mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Revision:
579:53297373a894
Child:
592:a274ee790e56
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/hal/TARGET_Atmel/TARGET_SAM21/drivers/adc/adc.h	Wed Jul 01 09:45:11 2015 +0100
@@ -0,0 +1,1083 @@
+/**
+ * \file
+ *
+ * \brief SAM Peripheral Analog-to-Digital Converter Driver
+ *
+ * Copyright (C) 2012-2014 Atmel Corporation. All rights reserved.
+ *
+ * \asf_license_start
+ *
+ * \page License
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ *    this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ *    this list of conditions and the following disclaimer in the documentation
+ *    and/or other materials provided with the distribution.
+ *
+ * 3. The name of Atmel may not be used to endorse or promote products derived
+ *    from this software without specific prior written permission.
+ *
+ * 4. This software may only be redistributed and used in connection with an
+ *    Atmel microcontroller product.
+ *
+ * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
+ * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
+ * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ *
+ * \asf_license_stop
+ *
+ */
+/**
+* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
+*/
+
+#ifndef ADC_H_INCLUDED
+#define ADC_H_INCLUDED
+
+/**
+ * \defgroup asfdoc_sam0_adc_group SAM Analog to Digital Converter Driver (ADC)
+ *
+ * This driver for Atmel庐 | SMART SAM devices provides an interface for the configuration
+ * and management of the device's Analog to Digital Converter functionality, for
+ * the conversion of analog voltages into a corresponding digital form.
+ * The following driver API modes are covered by this manual:
+ * - Polled APIs
+ * \if ADC_CALLBACK_MODE
+ * - Callback APIs
+ * \endif
+ *
+ * The following peripherals are used by this module:
+ *  - ADC (Analog to Digital Converter)
+ *
+ * The following devices can use this module:
+ * \if DEVICE_SAML21_SUPPORT
+ *  - Atmel | SMART SAM L21
+ * \else
+ *  - Atmel | SMART SAM D20/D21
+ *  - Atmel | SMART SAM R21
+ *  - Atmel | SMART SAM D10/D11
+ * \endif
+ *
+ * The outline of this documentation is as follows:
+ *  - \ref asfdoc_sam0_adc_prerequisites
+ *  - \ref asfdoc_sam0_adc_module_overview
+ *  - \ref asfdoc_sam0_adc_special_considerations
+ *  - \ref asfdoc_sam0_adc_extra_info
+ *  - \ref asfdoc_sam0_adc_examples
+ *  - \ref asfdoc_sam0_adc_api_overview
+ *
+ *
+ * \section asfdoc_sam0_adc_prerequisites Prerequisites
+ *
+ * There are no prerequisites for this module.
+ *
+ *
+ * \section asfdoc_sam0_adc_module_overview Module Overview
+ *
+ * This driver provides an interface for the Analog-to-Digital conversion
+ * functions on the device, to convert analog voltages to a corresponding
+ * digital value. The ADC has up to 12-bit resolution, and is capable of
+ * \if DEVICE_SAML21_SUPPORT
+ * converting up to 1,000,000 samples per second (1 Msps).
+ * \else
+ * converting up to 500K samples per second (Ksps).
+ * \endif
+ *
+ * The ADC has a compare function for accurate monitoring of user defined
+ * thresholds with minimum software intervention required.
+ * The ADC may be configured for 8-, 10-, or 12-bit result, reducing the
+ * conversion time. ADC conversion results are provided left or right adjusted
+ * which eases calculation when the result is represented as a signed integer.
+ *
+ * The input selection is flexible, and both single-ended and differential
+ * measurements can be made. For differential measurements, an optional gain
+ * stage is available to increase the dynamic range. In addition, several
+ * internal signal inputs are available. The ADC can provide both signed and
+ * unsigned results.
+ *
+ * The ADC measurements can either be started by application software or an
+ * incoming event from another peripheral in the device, and both internal and
+ * external reference voltages can be selected.
+ *
+ * \note Internal references will be enabled by the driver, but not disabled.
+ *       Any reference not used by the application should be disabled by the application.
+ *
+ * A simplified block diagram of the ADC can be seen in
+ * \ref asfdoc_sam0_adc_module_block_diagram "the figure below".
