The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Dependents:   hello SerialTestv11 SerialTestv12 Sierpinski ... more

mbed 2

This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.

Revision:
80:8e73be2a2ac1
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/TARGET_NRF51822/nrf_soc.h	Fri Feb 21 12:21:39 2014 +0000
@@ -0,0 +1,777 @@
+/* Copyright (c) 2011 Nordic Semiconductor. All Rights Reserved.
+ *
+ * The information contained herein is confidential property of Nordic Semiconductor. The use,
+ * copying, transfer or disclosure of such information is prohibited except by express written
+ * agreement with Nordic Semiconductor.
+ *
+ */
+ 
+/**
+  @defgroup nrf_soc_api SoC Library API
+  @{
+  
+  @brief APIs for the SoC library.
+  
+*/
+
+#ifndef NRF_SOC_H__
+#define NRF_SOC_H__
+
+#include <stdint.h>
+#include <stdbool.h>
+#include "nrf_svc.h"
+#include "nrf51.h"
+#include "nrf51_bitfields.h"
+#include "nrf_error_soc.h"
+
+/** @addtogroup NRF_SOC_DEFINES Defines
+ * @{ */
+
+/**@brief The number of the lowest SVC number reserved for the SoC library. */
+#define SOC_SVC_BASE 0x20
+
+/**@brief Guranteed time for application to process radio inactive notification. */
+#define NRF_RADIO_NOTIFICATION_INACTIVE_GUARANTEED_TIME_US   (62)
+
+#define SOC_ECB_KEY_LENGTH                   (16)                       /**< ECB key length. */
+#define SOC_ECB_CLEARTEXT_LENGTH             (16)                       /**< ECB cleartext length. */
+#define SOC_ECB_CIPHERTEXT_LENGTH            (SOC_ECB_CLEARTEXT_LENGTH) /**< ECB ciphertext length. */
+
+#define SD_EVT_IRQn                   (SWI2_IRQn)       /**< SoftDevice Event IRQ number. Used for both protocol events and SoC events. */
+#define SD_EVT_IRQHandler             (SWI2_IRQHandler) /**< SoftDevice Event IRQ handler. Used for both protocol events and SoC events. */
+#define RADIO_NOTIFICATION_IRQn       (SWI1_IRQn)       /**< The radio notification IRQ number. */
+#define RADIO_NOTIFICATION_IRQHandler (SWI1_IRQHandler) /**< The radio notification IRQ handler. */
+
+/** @} */
+
+/** @addtogroup NRF_SOC_TYPES Types
+ * @{ */
+
+/**@brief The SVC numbers used by the SVC functions in the SoC library. */
+enum NRF_SOC_SVCS
+{
+  SD_MUTEX_NEW = SOC_SVC_BASE,
+  SD_MUTEX_ACQUIRE,
+  SD_MUTEX_RELEASE,
+  SD_NVIC_ENABLEIRQ,
+  SD_NVIC_DISABLEIRQ,
+  SD_NVIC_GETPENDINGIRQ,
+  SD_NVIC_SETPENDINGIRQ,
+  SD_NVIC_CLEARPENDINGIRQ,
+  SD_NVIC_SETPRIORITY,
+  SD_NVIC_GETPRIORITY,
+  SD_NVIC_SYSTEMRESET,
+  SD_NVIC_CRITICAL_REGION_ENTER,
+  SD_NVIC_CRITICAL_REGION_EXIT,
+  SD_RAND_APPLICATION_POOL_CAPACITY,
+  SD_RAND_APPLICATION_BYTES_AVAILABLE,
+  SD_RAND_APPLICATION_GET_VECTOR,
+  SD_POWER_MODE_SET,
+  SD_POWER_SYSTEM_OFF,
+  SD_POWER_RESET_REASON_GET,
+  SD_POWER_RESET_REASON_CLR,
+  SD_POWER_POF_ENABLE,
+  SD_POWER_POF_THRESHOLD_SET,
+  SD_POWER_RAMON_SET,
+  SD_POWER_RAMON_CLR,
+  SD_POWER_RAMON_GET,
+  SD_POWER_GPREGRET_SET,
+  SD_POWER_GPREGRET_CLR,
+  SD_POWER_GPREGRET_GET,
+  SD_POWER_DCDC_MODE_SET,
+  SD_APP_EVT_WAIT,
+  SD_CLOCK_HFCLK_REQUEST,
+  SD_CLOCK_HFCLK_RELEASE,
+  SD_CLOCK_HFCLK_IS_RUNNING,
+  SD_PPI_CHANNEL_ENABLE_GET,
+  SD_PPI_CHANNEL_ENABLE_SET,
+  SD_PPI_CHANNEL_ENABLE_CLR,
+  SD_PPI_CHANNEL_ASSIGN,
+  SD_PPI_GROUP_TASK_ENABLE,
+  SD_PPI_GROUP_TASK_DISABLE,
+  SD_PPI_GROUP_ASSIGN,
+  SD_PPI_GROUP_GET,
+  SD_RADIO_NOTIFICATION_CFG_SET,
+  SD_ECB_BLOCK_ENCRYPT,
+  SD_RESERVED1,
+  SD_RESERVED2,
+  SD_RESERVED3,
+  SD_EVT_GET,
+  SD_TEMP_GET,
+  SD_FLASH_ERASE_PAGE,
+  SD_FLASH_WRITE,
+  SD_FLASH_PROTECT,
+  SVC_SOC_LAST
+};
+
+/**@brief Possible values of a ::nrf_mutex_t. */
