This is some awesome robot code

Dependencies:   mbed-rtos mbed QEI

Fork of ICRSEurobot13 by Thomas Branch

Committer:
madcowswe
Date:
Tue Apr 09 20:41:22 2013 +0000
Revision:
22:6e3218cf75f8
Parent:
21:167dacfe0b14
Child:
26:7cb3a21d9a2e
MotorControl compiles

Who changed what in which revision?

UserRevisionLine numberNew contents of line
madcowswe 16:52250d8d8fce 1 //***************************************************************************************
madcowswe 16:52250d8d8fce 2 //Kalman Filter implementation
madcowswe 16:52250d8d8fce 3 //***************************************************************************************
madcowswe 16:52250d8d8fce 4 #include "Kalman.h"
madcowswe 16:52250d8d8fce 5 #include "rtos.h"
madcowswe 16:52250d8d8fce 6 #include "math.h"
madcowswe 16:52250d8d8fce 7 #include "supportfuncs.h"
madcowswe 20:70d651156779 8 #include "Encoder.h"
madcowswe 21:167dacfe0b14 9 #include "globals.h"
madcowswe 21:167dacfe0b14 10 #include "Printing.h"
madcowswe 16:52250d8d8fce 11
madcowswe 20:70d651156779 12 #include "tvmet/Matrix.h"
madcowswe 16:52250d8d8fce 13 using namespace tvmet;
madcowswe 16:52250d8d8fce 14
madcowswe 16:52250d8d8fce 15
madcowswe 16:52250d8d8fce 16
madcowswe 16:52250d8d8fce 17 namespace Kalman
madcowswe 16:52250d8d8fce 18 {
madcowswe 16:52250d8d8fce 19
madcowswe 20:70d651156779 20 Ticker predictticker;
madcowswe 20:70d651156779 21
madcowswe 20:70d651156779 22 DigitalOut OLED4(LED4);
madcowswe 20:70d651156779 23 DigitalOut OLED1(LED1);
madcowswe 20:70d651156779 24
madcowswe 16:52250d8d8fce 25 //State variables
madcowswe 19:4b993a9a156e 26 Matrix<float, 3, 1> X;
madcowswe 16:52250d8d8fce 27 Matrix<float, 3, 3> P;
madcowswe 16:52250d8d8fce 28 Mutex statelock;
madcowswe 16:52250d8d8fce 29
madcowswe 16:52250d8d8fce 30 float RawReadings[maxmeasure+1];
madcowswe 22:6e3218cf75f8 31 float IRphaseOffset;
madcowswe 16:52250d8d8fce 32
madcowswe 20:70d651156779 33 bool Kalman_inited = 0;
madcowswe 16:52250d8d8fce 34
madcowswe 16:52250d8d8fce 35 struct measurmentdata {
madcowswe 16:52250d8d8fce 36 measurement_t mtype;
madcowswe 16:52250d8d8fce 37 float value;
madcowswe 16:52250d8d8fce 38 float variance;
madcowswe 19:4b993a9a156e 39 };
madcowswe 16:52250d8d8fce 40
madcowswe 16:52250d8d8fce 41 Mail <measurmentdata, 16> measureMQ;
madcowswe 16:52250d8d8fce 42
madcowswe 20:70d651156779 43 Thread* predict_thread_ptr = NULL;
madcowswe 16:52250d8d8fce 44
madcowswe 16:52250d8d8fce 45
madcowswe 16:52250d8d8fce 46 //Note: this init function assumes that the robot faces east, theta=0, in the +x direction
madcowswe 16:52250d8d8fce 47 void KalmanInit()
madcowswe 16:52250d8d8fce 48 {
madcowswe 20:70d651156779 49 printf("kalmaninit \r\n");
madcowswe 20:70d651156779 50
madcowswe 20:70d651156779 51 //WARNING: HARDCODED!