+ *
+ * \anchor asfdoc_sam0_adc_module_block_diagram
+ * \dot
+ * digraph overview {
+ * splines = false;
+ * rankdir=LR;
+ *
+ * mux1 [label="Positive input", shape=box];
+ * mux2 [label="Negative input", shape=box];
+ *
+ *
+ * mux3 [label="Reference", shape=box];
+ *
+ * adc [label="ADC", shape=polygon, sides=5, orientation=90, distortion=-0.6, style=filled, fillcolor=darkolivegreen1, height=1, width=1];
+ * prescaler [label="PRESCALER", shape=box, style=filled, fillcolor=lightblue];
+ *
+ * mux1 -> adc;
+ * mux2 -> adc;
+ * mux3 -> adc:sw;
+ * prescaler -> adc;
+ *
+ * postproc [label="Post processing", shape=box];
+ * result [label="RESULT", shape=box, style=filled, fillcolor=lightblue];
+ *
+ * adc:e -> postproc:w;
+ * postproc:e -> result:w;
+ *
+ * {rank=same; mux1 mux2}
+ * {rank=same; prescaler adc}
+ *
+ * }
+ * \enddot
+ *
+ *
+ * \subsection asfdoc_sam0_adc_module_overview_prescaler Sample Clock Prescaler
+ * The ADC features a prescaler, which enables conversion at lower clock rates
+ * than the input Generic Clock to the ADC module. This feature can be used to
+ * lower the synchronization time of the digital interface to the ADC module
+ * via a high speed Generic Clock frequency, while still allowing the ADC
+ * sampling rate to be reduced.
+ *
+ * \subsection asfdoc_sam0_adc_module_overview_resolution ADC Resolution
+ * The ADC supports full 8-bit, 10-bit, or 12-bit resolution. Hardware
+ * oversampling and decimation can be used to increase the
+ * effective resolution at the expense of throughput. Using oversampling and
+ * decimation mode the ADC resolution is increased from 12-bit to an effective
+ * 13-, 14-, 15-, or 16-bit. In these modes the conversion rate is reduced, as
+ * a greater number of samples is used to achieve the increased resolution. The
+ * available resolutions and effective conversion rate is listed in
+ * \ref asfdoc_sam0_adc_module_conversion_rate "the table below".
+ *
+ * \anchor asfdoc_sam0_adc_module_conversion_rate
+ * <table>
+ *	<caption>Effective ADC Conversion Speed Using Oversampling</caption>
+ *	<tr>
+ *		<th>Resolution</th>
+ *		<th>Effective conversion rate</th>
+ *	</tr>
+ *	<tr>
+ *		<td>13-bit</td>
+ *		<td>Conversion rate divided by 4</td>
+ *	</tr>
+ *	<tr>
+ *		<td>14-bit</td>
+ *		<td>Conversion rate divided by 16</td>
+ *	</tr>
+ *	<tr>
+ *		<td>15-bit</td>
+ *		<td>Conversion rate divided by 64</td>
+ *	</tr>
+ *	<tr>
+ *		<td>16-bit</td>
+ *		<td>Conversion rate divided by 256</td>
+ *	</tr>
+ * </table>
+ *
+ * \subsection asfdoc_sam0_adc_module_overview_conversion Conversion Modes
+ * ADC conversions can be software triggered on demand by the user application,
+ * if continuous sampling is not required. It is also possible to configure the
+ * ADC in free-running mode, where new conversions are started as soon as the
+ * previous conversion is completed, or configure the ADC to scan across a
+ * number of input pins (see \ref asfdoc_sam0_adc_module_overview_pin_scan).
+ *
+ * \subsection asfdoc_sam0_adc_module_overview_diff_mode Differential and Single-Ended Conversion
+ * The ADC has two conversion modes; differential and single-ended. When
+ * measuring signals where the positive input pin is always at a higher voltage
+ * than the negative input pin, the single-ended conversion mode should be used
+ * in order to achieve a full 12-bit output resolution.
+ *
+ * If however the positive input pin voltage may drop below the negative input
+ * pin the signed differential mode should be used.
+ *
+ * \subsection asfdoc_sam0_adc_module_overview_sample_time Sample Time
+ * The sample time for each ADC conversion is configurable as a number of half
+ * prescaled ADC clock cycles (depending on the prescaler value), allowing the
+ * user application to achieve faster or slower sampling depending on the
+ * source impedance of the ADC input channels. For applications with high
+ * impedance inputs the sample time can be increased to give the ADC an adequate
+ * time to sample and convert the input channel.