+enum NRF_MUTEX_VALUES
+{
+  NRF_MUTEX_FREE,
+  NRF_MUTEX_TAKEN
+};
+
+/**@brief Possible values of ::nrf_app_irq_priority_t. */
+enum NRF_APP_PRIORITIES
+{
+  NRF_APP_PRIORITY_HIGH = 1,
+  NRF_APP_PRIORITY_LOW = 3
+};
+
+/**@brief Possible values of ::nrf_power_mode_t. */
+enum NRF_POWER_MODES
+{
+  NRF_POWER_MODE_CONSTLAT,  /**< Constant latency mode. See power management in the reference manual. */
+  NRF_POWER_MODE_LOWPWR     /**< Low power mode. See power management in the reference manual. */
+};
+
+
+/**@brief Possible values of ::nrf_power_failure_threshold_t */
+enum NRF_POWER_THRESHOLDS
+{
+  NRF_POWER_THRESHOLD_V21,  /**< 2.1 Volts power failure threshold. */
+  NRF_POWER_THRESHOLD_V23,  /**< 2.3 Volts power failure threshold. */
+  NRF_POWER_THRESHOLD_V25,  /**< 2.5 Volts power failure threshold. */ 
+  NRF_POWER_THRESHOLD_V27   /**< 2.7 Volts power failure threshold. */
+};
+
+
+/**@brief Possible values of ::nrf_power_dcdc_mode_t. */
+enum NRF_POWER_DCDC_MODES
+{
+  NRF_POWER_DCDC_MODE_OFF,          /**< The DCDC is always off. */
+  NRF_POWER_DCDC_MODE_ON,           /**< The DCDC is always on. */
+  NRF_POWER_DCDC_MODE_AUTOMATIC     /**< The DCDC is automatically managed. */
+};
+
+/**@brief Possible values of ::nrf_radio_notification_distance_t. */
+enum NRF_RADIO_NOTIFICATION_DISTANCES
+{
+  NRF_RADIO_NOTIFICATION_DISTANCE_NONE = 0, /**< The event does not have a notification. */
+  NRF_RADIO_NOTIFICATION_DISTANCE_800US,    /**< The distance from the active notification to start of radio activity. */
+  NRF_RADIO_NOTIFICATION_DISTANCE_1740US,   /**< The distance from the active notification to start of radio activity. */
+  NRF_RADIO_NOTIFICATION_DISTANCE_2680US,   /**< The distance from the active notification to start of radio activity. */
+  NRF_RADIO_NOTIFICATION_DISTANCE_3620US,   /**< The distance from the active notification to start of radio activity. */
+  NRF_RADIO_NOTIFICATION_DISTANCE_4560US,   /**< The distance from the active notification to start of radio activity. */
+  NRF_RADIO_NOTIFICATION_DISTANCE_5500US    /**< The distance from the active notification to start of radio activity. */
+};
+
+
+/**@brief Possible values of ::nrf_radio_notification_type_t. */
+enum NRF_RADIO_NOTIFICATION_TYPES
+{
+  NRF_RADIO_NOTIFICATION_TYPE_NONE = 0,        /**< The event does not have a radio notification signal. */
+  NRF_RADIO_NOTIFICATION_TYPE_INT_ON_ACTIVE,   /**< Using interrupt for notification when the radio will be enabled. */
+  NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE, /**< Using interrupt for notification when the radio has been disabled. */
+  NRF_RADIO_NOTIFICATION_TYPE_INT_ON_BOTH,     /**< Using interrupt for notification both when the radio will be enabled and disabled. */
+};
+
+/**@brief SoC Events. */
+enum NRF_SOC_EVTS
+{
+  NRF_EVT_HFCLKSTARTED,                       /**< Event indicating that the HFCLK has started. */
+  NRF_EVT_POWER_FAILURE_WARNING,              /**< Event indicating that a power failure warning has occurred. */
+  NRF_EVT_FLASH_OPERATION_SUCCESS,            /**< Event indicating that the ongoing flash operation has completed successfully. */
+  NRF_EVT_FLASH_OPERATION_ERROR,              /**< Event indicating that the ongoing flash operation has timed out with an error. */
+  NRF_EVT_RESERVED1,
+  NRF_EVT_RESERVED2,
+  NRF_EVT_RESERVED3,
+  NRF_EVT_RESERVED4,
+  NRF_EVT_RESERVED5,
+  NRF_EVT_NUMBER_OF_EVTS
+};
+
+/** @} */
+
+/** @addtogroup NRF_SOC_TYPES Types
+ * @{ */
+
+/**@brief Represents a mutex for use with the nrf_mutex functions.
