d651156779 233 OLED4 = 1;
madcowswe 20:70d651156779 234 }
madcowswe 20:70d651156779 235
madcowswe 20:70d651156779 236 void start_predict_ticker(Thread* predict_thread_ptr_in){
madcowswe 20:70d651156779 237 predict_thread_ptr = predict_thread_ptr_in;
madcowswe 20:70d651156779 238 predictticker.attach(predict_event_setter, KALMAN_PREDICT_PERIOD);
madcowswe 20:70d651156779 239 }
madcowswe 20:70d651156779 240
madcowswe 20:70d651156779 241 void runupdate(measurement_t type, float value, float variance)
madcowswe 16:52250d8d8fce 242 {
madcowswe 32:ada943ecaceb 243 sensorseenflags |= 1<<type;
madcowswe 32:ada943ecaceb 244
madcowswe 20:70d651156779 245 if (!Kalman_inited) {
madcowswe 16:52250d8d8fce 246 RawReadings[type] = value;
madcowswe 20:70d651156779 247 } else {
madcowswe 17:6263e90bf3ba 248
madcowswe 20:70d651156779 249 if (type >= IR0 && type <= IR2)
madcowswe 23:6e3218cf75f8 250 RawReadings[type] = value - IRphaseOffset;
madcowswe 20:70d651156779 251 else
madcowswe 20:70d651156779 252 RawReadings[type] = value;
madcowswe 20:70d651156779 253
madcowswe 17:6263e90bf3ba 254
madcowswe 16:52250d8d8fce 255 measurmentdata* measured = (measurmentdata*)measureMQ.alloc();
madcowswe 16:52250d8d8fce 256 if (measured) {
madcowswe 16:52250d8d8fce 257 measured->mtype = type;
madcowswe 32:ada943ecaceb 258 measured->value = RawReadings[type];
madcowswe 16:52250d8d8fce 259 measured->variance = variance;
madcowswe 16:52250d8d8fce 260
madcowswe 16:52250d8d8fce 261 osStatus putret = measureMQ.put(measured);
madcowswe 20:70d651156779 262 //if (putret)
madcowswe 20:70d651156779 263 //OLED4 = 1;
madcowswe 16:52250d8d8fce 264 // printf("putting in MQ error code %#x\r\n", putret);
madcowswe 16:52250d8d8fce 265 } else {
madcowswe 20:70d651156779 266 //OLED4 = 1;
madcowswe 16:52250d8d8fce 267 //printf("MQalloc returned NULL ptr\r\n");
madcowswe 16:52250d8d8fce 268 }
madcowswe 20:70d651156779 269
madcowswe 16:52250d8d8fce 270 }
madcowswe 20:70d651156779 271
madcowswe 16:52250d8d8fce 272
madcowswe 16:52250d8d8fce 273 }
madcowswe 27:7cb3a21d9a2e 274
madcowswe 22:167dacfe0b14 275 void Kalman::updateloop(void const*)
madcowswe 16:52250d8d8fce 276 {
madcowswe 16:52250d8d8fce 277
madcowswe 16:52250d8d8fce 278 //sonar Y chanels
madcowswe 27:7cb3a21d9a2e 279 OLED4 = !Printing::registerID(2, 1);
madcowswe 27:7cb3a21d9a2e 280 OLED4 = !Printing::registerID(3, 1);
madcowswe 27:7cb3a21d9a2e 281 OLED4 = !Printing::registerID(4, 1);
madcowswe 16:52250d8d8fce 282
madcowswe 16:52250d8d8fce 283 //IR Y chanels
madcowswe 27:7cb3a21d9a2e 284 OLED4 = !Printing::registerID(5, 1);
madcowswe 27:7cb3a21d9a2e 285 OLED4 = !Printing::registerID(6, 1);
madcowswe 27:7cb3a21d9a2e 286 OLED4 = !Printing::registerID(7, 1);
madcowswe 16:52250d8d8fce 287
madcowswe 16:52250d8d8fce 288 bool aborton2stddev = false;
madcowswe 16:52250d8d8fce 289
madcowswe 16:52250d8d8fce 290 Matrix<float, 1, 3> H;
madcowswe 16:52250d8d8fce 291
madcowswe 27:7cb3a21d9a2e 292 float Y,S;
madcowswe 27:7cb3a21d9a2e 293 const Matrix<float, 3, 3> I3( identity< Matrix<float, 3, 3> >() );
madcowswe 16:52250d8d8fce 294
madcowswe 16:52250d8d8fce 295
madcowswe 16:52250d8d8fce 296 while (1) {
madcowswe 16:52250d8d8fce 297 OLED2 = !OLED2;
madcowswe 16:52250d8d8fce 298
madcowswe 16:52250d8d8fce 299 osEvent evt = measureMQ.get();
madcowswe 16:52250d8d8fce 300
madcowswe 16:52250d8d8fce 301 if (evt.status == osEventMail) {
madcowswe 16:52250d8d8fce 302
madcowswe 16:52250d8d8fce 303 measurmentdata &measured = *(measurmentdata*)evt.value.p;
madcowswe 27:7cb3a21d9a2e 304 measurement_t type = measured.mtype; //Note, may support more measurment types than sonar in the future!