+ *
+ * The resulting sampling time is given by the following equation:
+ * \f[
+ * t_{SAMPLE} = (sample\_length+1) \times \frac{ADC_{CLK}} {2}
+ * \f]
+ *
+ * \subsection asfdoc_sam0_adc_module_overview_averaging Averaging
+ * The ADC can be configured to trade conversion speed for accuracy by averaging
+ * multiple samples in hardware. This feature is suitable when operating in
+ * noisy conditions.
+ *
+ * You can specify any number of samples to accumulate (up to 1024) and the
+ * divide ratio to use (up to divide by 128). To modify these settings the
+ * ADC_RESOLUTION_CUSTOM needs to be set as the resolution. When this is set
+ * the number of samples to accumulate and the division ratio can be set by
+ * the configuration struct members \ref adc_config.accumulate_samples and
+ * \ref adc_config.divide_result. When using this mode the ADC result register
+ * will be set to be 16-bit wide to accommodate the larger result sizes
+ * produced by the accumulator.
+ *
+ * The effective ADC conversion rate will be reduced by a factor of the number
+ * of accumulated samples;
+ * however the effective resolution will be increased according to
+ * \ref asfdoc_sam0_adc_module_hw_av_resolution "the table below".
+ *
+ * \anchor asfdoc_sam0_adc_module_hw_av_resolution
+ * <table>
+ *   <caption>Effective ADC Resolution From Various Hardware Averaging Modes</caption>
+ *   <tr>
+ *     <th>Number of samples</tr>
+ *     <th>Final result</tr>
+ *   </tr>
+ *   <tr>
+ *     <td>1</td>
+ *     <td>12-bit</td>
+ *   </tr>
+ *   <tr>
+ *      <td>2</td>
+ *      <td>13-bit</td>
+ *   </tr>
+ *   <tr>
+ *      <td>4</td>
+ *      <td>14-bit</td>
+ *   </tr>
+ *   <tr>
+ *      <td>8</td>
+ *      <td>15-bit</td>
+ *   </tr>
+ *   <tr>
+ *      <td>16</td>
+ *      <td>16-bit</td>
+ *   </tr>
+ *   <tr>
+ *      <td>32</td>
+ *      <td>16-bit</td>
+ *   </tr>
+ *   <tr>
+ *      <td>64</td>
+ *      <td>16-bit</td>
+ *   </tr>
+ *   <tr>
+ *      <td>128</td>
+ *      <td>16-bit</td>
+ *   </tr>
+ *   <tr>
+ *      <td>256</td>
+ *      <td>16-bit</td>
+ *   </tr>
+ *   <tr>
+ *      <td>512</td>
+ *      <td>16-bit</td>
+ *   </tr>
+ *   <tr>
+ *      <td>1024</td>
+ *      <td>16-bit</td>
+ *   </tr>
+ * </table>
+ *
+ *
+ * \subsection asfdoc_sam0_adc_module_overview_offset_corr Offset and Gain Correction
+ * Inherent gain and offset errors affect the absolute accuracy of the ADC.
+ *
+ * The offset error is defined as the deviation of the ADC鈥檚 actual transfer
+ * function from ideal straight line at zero input voltage.
+ *
+ * The gain error is defined as the deviation of the last output step's
+ * midpoint from the ideal straight line, after compensating for offset error.
+ *
+ * The offset correction value is subtracted from the converted data before the
+ * result is ready. The gain correction value is multiplied with the offset
+ * corrected value.
+ *
+ * The equation for both offset and gain error compensation is shown below:
+ * \f[
+ * ADC_{RESULT} = (VALUE_{CONV} + CORR_{OFFSET}) \times CORR_{GAIN}
+ * \f]
+ *
+ * When enabled, a given set of offset and gain correction values can be applied
+ * to the sampled data in hardware, giving a corrected stream of sample data to
+ * the user application at the cost of an increased sample latency.
+ *
+ * In single conversion, a latency of 13 ADC Generic Clock cycles is added for
+ * the final sample result availability. As the correction time is always less
+ * than the propagation delay, in free running mode this latency appears only
+ * during the first conversion. After the first conversion is complete future
+ * conversion results are available at the defined sampling rate.
+ *
+ * \subsection asfdoc_sam0_adc_module_overview_pin_scan Pin Scan
+ * In pin scan mode, the first ADC conversion will begin from the configured
+ * positive channel, plus the requested starting offset. When the first
+ * conversion is completed, the next conversion will start at the next positive
+ * input channel and so on, until all requested pins to scan have been sampled
+ * and converted.