+ * @note Accessing the value directly is not safe, use the mutex functions!
+ */
+typedef volatile uint8_t nrf_mutex_t;
+
+/**@brief The interrupt priorities available to the application while the softdevice is active. */
+typedef uint8_t nrf_app_irq_priority_t;
+
+/**@brief Represents a power mode, used in power mode functions */
+typedef uint8_t nrf_power_mode_t;
+
+/**@brief Represents a power failure threshold value. */
+typedef uint8_t nrf_power_failure_threshold_t;
+
+/**@brief Represents a DCDC mode value. */
+typedef uint32_t nrf_power_dcdc_mode_t;
+
+/**@brief Radio notification distances. */
+typedef uint8_t nrf_radio_notification_distance_t;
+
+/**@brief Radio notification types. */
+typedef uint8_t nrf_radio_notification_type_t;
+
+
+/**@brief AES ECB data structure */
+typedef struct
+{
+  uint8_t key[SOC_ECB_KEY_LENGTH];                /**< Encryption key. */
+  uint8_t cleartext[SOC_ECB_CLEARTEXT_LENGTH];    /**< Clear Text data. */
+  uint8_t ciphertext[SOC_ECB_CIPHERTEXT_LENGTH];  /**< Cipher Text data. */
+} nrf_ecb_hal_data_t;
+
+/** @} */
+
+/** @addtogroup NRF_SOC_FUNCTIONS Functions
+ * @{ */
+
+/**@brief Initialize a mutex.
+ *
+ * @param[in] p_mutex Pointer to the mutex to initialize.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_MUTEX_NEW, uint32_t, sd_mutex_new(nrf_mutex_t * p_mutex));
+
+/**@brief Attempt to acquire a mutex.
+ *
+ * @param[in] p_mutex Pointer to the mutex to acquire.
+ *
+ * @retval ::NRF_SUCCESS The mutex was successfully acquired.
+ * @retval ::NRF_ERROR_SOC_MUTEX_ALREADY_TAKEN The mutex could not be acquired.
+ */
+SVCALL(SD_MUTEX_ACQUIRE, uint32_t, sd_mutex_acquire(nrf_mutex_t * p_mutex));
+
+/**@brief Release a mutex.
+ *
+ * @param[in] p_mutex Pointer to the mutex to release.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_MUTEX_RELEASE, uint32_t, sd_mutex_release(nrf_mutex_t * p_mutex));
+
+/**@brief Enable External Interrupt.
+ * @note Corresponds to NVIC_EnableIRQ in CMSIS.
+ *
+ * @pre{IRQn is valid and not reserved by the stack}
+ *
+ * @param[in] IRQn See the NVIC_EnableIRQ documentation in CMSIS.
+ *
+ * @retval ::NRF_SUCCESS The interrupt was enabled.
+ * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE The interrupt is not available for the application.
+ * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED The interrupt has a priority not available for the application.
+ */
+SVCALL(SD_NVIC_ENABLEIRQ, uint32_t, sd_nvic_EnableIRQ(IRQn_Type IRQn));
+
+/**@brief  Disable External Interrupt.
+ * @note Corresponds to NVIC_DisableIRQ in CMSIS.
+ *
+ * @pre{IRQn is valid and not reserved by the stack}
+ *
+ * @param[in] IRQn See the NVIC_DisableIRQ documentation in CMSIS
+ *
+ * @retval ::NRF_SUCCESS The interrupt was disabled.
+ * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE The interrupt is not available for the application.
+ */
+SVCALL(SD_NVIC_DISABLEIRQ, uint32_t, sd_nvic_DisableIRQ(IRQn_Type IRQn));
+
+/**@brief  Get Pending Interrupt.
+ * @note Corresponds to NVIC_GetPendingIRQ in CMSIS.