madcowswe 20:70d651156779 52
madcowswe 16:52250d8d8fce 53 //solve for our position (assume perfect bias)
madcowswe 20:70d651156779 54 const float d = beaconpos[2].y - beaconpos[1].y;
madcowswe 20:70d651156779 55 const float i = beaconpos[2].y - beaconpos[0].y;
madcowswe 20:70d651156779 56 const float j = beaconpos[2].x - beaconpos[0].x;
madcowswe 20:70d651156779 57 float r1 = RawReadings[SONAR2];
madcowswe 19:4b993a9a156e 58 float r2 = RawReadings[SONAR1];
madcowswe 20:70d651156779 59 float r3 = RawReadings[SONAR0];
madcowswe 20:70d651156779 60
madcowswe 20:70d651156779 61 printf("ranges: 0: %0.4f, 1: %0.4f, 2: %0.4f \r\n", r1, r2, r3);
madcowswe 17:6263e90bf3ba 62
madcowswe 19:4b993a9a156e 63 float y_coor = (r1*r1-r2*r2+d*d)/(2*d);
madcowswe 17:6263e90bf3ba 64 float x_coor = (r1*r1-r3*r3+i*i+j*j)/(2*j) - (i*y_coor)/j;
madcowswe 20:70d651156779 65
madcowswe 20:70d651156779 66 //coordinate system hack (for now)
madcowswe 20:70d651156779 67 x_coor = beaconpos[2].x - x_coor;
madcowswe 20:70d651156779 68 y_coor = beaconpos[2].y - y_coor;
madcowswe 20:70d651156779 69
madcowswe 20:70d651156779 70 printf("solved pos from sonar: %f, %f \r\n", x_coor, y_coor);
madcowswe 20:70d651156779 71
madcowswe 16:52250d8d8fce 72 //IR
madcowswe 16:52250d8d8fce 73 float IRMeasuresloc[3];
madcowswe 16:52250d8d8fce 74 IRMeasuresloc[0] = RawReadings[IR0];
madcowswe 16:52250d8d8fce 75 IRMeasuresloc[1] = RawReadings[IR1];
madcowswe 16:52250d8d8fce 76 IRMeasuresloc[2] = RawReadings[IR2];
madcowswe 20:70d651156779 77 printf("IR 0: %0.4f, 1: %0.4f, 2: %0.4f \r\n", IRMeasuresloc[0]*180/PI, IRMeasuresloc[1]*180/PI, IRMeasuresloc[2]*180/PI);
madcowswe 16:52250d8d8fce 78
madcowswe 17:6263e90bf3ba 79 float IR_Offsets[3];
madcowswe 17:6263e90bf3ba 80 float fromb0offset = 0;
madcowswe 16:52250d8d8fce 81 for (int i = 0; i < 3; i++) {
madcowswe 16:52250d8d8fce 82
madcowswe 16:52250d8d8fce 83 //Compute IR offset
madcowswe 16:52250d8d8fce 84 float angle_est = atan2(beaconpos[i].y - y_coor,beaconpos[i].x - x_coor);
madcowswe 17:6263e90bf3ba 85
madcowswe 16:52250d8d8fce 86 //printf("Angle %d : %f \n\r",i,angle_est*180/PI );
madcowswe 19:4b993a9a156e 87 IR_Offsets[i] = constrainAngle(IRMeasuresloc[i] - angle_est);
madcowswe 20:70d651156779 88
madcowswe 19:4b993a9a156e 89 fromb0offset += constrainAngle(IR_Offsets[i] - IR_Offsets[0]);
madcowswe 16:52250d8d8fce 90 }
madcowswe 20:70d651156779 91
madcowswe 22:6e3218cf75f8 92 IRphaseOffset = constrainAngle(IR_Offsets[0] + fromb0offset/3);
madcowswe 16:52250d8d8fce 93
madcowswe 16:52250d8d8fce 94 //debug
madcowswe 22:6e3218cf75f8 95 printf("Offsets IR: %0.4f\r\n",IRphaseOffset*180/PI);