+ * SAM L21 has automatic sequences feature instead of pin scan mode. In automatic
+ * sequence mode, all of 32 positives inputs can be included in a sequence. The
+ * sequence starts from the lowest input, and go to the next enabled input
+ * automatically.
+ *
+ * Pin scanning gives a simple mechanism to sample a large number of physical
+ * input channel samples, using a single physical ADC channel.
+ *
+ * \subsection asfdoc_sam0_adc_module_overview_window_monitor Window Monitor
+ * The ADC module window monitor function can be used to automatically compare
+ * the conversion result against a preconfigured pair of upper and lower
+ * threshold values.
+ *
+ * The threshold values are evaluated differently, depending on whether
+ * differential or single-ended mode is selected. In differential mode, the
+ * upper and lower thresholds are evaluated as signed values for the comparison,
+ * while in single-ended mode the comparisons are made as a set of unsigned
+ * values.
+ *
+ * The significant bits of the lower window monitor threshold and upper window
+ * monitor threshold values are user-configurable, and follow the overall ADC
+ * sampling bit precision set when the ADC is configured by the user application.
+ * For example, only the eight lower bits of the window threshold values will be
+ * compares to the sampled data whilst the ADC is configured in 8-bit mode.
+ * In addition, if using differential mode, the 8<SUP>th</SUP> bit will be considered as
+ * the sign bit even if bit 9 is zero.
+ *
+ * \subsection asfdoc_sam0_adc_module_overview_events Events
+ * Event generation and event actions are configurable in the ADC.
+ *
+ * The ADC has two actions that can be triggered upon event reception:
+ * \li Start conversion
+ * \li Flush pipeline and start conversion
+ *
+ * The ADC can generate two events:
+ * \li Window monitor
+ * \li Result ready
+ *
+ * If the event actions are enabled in the configuration, any incoming event
+ * will trigger the action.
+ *
+ * If the window monitor event is enabled, an event will be generated
+ * when the configured window condition is detected.
+ *
+ * If the result ready event is enabled, an event will be generated when a
+ * conversion is completed.
+ *
+ * \note The connection of events between modules requires the use of the
+ *       \ref asfdoc_sam0_events_group "SAM Event System Driver (EVENTS)"
+ *       to route output event of one module to the the input event of another.
+ *       For more information on event routing, refer to the event driver
+ *       documentation.
+ *
+ *
+ * \section asfdoc_sam0_adc_special_considerations Special Considerations
+ *
+ * An integrated analog temperature sensor is available for use with the ADC.
+ * The bandgap voltage, as well as the scaled I/O and core voltages can also be
+ * measured by the ADC. For internal ADC inputs, the internal source(s) may need
+ * to be manually enabled by the user application before they can be measured.
+ *
+ *
+ * \section asfdoc_sam0_adc_extra_info Extra Information
+ *
+ * For extra information, see \ref asfdoc_sam0_adc_extra. This includes:
+ *  - \ref asfdoc_sam0_adc_extra_acronyms
+ *  - \ref asfdoc_sam0_adc_extra_dependencies
+ *  - \ref asfdoc_sam0_adc_extra_errata
+ *  - \ref asfdoc_sam0_adc_extra_history
+ *
+ *
+ * \section asfdoc_sam0_adc_examples Examples
+ *
+ * For a list of examples related to this driver, see
+ * \ref asfdoc_sam0_adc_exqsg.
+ *
+ *
+ * \section asfdoc_sam0_adc_api_overview API Overview
+ * @{
+ */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <compiler.h>
+#include <system.h>
+#include <adc_feature.h>
+
+/**
+ * \name Module Status Flags
+ *
+ * ADC status flags, returned by \ref adc_get_status() and cleared by
+ * \ref adc_clear_status().
+ *
+ * @{
+ */
+
+/** ADC result ready. */
+#define ADC_STATUS_RESULT_READY  (1UL << 0)
+/** Window monitor match. */
+#define ADC_STATUS_WINDOW        (1UL << 1)
+/** ADC result overwritten before read. */
+#define ADC_STATUS_OVERRUN       (1UL << 2)
+
+/** @} */
+
+/**
+ * \name Driver Initialization and Configuration
+ * @{
+ */
+enum status_code adc_init(
+    struct adc_module *const module_inst,
+    Adc *hw,
+    struct adc_config *config);
+
+void adc_get_config_defaults(
+    struct adc_config *const config);
+/** @} */
+
+/**
+ * \name Status Management
+ * @{
+ */
+
+/**
+ * \brief Retrieves the current module status.