+ *
+ * @pre{IRQn is valid and not reserved by the stack}
+ *
+ * @param[in]   IRQn          See the NVIC_GetPendingIRQ documentation in CMSIS.
+ * @param[out]  p_pending_irq Return value from NVIC_GetPendingIRQ.
+ *
+ * @retval ::NRF_SUCCESS The interrupt is available for the application.
+ * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
+ */
+SVCALL(SD_NVIC_GETPENDINGIRQ, uint32_t, sd_nvic_GetPendingIRQ(IRQn_Type IRQn, uint32_t * p_pending_irq));
+
+/**@brief  Set Pending Interrupt.
+ * @note Corresponds to NVIC_SetPendingIRQ in CMSIS.
+ *
+ * @pre{IRQn is valid and not reserved by the stack}
+ *
+ * @param[in] IRQn See the NVIC_SetPendingIRQ documentation in CMSIS.
+ *
+ * @retval ::NRF_SUCCESS The interrupt is set pending.
+ * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
+ */
+SVCALL(SD_NVIC_SETPENDINGIRQ, uint32_t, sd_nvic_SetPendingIRQ(IRQn_Type IRQn));
+
+/**@brief  Clear Pending Interrupt.
+ * @note Corresponds to NVIC_ClearPendingIRQ in CMSIS.
+ *
+ * @pre{IRQn is valid and not reserved by the stack}
+ *
+ * @param[in] IRQn See the NVIC_ClearPendingIRQ documentation in CMSIS.
+ *
+ * @retval ::NRF_SUCCESS The interrupt pending flag is cleared.
+ * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
+ */
+SVCALL(SD_NVIC_CLEARPENDINGIRQ, uint32_t, sd_nvic_ClearPendingIRQ(IRQn_Type IRQn));
+
+/**@brief Set Interrupt Priority.
+ * @note Corresponds to NVIC_SetPriority in CMSIS.
+ *
+ * @pre{IRQn is valid and not reserved by the stack}
+ * @pre{priority is valid and not reserved by the stack}
+ *
+ * @param[in] IRQn      See the NVIC_SetPriority documentation in CMSIS.
+ * @param[in] priority  A valid IRQ priority for use by the application.
+ *
+ * @retval ::NRF_SUCCESS The interrupt and priority level is available for the application.
+ * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE IRQn is not available for the application.
+ * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_PRIORITY_NOT_ALLOWED The interrupt priority is not available for the application.
+ */
+SVCALL(SD_NVIC_SETPRIORITY, uint32_t, sd_nvic_SetPriority(IRQn_Type IRQn, nrf_app_irq_priority_t priority));
+
+/**@brief Get Interrupt Priority.
+ * @note Corresponds to NVIC_GetPriority in CMSIS.
+ *
+ * @pre{IRQn is valid and not reserved by the stack}
+ *
+ * @param[in]  IRQn         See the NVIC_GetPriority documentation in CMSIS.
+ * @param[out] p_priority   Return value from NVIC_GetPriority.
+ *
+ * @retval ::NRF_SUCCESS The interrupt priority is returned in p_priority.
+ * @retval ::NRF_ERROR_SOC_NVIC_INTERRUPT_NOT_AVAILABLE - IRQn is not available for the application.
+ */
+SVCALL(SD_NVIC_GETPRIORITY, uint32_t, sd_nvic_GetPriority(IRQn_Type IRQn, nrf_app_irq_priority_t * p_priority));
+
+/**@brief System Reset.
+ * @note Corresponds to NVIC_SystemReset in CMSIS.
+ *
+ * @retval ::NRF_ERROR_SOC_NVIC_SHOULD_NOT_RETURN
+ */
+SVCALL(SD_NVIC_SYSTEMRESET, uint32_t, sd_nvic_SystemReset(void));
+
+/**@brief Enters critical region.
+ *
+ * @post Application interrupts will be disabled.
+ * @sa sd_nvic_critical_region_exit
+ *
+ * @param[out]  p_is_nested_critical_region  1: If in a nested critical region.
+ *                                           0: Otherwise.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_NVIC_CRITICAL_REGION_ENTER, uint32_t, sd_nvic_critical_region_enter(uint8_t * p_is_nested_critical_region));
+
+/**@brief Exit critical region.
+ *
+ * @pre Application has entered a critical region using ::sd_nvic_critical_region_enter.
+ * @post If not in a nested critical region, the application interrupts will restored to the state before ::sd_nvic_critical_region_enter was called. 