madcowswe 16:52250d8d8fce 96
madcowswe 16:52250d8d8fce 97 statelock.lock();
madcowswe 19:4b993a9a156e 98 X(0,0) = x_coor;
madcowswe 19:4b993a9a156e 99 X(1,0) = y_coor;
madcowswe 19:4b993a9a156e 100 X(2,0) = 0;
madcowswe 21:167dacfe0b14 101
madcowswe 21:167dacfe0b14 102 P = 0.02*0.02, 0, 0,
madcowswe 21:167dacfe0b14 103 0, 0.02*0.02, 0,
madcowswe 21:167dacfe0b14 104 0, 0, 0.04;
madcowswe 16:52250d8d8fce 105 statelock.unlock();
madcowswe 20:70d651156779 106
madcowswe 20:70d651156779 107 Kalman_inited = 1;
madcowswe 16:52250d8d8fce 108 }
madcowswe 16:52250d8d8fce 109
madcowswe 20:70d651156779 110
madcowswe 20:70d651156779 111 State getState(){
madcowswe 20:70d651156779 112 statelock.lock();
madcowswe 20:70d651156779 113 State state = {X(0,0), X(1,0), X(2,0)};
madcowswe 20:70d651156779 114 statelock.unlock();
madcowswe 20:70d651156779 115 return state;
madcowswe 20:70d651156779 116 }
madcowswe 20:70d651156779 117
madcowswe 20:70d651156779 118
madcowswe 21:167dacfe0b14 119 void predictloop(void const*)
madcowswe 16:52250d8d8fce 120 {
madcowswe 16:52250d8d8fce 121
madcowswe 21:167dacfe0b14 122 OLED4 = !Printing::registerID(0, 3);
madcowswe 21:167dacfe0b14 123 OLED4 = !Printing::registerID(1, 4);
madcowswe 16:52250d8d8fce 124
madcowswe 16:52250d8d8fce 125 float lastleft = 0;
madcowswe 16:52250d8d8fce 126 float lastright = 0;
madcowswe 16:52250d8d8fce 127
madcowswe 16:52250d8d8fce 128 while (1) {
madcowswe 16:52250d8d8fce 129 Thread::signal_wait(0x1);
madcowswe 16:52250d8d8fce 130 OLED1 = !OLED1;
madcowswe 16:52250d8d8fce 131
madcowswe 20:70d651156779 132 float leftenc = left_encoder.getTicks() * ENCODER_M_PER_TICK;
madcowswe 20:70d651156779 133 float rightenc = right_encoder.getTicks() * ENCODER_M_PER_TICK;
madcowswe 16:52250d8d8fce 134
madcowswe 20:70d651156779 135 float dleft = leftenc-lastleft;
madcowswe 20:70d651156779 136 float dright = rightenc-lastright;
madcowswe 16:52250d8d8fce 137
madcowswe 16:52250d8d8fce 138 lastleft = leftenc;
madcowswe 16:52250d8d8fce 139 lastright = rightenc;
madcowswe 16:52250d8d8fce 140
madcowswe 16:52250d8d8fce 141
madcowswe 16:52250d8d8fce 142 //The below calculation are in body frame (where +x is forward)
madcowswe 16:52250d8d8fce 143 float dxp, dyp,d,r;
madcowswe 20:70d651156779 144 float thetap = (dright - dleft) / ENCODER_WHEELBASE;
madcowswe 20:70d651156779 145 if (abs(thetap) < 0.01f) { //if the rotation through the integration step is small, approximate with a straight line to avoid numerical error
madcowswe 16:52250d8d8fce 146 d = (dright + dleft)/2.0f;
madcowswe 16:52250d8d8fce 147 dxp = d*cos(thetap/2.0f);
madcowswe 16:52250d8d8fce 148 dyp = d*sin(thetap/2.0f);