+ *
+ * Retrieves the status of the module, giving overall state information.
+ *
+ * \param[in] module_inst  Pointer to the ADC software instance struct
+ *
+ * \return Bitmask of \c ADC_STATUS_* flags.
+ *
+ * \retval ADC_STATUS_RESULT_READY  ADC Result is ready to be read
+ * \retval ADC_STATUS_WINDOW        ADC has detected a value inside the set
+ *                                  window range
+ * \retval ADC_STATUS_OVERRUN       ADC result has overrun
+ */
+static inline uint32_t adc_get_status(
+    struct adc_module *const module_inst)
+{
+    /* Sanity check arguments */
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+
+    uint32_t int_flags = adc_module->INTFLAG.reg;
+
+    uint32_t status_flags = 0;
+
+    /* Check for ADC Result Ready */
+    if (int_flags & ADC_INTFLAG_RESRDY) {
+        status_flags |= ADC_STATUS_RESULT_READY;
+    }
+
+    /* Check for ADC Window Match */
+    if (int_flags & ADC_INTFLAG_WINMON) {
+        status_flags |= ADC_STATUS_WINDOW;
+    }
+
+    /* Check for ADC Overrun */
+    if (int_flags & ADC_INTFLAG_OVERRUN) {
+        status_flags |= ADC_STATUS_OVERRUN;
+    }
+
+    return status_flags;
+}
+
+/**
+ * \brief Clears a module status flag.
+ *
+ * Clears the given status flag of the module.
+ *
+ * \param[in] module_inst   Pointer to the ADC software instance struct
+ * \param[in] status_flags  Bitmask of \c ADC_STATUS_* flags to clear
+ */
+static inline void adc_clear_status(
+    struct adc_module *const module_inst,
+    const uint32_t status_flags)
+{
+    /* Sanity check arguments */
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+
+    uint32_t int_flags = 0;
+
+    /* Check for ADC Result Ready */
+    if (status_flags & ADC_STATUS_RESULT_READY) {
+        int_flags |= ADC_INTFLAG_RESRDY;
+    }
+
+    /* Check for ADC Window Match */
+    if (status_flags & ADC_STATUS_WINDOW) {
+        int_flags |= ADC_INTFLAG_WINMON;
+    }
+
+    /* Check for ADC Overrun */
+    if (status_flags & ADC_STATUS_OVERRUN) {
+        int_flags |= ADC_INTFLAG_OVERRUN;
+    }
+
+    /* Clear interrupt flag */
+    adc_module->INTFLAG.reg = int_flags;
+}
+/** @} */
+
+/**
+ * \name Enable, Disable and Reset ADC Module, Start Conversion and Read Result
+ * @{
+ */
+
+/**
+ * \brief Enables the ADC module.
+ *
+ * Enables an ADC module that has previously been configured. If any internal reference
+ * is selected it will be enabled.
+ *
+ * \param[in] module_inst  Pointer to the ADC software instance struct
+ */
+static inline enum status_code adc_enable(
+    struct adc_module *const module_inst)
+{
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+
+#if ADC_CALLBACK_MODE == true
+    system_interrupt_enable(SYSTEM_INTERRUPT_MODULE_ADC);
+#endif
+
+    adc_module->CTRLA.reg |= ADC_CTRLA_ENABLE;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+    return STATUS_OK;
+}
+
+/**
+ * \brief Disables the ADC module.
+ *
+ * Disables an ADC module that was previously enabled.
+ *
+ * \param[in] module_inst Pointer to the ADC software instance struct
+ */
+static inline enum status_code adc_disable(
+    struct adc_module *const module_inst)
+{
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+
+#if ADC_CALLBACK_MODE == true
+    system_interrupt_disable(SYSTEM_INTERRUPT_MODULE_ADC);
+#endif
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+
+    adc_module->CTRLA.reg &= ~ADC_CTRLA_ENABLE;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+    return STATUS_OK;
+}
+
+/**
+ * \brief Resets the ADC module.
+ *
+ * Resets an ADC module, clearing all module state and registers to their
+ * default values.