+ *
+ * @param[in] is_nested_critical_region If this is set to 1, the critical region won't be exited. @sa sd_nvic_critical_region_enter.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_NVIC_CRITICAL_REGION_EXIT, uint32_t, sd_nvic_critical_region_exit(uint8_t is_nested_critical_region));
+
+/**@brief Query the capacity of the application random pool.
+ *
+ * @param[out] p_pool_capacity The capacity of the pool.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_RAND_APPLICATION_POOL_CAPACITY, uint32_t, sd_rand_application_pool_capacity_get(uint8_t * p_pool_capacity));
+
+/**@brief Get number of random bytes available to the application.
+ *
+ * @param[out] p_bytes_available The number of bytes currently available in the pool.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_RAND_APPLICATION_BYTES_AVAILABLE, uint32_t, sd_rand_application_bytes_available_get(uint8_t * p_bytes_available));
+
+/**@brief Get random bytes from the application pool.
+
+  @param[out]  p_buff  Pointer to unit8_t buffer for storing the bytes.
+  @param[in]   length  Number of bytes to take from pool and place in p_buff.
+
+  @retval ::NRF_SUCCESS The requested bytes were written to p_buff.
+  @retval ::NRF_ERROR_SOC_RAND_NOT_ENOUGH_VALUES No bytes were written to the buffer, because there were not enough bytes available.
+*/
+SVCALL(SD_RAND_APPLICATION_GET_VECTOR, uint32_t, sd_rand_application_vector_get(uint8_t * p_buff, uint8_t length));
+
+/**@brief Gets the reset reason register. 
+ *
+ * @param[out]  p_reset_reason  Contents of the NRF_POWER->RESETREAS register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_POWER_RESET_REASON_GET, uint32_t, sd_power_reset_reason_get(uint32_t * p_reset_reason));
+
+/**@brief Clears the bits of the reset reason register. 
+ *
+ * @param[in] reset_reason_clr_msk Contains the bits to clear from the reset reason register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_POWER_RESET_REASON_CLR, uint32_t, sd_power_reset_reason_clr(uint32_t reset_reason_clr_msk));
+
+/**@brief Sets the power mode when in CPU sleep.
+ *
+ * @param[in] power_mode The power mode to use when in CPU sleep. @sa sd_app_evt_wait
+ *
+ * @retval ::NRF_SUCCESS The power mode was set.
+ * @retval ::NRF_ERROR_SOC_POWER_MODE_UNKNOWN The power mode was unknown.
+ */
+SVCALL(SD_POWER_MODE_SET, uint32_t, sd_power_mode_set(nrf_power_mode_t power_mode));
+
+/**@brief Puts the chip in System OFF mode. 
+ *
+ * @retval ::NRF_ERROR_SOC_POWER_OFF_SHOULD_NOT_RETURN
+ */
+SVCALL(SD_POWER_SYSTEM_OFF, uint32_t, sd_power_system_off(void));
+
+/**@brief Enables or disables the power-fail comparator.
+ *
+ * Enabling this will give a softdevice event (NRF_EVT_POWER_FAILURE_WARNING) when the power failure warning occurs.
+ * The event can be retrieved with sd_evt_get();
+ *
+ * @param[in] pof_enable    True if the power-fail comparator should be enabled, false if it should be disabled.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_POWER_POF_ENABLE, uint32_t, sd_power_pof_enable(uint8_t pof_enable));
+
+/**@brief Sets the power-fail threshold value.
+ *
+ * @param[in] threshold The power-fail threshold value to use.
+ *
+ * @retval ::NRF_SUCCESS The power failure threshold was set.
+ * @retval ::NRF_ERROR_SOC_POWER_POF_THRESHOLD_UNKNOWN The power failure threshold is unknown.
+ */
+SVCALL(SD_POWER_POF_THRESHOLD_SET, uint32_t, sd_power_pof_threshold_set(nrf_power_failure_threshold_t threshold));
+
+/**@brief Sets bits in the NRF_POWER->RAMON register.
+ *
+ * @param[in] ramon Contains the bits needed to be set in the NRF_POWER->RAMON register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_POWER_RAMON_SET, uint32_t, sd_power_ramon_set(uint32_t ramon));
+
+/** @brief Clears bits in the NRF_POWER->RAMON register.
+ *
+ * @param ramon Contains the bits needed to be cleared in the NRF_POWER->RAMON register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_POWER_RAMON_CLR, uint32_t, sd_power_ramon_clr(uint32_t ramon));
+
+/**@brief Get contents of NRF_POWER->RAMON register, indicates power status of ram blocks.
+ *
+ * @param[out] p_ramon Content of NRF_POWER->RAMON register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_POWER_RAMON_GET, uint32_t, sd_power_ramon_get(uint32_t * p_ramon));
+
+/**@brief Set bits in the NRF_POWER->GPREGRET register.