madcowswe 27:7cb3a21d9a2e 305 float value = measured.value;
madcowswe 27:7cb3a21d9a2e 306 float variance = measured.variance;
madcowswe 16:52250d8d8fce 307
madcowswe 16:52250d8d8fce 308 // don't forget to free the memory
madcowswe 16:52250d8d8fce 309 measureMQ.free(&measured);
madcowswe 16:52250d8d8fce 310
madcowswe 16:52250d8d8fce 311 if (type <= maxmeasure) {
madcowswe 16:52250d8d8fce 312
madcowswe 27:7cb3a21d9a2e 313 if (type <= SONAR2) {
madcowswe 16:52250d8d8fce 314
madcowswe 27:7cb3a21d9a2e 315 float dist = value;
madcowswe 16:52250d8d8fce 316 int sonarid = type;
madcowswe 16:52250d8d8fce 317 aborton2stddev = true;
madcowswe 16:52250d8d8fce 318
madcowswe 16:52250d8d8fce 319 statelock.lock();
madcowswe 27:7cb3a21d9a2e 320
madcowswe 27:7cb3a21d9a2e 321 float fp_ct = TURRET_FWD_PLACEMENT*cos(X(2,0));
madcowswe 27:7cb3a21d9a2e 322 float fp_st = TURRET_FWD_PLACEMENT*sin(X(2,0));
madcowswe 27:7cb3a21d9a2e 323
madcowswe 27:7cb3a21d9a2e 324 float rbx = X(0,0) + fp_ct - beaconpos[sonarid].x;
madcowswe 27:7cb3a21d9a2e 325 float rby = X(1,0) + fp_st - beaconpos[sonarid].y;
madcowswe 27:7cb3a21d9a2e 326
madcowswe 27:7cb3a21d9a2e 327 float expecdist = hypot(rbx, rby);//sqrt(rbx*rbx + rby*rby);
madcowswe 16:52250d8d8fce 328 Y = dist - expecdist;
madcowswe 16:52250d8d8fce 329
madcowswe 16:52250d8d8fce 330 //send to ui
madcowswe 27:7cb3a21d9a2e 331 Printing::updateval(sonarid+2, Y);
madcowswe 16:52250d8d8fce 332
madcowswe 27:7cb3a21d9a2e 333 float r_expecdist = 1.0f/expecdist;
madcowswe 16:52250d8d8fce 334
madcowswe 27:7cb3a21d9a2e 335 float dhdx = rbx * r_expecdist;
madcowswe 27:7cb3a21d9a2e 336 float dhdy = rby * r_expecdist;
madcowswe 28:664e81033846 337 float dhdt = fp_ct*dhdy - fp_st*dhdx;
madcowswe 16:52250d8d8fce 338
madcowswe 27:7cb3a21d9a2e 339 H = dhdx, dhdy, dhdt;
madcowswe 16:52250d8d8fce 340
madcowswe 27:7cb3a21d9a2e 341 } else if (type <= IR2) {
madcowswe 27:7cb3a21d9a2e 342
madcowswe 27:7cb3a21d9a2e 343 aborton2stddev = true;
madcowswe 16:52250d8d8fce 344 int IRidx = type-3;
madcowswe 16:52250d8d8fce 345
madcowswe 27:7cb3a21d9a2e 346 statelock.lock();
madcowswe 27:7cb3a21d9a2e 347
madcowswe 27:7cb3a21d9a2e 348 float fp_ct = TURRET_FWD_PLACEMENT*cos(X(2,0));
madcowswe 27:7cb3a21d9a2e 349 float fp_st = TURRET_FWD_PLACEMENT*sin(X(2,0));