+ *
+ * \param[in] module_inst  Pointer to the ADC software instance struct
+ */
+static inline enum status_code adc_reset(
+    struct adc_module *const module_inst)
+{
+    /* Sanity check arguments */
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+
+    /* Disable to make sure the pipeline is flushed before reset */
+    adc_disable(module_inst);
+
+    /* Software reset the module */
+    adc_module->CTRLA.reg |= ADC_CTRLA_SWRST;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+    return STATUS_OK;
+}
+
+
+/**
+ * \brief Enables an ADC event input or output.
+ *
+ *  Enables one or more input or output events to or from the ADC module. See
+ *  \ref adc_events "here" for a list of events this module supports.
+ *
+ *  \note Events cannot be altered while the module is enabled.
+ *
+ *  \param[in] module_inst  Software instance for the ADC peripheral
+ *  \param[in] events       Struct containing flags of events to enable
+ */
+static inline void adc_enable_events(
+    struct adc_module *const module_inst,
+    struct adc_events *const events)
+{
+    /* Sanity check arguments */
+    Assert(module_inst);
+    Assert(module_inst->hw);
+    Assert(events);
+
+    Adc *const adc_module = module_inst->hw;
+
+    uint32_t event_mask = 0;
+
+    /* Configure Window Monitor event */
+    if (events->generate_event_on_window_monitor) {
+        event_mask |= ADC_EVCTRL_WINMONEO;
+    }
+
+    /* Configure Result Ready event */
+    if (events->generate_event_on_conversion_done) {
+        event_mask |= ADC_EVCTRL_RESRDYEO;
+    }
+
+    adc_module->EVCTRL.reg |= event_mask;
+}
+
+/**
+ * \brief Disables an ADC event input or output.
+ *
+ *  Disables one or more input or output events to or from the ADC module. See
+ *  \ref adc_events "here" for a list of events this module supports.
+ *
+ *  \note Events cannot be altered while the module is enabled.
+ *
+ *  \param[in] module_inst  Software instance for the ADC peripheral
+ *  \param[in] events       Struct containing flags of events to disable
+ */
+static inline void adc_disable_events(
+    struct adc_module *const module_inst,
+    struct adc_events *const events)
+{
+    /* Sanity check arguments */
+    Assert(module_inst);
+    Assert(module_inst->hw);
+    Assert(events);
+
+    Adc *const adc_module = module_inst->hw;
+
+    uint32_t event_mask = 0;
+
+    /* Configure Window Monitor event */
+    if (events->generate_event_on_window_monitor) {
+        event_mask |= ADC_EVCTRL_WINMONEO;
+    }
+
+    /* Configure Result Ready event */
+    if (events->generate_event_on_conversion_done) {
+        event_mask |= ADC_EVCTRL_RESRDYEO;
+    }
+
+    adc_module->EVCTRL.reg &= ~event_mask;
+}
+
+/**
+ * \brief Starts an ADC conversion.
+ *
+ * Starts a new ADC conversion.
+ *
+ * \param[in] module_inst  Pointer to the ADC software instance struct
+ */
+static inline void adc_start_conversion(
+    struct adc_module *const module_inst)
+{
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+
+    adc_module->SWTRIG.reg |= ADC_SWTRIG_START;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+}
+
+/**
+ * \brief Reads the ADC result.
+ *
+ * Reads the result from an ADC conversion that was previously started.
+ *
+ * \param[in]  module_inst  Pointer to the ADC software instance struct
+ * \param[out] result       Pointer to store the result value in
+ *
+ * \return Status of the ADC read request.
+ * \retval STATUS_OK           The result was retrieved successfully
+ * \retval STATUS_BUSY         A conversion result was not ready
+ * \retval STATUS_ERR_OVERFLOW The result register has been overwritten by the
+ *                             ADC module before the result was read by the software
+ */
+static inline enum status_code adc_read(
+    struct adc_module *const module_inst,
+    uint16_t *result)
+{
+    Assert(module_inst);
+    Assert(module_inst->hw);
+    Assert(result);
+
+    if (!(adc_get_status(module_inst) & ADC_STATUS_RESULT_READY)) {
+        /* Result not ready */
+        return STATUS_BUSY;
+    }
+
+    Adc *const adc_module = module_inst->hw;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+
+    /* Get ADC result */
+    *result = adc_module->RESULT.reg;
+
+    /* Reset ready flag */
+    adc_clear_status(module_inst, ADC_STATUS_RESULT_READY);
+
+    if (adc_get_status(module_inst) & ADC_STATUS_OVERRUN) {
+        adc_clear_status(module_inst, ADC_STATUS_OVERRUN);
+        return STATUS_ERR_OVERFLOW;
+    }
+
+    return STATUS_OK;
+}
+
+/** @} */
+
+/**
+ * \name Runtime Changes of ADC Module
+ * @{
+ */
+
+/**
+ * \brief Flushes the ADC pipeline.