+ *
+ * @param[in] gpregret_msk Bits to be set in the GPREGRET register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_POWER_GPREGRET_SET, uint32_t, sd_power_gpregret_set(uint32_t gpregret_msk));
+
+/**@brief Clear bits in the NRF_POWER->GPREGRET register.
+ *
+ * @param[in] gpregret_msk Bits to be clear in the GPREGRET register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_POWER_GPREGRET_CLR, uint32_t, sd_power_gpregret_clr(uint32_t gpregret_msk));
+
+/**@brief Get contents of the NRF_POWER->GPREGRET register.
+ *
+ * @param[out] p_gpregret Contents of the GPREGRET register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_POWER_GPREGRET_GET, uint32_t, sd_power_gpregret_get(uint32_t *p_gpregret));
+
+/**@brief Sets the DCDC mode.
+ *
+ * Depending on the internal state of the SoftDevice, the mode change may not happen immediately.
+ * The DCDC mode switch will be blocked when occurring in close proximity to radio transmissions. When
+ * the radio transmission is done, the last mode will be used.
+ *
+ * @param[in] dcdc_mode The mode of the DCDC.
+ *
+ * @retval ::NRF_SUCCESS
+ * @retval ::NRF_ERROR_INVALID_PARAM The DCDC mode is invalid.
+ */
+SVCALL(SD_POWER_DCDC_MODE_SET, uint32_t, sd_power_dcdc_mode_set(nrf_power_dcdc_mode_t dcdc_mode));
+
+/**@brief Request the high frequency crystal oscillator.
+ *
+ * Will start the high frequency crystal oscillator, the startup time of the crystal varies
+ * and the ::sd_clock_hfclk_is_running function can be polled to check if it has started.
+ *
+ * @see sd_clock_hfclk_is_running
+ * @see sd_clock_hfclk_release
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_CLOCK_HFCLK_REQUEST, uint32_t, sd_clock_hfclk_request(void));
+
+/**@brief Releases the high frequency crystal oscillator.
+ *
+ * Will stop the high frequency crystal oscillator, this happens immediately.
+ *
+ * @see sd_clock_hfclk_is_running
+ * @see sd_clock_hfclk_request
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_CLOCK_HFCLK_RELEASE, uint32_t, sd_clock_hfclk_release(void));
+
+/**@brief Checks if the high frequency crystal oscillator is running.
+ *
+ * @see sd_clock_hfclk_request
+ * @see sd_clock_hfclk_release
+ *
+ * @param[out] p_is_running 1 if the external crystal oscillator is running, 0 if not.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_CLOCK_HFCLK_IS_RUNNING, uint32_t, sd_clock_hfclk_is_running(uint32_t * p_is_running));
+
+/**@brief Waits for an application event.
+ * 
+ * An application event is either an application interrupt or a pended interrupt when the
+ * interrupt is disabled. When the interrupt is enabled it will be taken immediately since
+ * this function will wait in thread mode, then the execution will return in the application's
+ * main thread. When an interrupt is disabled and gets pended it will return to the application's 
+ * thread main. The application must ensure that the pended flag is cleared using 
+ * ::sd_nvic_ClearPendingIRQ in order to sleep using this function. This is only necessary for
+ * disabled interrupts, as the interrupt handler will clear the pending flag automatically for
+ * enabled interrupts.
+ *
+ * In order to wake up from disabled interrupts, the SEVONPEND flag has to be set in the Cortex-M0
+ * System Control Register (SCR). @sa CMSIS_SCB
+ *
+ * @note If an application interrupt has happened since the last time sd_app_evt_wait was
+ *       called this function will return immediately and not go to sleep. This is to avoid race
+ *       conditions that can occur when a flag is updated in the interrupt handler and processed
+ *       in the main loop.
+ *
+ * @post An application interrupt has happened or a interrupt pending flag is set.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_APP_EVT_WAIT, uint32_t, sd_app_evt_wait(void));
+
+/**@brief Get PPI channel enable register contents.
+ *
+ * @param[out] p_channel_enable The contents of the PPI CHEN register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_PPI_CHANNEL_ENABLE_GET, uint32_t, sd_ppi_channel_enable_get(uint32_t * p_channel_enable));
+
+/**@brief Set PPI channel enable register.
+ *
+ * @param[in] channel_enable_set_msk Mask containing the bits to set in the PPI CHEN register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_PPI_CHANNEL_ENABLE_SET, uint32_t, sd_ppi_channel_enable_set(uint32_t channel_enable_set_msk));
+
+/**@brief Clear PPI channel enable register.