madcowswe 16:52250d8d8fce 350
madcowswe 27:7cb3a21d9a2e 351 float brx = beaconpos[IRidx].x - (X(0,0) + fp_ct);
madcowswe 27:7cb3a21d9a2e 352 float bry = beaconpos[IRidx].y - (X(1,0) + fp_st);
madcowswe 16:52250d8d8fce 353
madcowswe 27:7cb3a21d9a2e 354 float expecang = atan2(bry, brx) - X(2,0); //constrainAngle can be called late
madcowswe 27:7cb3a21d9a2e 355 Y = constrainAngle(value - expecang);
madcowswe 16:52250d8d8fce 356
madcowswe 16:52250d8d8fce 357 //send to ui
madcowswe 27:7cb3a21d9a2e 358 Printing::updateval(IRidx + 5, Y);
madcowswe 16:52250d8d8fce 359
madcowswe 27:7cb3a21d9a2e 360 float r_dstsq = 1.0f/(brx*brx + bry*bry);
madcowswe 27:7cb3a21d9a2e 361 float dhdx = -bry*r_dstsq;
madcowswe 27:7cb3a21d9a2e 362 float dhdy = brx*r_dstsq;
madcowswe 27:7cb3a21d9a2e 363 float dhdt = fp_ct*dhdy - fp_st*dhdx - 1.0f;
madcowswe 27:7cb3a21d9a2e 364 H = dhdx, dhdy, dhdt;
madcowswe 16:52250d8d8fce 365 }
madcowswe 16:52250d8d8fce 366
madcowswe 16:52250d8d8fce 367 Matrix<float, 3, 1> PH (P * trans(H));
madcowswe 32:ada943ecaceb 368 S = (H * PH)(0,0) + variance*10; //TODO: temp hack
madcowswe 16:52250d8d8fce 369
madcowswe 16:52250d8d8fce 370 if (aborton2stddev && Y*Y > 4 * S) {
madcowswe 16:52250d8d8fce 371 statelock.unlock();
madcowswe 16:52250d8d8fce 372 continue;
madcowswe 16:52250d8d8fce 373 }
madcowswe 16:52250d8d8fce 374
madcowswe 16:52250d8d8fce 375 Matrix<float, 3, 1> K (PH * (1/S));
madcowswe 16:52250d8d8fce 376
madcowswe 16:52250d8d8fce 377 //Updating state
madcowswe 27:7cb3a21d9a2e 378 X += K * Y;
madcowswe 27:7cb3a21d9a2e 379 X(2,0) = constrainAngle(X(2,0));
madcowswe 16:52250d8d8fce 380
madcowswe 16:52250d8d8fce 381 P = (I3 - K * H) * P;
madcowswe 16:52250d8d8fce 382
madcowswe 16:52250d8d8fce 383 statelock.unlock();
madcowswe 16:52250d8d8fce 384
madcowswe 16:52250d8d8fce 385 }
madcowswe 16:52250d8d8fce 386
madcowswe 16:52250d8d8fce 387 } else {
madcowswe 16:52250d8d8fce 388 OLED4 = 1;
madcowswe 16:52250d8d8fce 389 //printf("ERROR: in updateloop, code %#x", evt);
madcowswe 16:52250d8d8fce 390 }
madcowswe 16:52250d8d8fce 391
madcowswe 16:52250d8d8fce 392 }
madcowswe 16:52250d8d8fce 393
madcowswe 16:52250d8d8fce 394 }
madcowswe 16:52250d8d8fce 395
madcowswe 19:4b993a9a156e 396
madcowswe 16:52250d8d8fce 397 } //Kalman Namespace