+ *
+ * Flushes the pipeline and restart the ADC clock on the next peripheral clock
+ * edge. All conversions in progress will be lost. When flush is complete, the
+ * module will resume where it left off.
+ *
+ * \param[in] module_inst  Pointer to the ADC software instance struct
+ */
+static inline void adc_flush(
+    struct adc_module *const module_inst)
+{
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+
+    adc_module->SWTRIG.reg |= ADC_SWTRIG_FLUSH;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+}
+void adc_set_window_mode(
+    struct adc_module *const module_inst,
+    const enum adc_window_mode window_mode,
+    const int16_t window_lower_value,
+    const int16_t window_upper_value);
+
+/**
+ * \brief Sets positive ADC input pin.
+ *
+ * Sets the positive ADC input pin selection.
+ *
+ * \param[in] module_inst     Pointer to the ADC software instance struct
+ * \param[in] positive_input  Positive input pin
+ */
+static inline void adc_set_positive_input(
+    struct adc_module *const module_inst,
+    const enum adc_positive_input positive_input)
+{
+    /* Sanity check arguments */
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+
+    /* Set positive input pin */
+    adc_module->INPUTCTRL.reg =
+        (adc_module->INPUTCTRL.reg & ~ADC_INPUTCTRL_MUXPOS_Msk) |
+        (positive_input);
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+}
+
+
+/**
+ * \brief Sets negative ADC input pin for differential mode.
+ *
+ * Sets the negative ADC input pin, when the ADC is configured in differential
+ * mode.
+ *
+ * \param[in] module_inst     Pointer to the ADC software instance struct
+ * \param[in] negative_input  Negative input pin
+ */
+static inline void adc_set_negative_input(
+    struct adc_module *const module_inst,
+    const enum adc_negative_input negative_input)
+{
+    /* Sanity check arguments */
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+
+    /* Set negative input pin */
+    adc_module->INPUTCTRL.reg =
+        (adc_module->INPUTCTRL.reg & ~ADC_INPUTCTRL_MUXNEG_Msk) |
+        (negative_input);
+
+    while (adc_is_syncing(module_inst)) {
+        /* Wait for synchronization */
+    }
+}
+
+/** @} */
+
+#if ADC_CALLBACK_MODE == true
+/**
+ * \name Enable and Disable Interrupts
+ * @{
+ */
+
+/**
+ * \brief Enable interrupt.
+ *
+ * Enable the given interrupt request from the ADC module.
+ *
+ * \param[in] module_inst Pointer to the ADC software instance struct
+ * \param[in] interrupt Interrupt to enable
+ */
+static inline void adc_enable_interrupt(struct adc_module *const module_inst,
+                                        enum adc_interrupt_flag interrupt)
+{
+    /* Sanity check arguments */
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+    /* Enable interrupt */
+    adc_module->INTENSET.reg = interrupt;
+}
+
+/**
+ * \brief Disable interrupt.
+ *
+ * Disable the given interrupt request from the ADC module.
+ *
+ * \param[in] module_inst Pointer to the ADC software instance struct
+ * \param[in] interrupt Interrupt to disable
+ */
+static inline void adc_disable_interrupt(struct adc_module *const module_inst,
+        enum adc_interrupt_flag interrupt)
+{
+    /* Sanity check arguments */
+    Assert(module_inst);
+    Assert(module_inst->hw);
+
+    Adc *const adc_module = module_inst->hw;
+    /* Enable interrupt */
+    adc_module->INTENCLR.reg = interrupt;
+}
+
+/** @} */
+#endif /* ADC_CALLBACK_MODE == true */
+
+#ifdef __cplusplus
+}
+#endif
+
+/** @} */
+
+
+/**
+ * \page asfdoc_sam0_adc_extra Extra Information for ADC Driver
+ *
+ * \section asfdoc_sam0_adc_extra_acronyms Acronyms
+ * Below is a table listing the acronyms used in this module, along with their
+ * intended meanings.