+ *
+ * @param[in] channel_enable_clr_msk Mask containing the bits to clear in the PPI CHEN register.
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_PPI_CHANNEL_ENABLE_CLR, uint32_t, sd_ppi_channel_enable_clr(uint32_t channel_enable_clr_msk));
+
+/**@brief Assign endpoints to a PPI channel.
+ *
+ * @param[in] channel_num Number of the PPI channel to assign.
+ * @param[in] evt_endpoint Event endpoint of the PPI channel.
+ * @param[in] task_endpoint Task endpoint of the PPI channel.
+ *
+ * @retval ::NRF_ERROR_SOC_PPI_INVALID_CHANNEL The channel number is invalid.
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_PPI_CHANNEL_ASSIGN, uint32_t, sd_ppi_channel_assign(uint8_t channel_num, const volatile void * evt_endpoint, const volatile void * task_endpoint));
+
+/**@brief Task to enable a channel group.
+ *
+ * @param[in] group_num Number of the channel group.
+ *
+ * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_PPI_GROUP_TASK_ENABLE, uint32_t, sd_ppi_group_task_enable(uint8_t group_num));
+
+/**@brief Task to disable a channel group.
+ *
+ * @param[in] group_num Number of the PPI group.
+ *
+ * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid.
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_PPI_GROUP_TASK_DISABLE, uint32_t, sd_ppi_group_task_disable(uint8_t group_num));
+
+/**@brief Assign PPI channels to a channel group.
+ *
+ * @param[in] group_num Number of the channel group.
+ * @param[in] channel_msk Mask of the channels to assign to the group.
+ *
+ * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid.
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_PPI_GROUP_ASSIGN, uint32_t, sd_ppi_group_assign(uint8_t group_num, uint32_t channel_msk));
+
+/**@brief Gets the PPI channels of a channel group.
+ *
+ * @param[in]   group_num Number of the channel group.
+ * @param[out]  p_channel_msk Mask of the channels assigned to the group.
+ *
+ * @retval ::NRF_ERROR_SOC_PPI_INVALID_GROUP The group number is invalid.
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_PPI_GROUP_GET, uint32_t, sd_ppi_group_get(uint8_t group_num, uint32_t * p_channel_msk));
+
+/**@brief Configures the Radio Notification signal.
+ *
+ * @note
+ *      - The notification signal latency depends on the interrupt priority settings of SWI used
+ *        for notification signal.
+ *      - In the period between the ACTIVE signal and the start of the Radio Event, the SoftDevice
+ *        will interrupt the application to do Radio Event preparation.
+ *      - Using the Radio Notification feature may limit the bandwidth, as the SoftDevice may have
+ *        to shorten the connection events to have time for the Radio Notification signals.
+ *
+ * @param[in]  type      Type of notification signal.
+ *                       @ref NRF_RADIO_NOTIFICATION_TYPE_NONE shall be used to turn off radio
+ *                       notification. Using @ref NRF_RADIO_NOTIFICATION_DISTANCE_NONE is
+ *                       recommended (but not required) to be used with
+ *                       @ref NRF_RADIO_NOTIFICATION_TYPE_NONE.
+ *
+ * @param[in]  distance  Distance between the notification signal and start of radio activity.
+ *                       This parameter is ignored when @ref NRF_RADIO_NOTIFICATION_TYPE_NONE or 
+ *                       @ref NRF_RADIO_NOTIFICATION_TYPE_INT_ON_INACTIVE is used.
+ *
+ * @retval ::NRF_ERROR_INVALID_PARAM The group number is invalid.
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_RADIO_NOTIFICATION_CFG_SET, uint32_t, sd_radio_notification_cfg_set(nrf_radio_notification_type_t type, nrf_radio_notification_distance_t distance));
+
+/**@brief Encrypts a block according to the specified parameters.
+ *
+ * 128-bit AES encryption.
+ *
+ * @param[in, out] p_ecb_data Pointer to the ECB parameters' struct (two input
+ *                            parameters and one output parameter).
+ *
+ * @retval ::NRF_SUCCESS
+ */
+SVCALL(SD_ECB_BLOCK_ENCRYPT, uint32_t, sd_ecb_block_encrypt(nrf_ecb_hal_data_t * p_ecb_data));
+
+/**@brief Gets any pending events generated by the SoC API.
+ *
+ * The application should keep calling this function to get events, until ::NRF_ERROR_NOT_FOUND is returned.
+ *
+ * @param[out] p_evt_id Set to one of the values in @ref NRF_SOC_EVTS, if any events are pending.
+ *
+ * @retval ::NRF_SUCCESS An event was pending. The event id is written in the p_evt_id parameter.