+ *
+ * <table>
+ *	<tr>
+ *		<th>Acronym</th>
+ *		<th>Description</th>
+ *	</tr>
+ *  <tr>
+ *		<td>ADC</td>
+ *		<td>Analog-to-Digital Converter</td>
+ *	</tr>
+ *  <tr>
+ *		<td>DAC</td>
+ *		<td>Digital-to-Analog Converter</td>
+ *	</tr>
+ *	<tr>
+ *		<td>LSB</td>
+ *		<td>Least Significant Bit</td>
+ *	</tr>
+ *	<tr>
+ *		<td>MSB</td>
+ *		<td>Most Significant Bit</td>
+ *	</tr>
+ *	<tr>
+ *		<td>DMA</td>
+ *		<td>Direct Memory Access</td>
+ *	</tr>
+ * </table>
+ *
+ *
+ * \section asfdoc_sam0_adc_extra_dependencies Dependencies
+ * This driver has the following dependencies:
+ *
+ *  - \ref asfdoc_sam0_system_pinmux_group "System Pin Multiplexer Driver"
+ *
+ *
+ * \section asfdoc_sam0_adc_extra_errata Errata
+ * There are no errata related to this driver.
+ *
+ *
+ * \section asfdoc_sam0_adc_extra_history Module History
+ * An overview of the module history is presented in the table below, with
+ * details on the enhancements and fixes made to the module since its first
+ * release. The current version of this corresponds to the newest version in
+ * the table.
+ *
+ * <table>
+ *	<tr>
+ *		<th>Changelog</th>
+ *	</tr>
+ * \if DEVICE_SAML21_SUPPORT
+ *  <tr>
+ *		<td>Initial Release</td>
+ * </tr>
+ * \else
+ *	<tr>
+ *		<td>Added support for SAMR21</td>
+ *	</tr>
+ *	<tr>
+ *		<td>Added support for SAMD21 and new DMA quick start guide</td>
+ *	</tr>
+ *	<tr>
+ *		<td>Added ADC calibration constant loading from the device signature
+ *          row when the module is initialized</td>
+ *	</tr>
+ *	<tr>
+ *		<td>Initial Release</td>
+ *	</tr>
+ * \endif
+ * </table>
+ */
+
+/**
+ * \page asfdoc_sam0_adc_exqsg Examples for ADC Driver
+ *
+ * This is a list of the available Quick Start guides (QSGs) and example
+ * applications for \ref asfdoc_sam0_adc_group. QSGs are simple examples with
+ * step-by-step instructions to configure and use this driver in a selection of
+ * use cases. Note that QSGs can be compiled as a standalone application or be
+ * added to the user application.
+ *
+ *  - \subpage asfdoc_sam0_adc_basic_use_case
+ * \if ADC_CALLBACK_MODE
+ *  - \subpage asfdoc_sam0_adc_basic_use_case_callback
+ * \endif
+ *  - \subpage asfdoc_sam0_adc_dma_use_case
+ *
+ * \page asfdoc_sam0_adc_document_revision_history Document Revision History
+ *
+ * <table>
+ *	<tr>
+ *		<th>Doc. Rev.</td>
+ *		<th>Date</td>
+ *		<th>Comments</td>
+ *	</tr>
+ * \if DEVICE_SAML21_SUPPORT
+ *  <tr>
+ *      <td>A</td>
+ *      <td>11/2014</td>
+ *      <td>Initial release.</td>
+ * </tr>
+ * \else
+ *	<tr>
+ *		<td>D</td>
+ *		<td>12/2014</td>
+ *		<td>Added support for SAMR21 and SAMD10/D11.</td>
+ *	</tr>
+ *	<tr>
+ *		<td>C</td>
+ *		<td>01/2014</td>
+ *		<td>Added support for SAMD21.</td>
+ *	</tr>
+ *	<tr>
+ *		<td>B</td>
+ *		<td>06/2013</td>
+ *		<td>Added additional documentation on the event system. Corrected
+ *          documentation typos.</td>
+ *	</tr>
+ *	<tr>
+ *		<td>A</td>
+ *		<td>06/2013</td>
+ *		<td>Initial release</td>
+ *	</tr>
+ * \endif
+ * </table>
+ */
+
+#endif /* ADC_H_INCLUDED */