+ * @retval ::NRF_ERROR_NOT_FOUND No pending events. 
+ */
+SVCALL(SD_EVT_GET, uint32_t, sd_evt_get(uint32_t * p_evt_id));
+
+/**@brief Get the temperature measured on the chip
+ * 
+ * This function will block until the temperature measurement is done.
+ * It takes around 50us from call to return.
+ *
+ * @note Pan #28 in PAN-028 v 1.6 "Negative measured values are not represented correctly" is corrected by this function.
+ *
+ * @param[out] p_temp Result of temperature measurement. Die temperature in 0.25 degrees celsius.
+ *
+ * @retval ::NRF_SUCCESS A temperature measurement was done, and the temperature was written to temp
+ */
+SVCALL(SD_TEMP_GET, uint32_t, sd_temp_get(int32_t * p_temp));
+
+/**@brief Flash Write
+ *
+ * Commands to write a buffer to flash
+ *
+ * This call initiates the flash access command, and its completion will be communicated to the
+ * application with exactly one of the following events:
+ *      - NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed.
+ *      - NRF_EVT_FLASH_OPERATION_ERROR   - The command could not be started.
+ *
+ * @note
+ *      - This call takes control over the radio and the CPU during flash erase and write to make sure that
+ *        they will not interfere with the flash access. This means that all interrupts will be blocked
+ *        for a predictable time (depending on the NVMC specification in nRF51 Series Reference Manual
+ *        and the command parameters).
+ *
+ *
+ * @param[in]  p_dst Pointer to start of flash location to be written.
+ * @param[in]  p_src Pointer to buffer with data to be written
+ * @param[in]  size  Number of 32-bit words to write. Maximum size is 256 32bit words.
+ *
+ * @retval ::NRF_ERROR_INVALID_ADDR   Tried to write to a non existing flash address, or p_dst or p_src was unaligned.
+ * @retval ::NRF_ERROR_BUSY           The previous command has not yet completed.
+ * @retval ::NRF_ERROR_INVALID_LENGTH Size was 0, or more than 256 words.
+ * @retval ::NRF_ERROR_FORBIDDEN      Tried to write to or read from protected location.
+ * @retval ::NRF_SUCCESS              The command was accepted.
+ */
+SVCALL(SD_FLASH_WRITE, uint32_t, sd_flash_write(uint32_t * const p_dst, uint32_t const * const p_src, uint32_t size));
+
+
+/**@brief Flash Erase page
+ *
+ * Commands to erase a flash page
+ *
+ * This call initiates the flash access command, and its completion will be communicated to the
+ * application with exactly one of the following events:
+ *      - NRF_EVT_FLASH_OPERATION_SUCCESS - The command was successfully completed.
+ *      - NRF_EVT_FLASH_OPERATION_ERROR   - The command could not be started.
+ *
+ * @note
+ *      - This call takes control over the radio and the CPU during flash erase and write to make sure that
+ *        they will not interfere with the flash access. This means that all interrupts will be blocked
+ *        for a predictable time (depending on the NVMC specification in nRF51 Series Reference Manual
+ *        and the command parameters).
+ *
+ *
+ * @param[in]  page_number Pagenumber of the page to erase
+ * @retval ::NRF_ERROR_INTERNAL      If a new session could not be opened due to an internal error.
+ * @retval ::NRF_ERROR_INVALID_ADDR  Tried to erase to a non existing flash page.
+ * @retval ::NRF_ERROR_BUSY          The previous command has not yet completed.
+ * @retval ::NRF_ERROR_FORBIDDEN     Tried to erase a protected page.
+ * @retval ::NRF_SUCCESS             The command was accepted.
+ */
+SVCALL(SD_FLASH_ERASE_PAGE, uint32_t, sd_flash_page_erase(uint32_t page_number));
+
+
+/**@brief Flash Protection set
+ *
+ * Commands to set the flash protection registers PROTENSETx
+ *
+ * @note To read the values in PROTENSETx you can read them directly. They are only write-protected.
+ *
+ * @param[in]  protenset0 Value to be written to PROTENSET0
+ * @param[in]  protenset1 Value to be written to PROTENSET1
+ *
+ * @retval ::NRF_ERROR_FORBIDDEN Tried to protect the SoftDevice
+ * @retval ::NRF_SUCCESS Values successfully written to PROTENSETx
+ */
+SVCALL(SD_FLASH_PROTECT, uint32_t, sd_flash_protect(uint32_t protenset0, uint32_t protenset1));
+
+
+/** @} */
+
+#endif // NRF_SOC_H__
+
+/**
+  @}
+ */