madcowswe 16:52250d8d8fce 149
madcowswe 16:52250d8d8fce 150 } else { //calculate circle arc
madcowswe 16:52250d8d8fce 151 //float r = (right + left) / (4.0f * PI * thetap);
madcowswe 16:52250d8d8fce 152 r = (dright + dleft) / (2.0f*thetap);
madcowswe 20:70d651156779 153 dxp = r*sin(thetap);
madcowswe 16:52250d8d8fce 154 dyp = r - r*cos(thetap);
madcowswe 16:52250d8d8fce 155 }
madcowswe 16:52250d8d8fce 156
madcowswe 16:52250d8d8fce 157 statelock.lock();
madcowswe 16:52250d8d8fce 158
madcowswe 20:70d651156779 159 float tempX2 = X(2,0);
madcowswe 16:52250d8d8fce 160 //rotating to cartesian frame and updating state
madcowswe 20:70d651156779 161 X(0,0) += dxp * cos(X(2,0)) - dyp * sin(X(2,0));
madcowswe 20:70d651156779 162 X(1,0) += dxp * sin(X(2,0)) + dyp * cos(X(2,0));
madcowswe 20:70d651156779 163 X(2,0) = constrainAngle(X(2,0) + thetap);
madcowswe 16:52250d8d8fce 164
madcowswe 16:52250d8d8fce 165 //Linearising F around X
madcowswe 20:70d651156779 166 float avgX2 = (X(2,0) + tempX2)/2.0f;
madcowswe 16:52250d8d8fce 167 Matrix<float, 3, 3> F;
madcowswe 16:52250d8d8fce 168 F = 1, 0, (dxp * -sin(avgX2) - dyp * cos(avgX2)),
madcowswe 16:52250d8d8fce 169 0, 1, (dxp * cos(avgX2) - dyp * sin(avgX2)),
madcowswe 16:52250d8d8fce 170 0, 0, 1;
madcowswe 16:52250d8d8fce 171
madcowswe 16:52250d8d8fce 172 //Generating forward and rotational variance
madcowswe 16:52250d8d8fce 173 float varfwd = fwdvarperunit * abs(dright + dleft) / 2.0f;
madcowswe 16:52250d8d8fce 174 float varang = varperang * abs(thetap);
madcowswe 20:70d651156779 175 float varxydt = xyvarpertime * KALMAN_PREDICT_PERIOD;
madcowswe 20:70d651156779 176 float varangdt = angvarpertime * KALMAN_PREDICT_PERIOD;
madcowswe 16:52250d8d8fce 177
madcowswe 16:52250d8d8fce 178 //Rotating into cartesian frame
madcowswe 16:52250d8d8fce 179 Matrix<float, 2, 2> Qsub,Qsubrot,Qrot;
madcowswe 16:52250d8d8fce 180 Qsub = varfwd + varxydt, 0,
madcowswe 16:52250d8d8fce 181 0, varxydt;
madcowswe 16:52250d8d8fce 182
madcowswe 20:70d651156779 183 Qrot = Rotmatrix(X(2,0));
madcowswe 16:52250d8d8fce 184
madcowswe 16:52250d8d8fce 185 Qsubrot = Qrot * Qsub * trans(Qrot);
madcowswe 16:52250d8d8fce 186
madcowswe 16:52250d8d8fce 187 //Generate Q
madcowswe 16:52250d8d8fce 188 Matrix<float, 3, 3> Q;//(Qsubrot);
madcowswe 16:52250d8d8fce 189 Q = Qsubrot(0,0), Qsubrot(0,1), 0,
madcowswe 16:52250d8d8fce 190 Qsubrot(1,0), Qsubrot(1,1), 0,
madcowswe 16:52250d8d8fce 191 0, 0, varang + varangdt;
madcowswe 16:52250d8d8fce 192
madcowswe 16:52250d8d8fce 193 P = F * P * trans(F) + Q;
madcowswe 16:52250d8d8fce 194
madcowswe 20:70d651156779 195 //printf("x: %f, y: %f, t: %f\r\n", X(0,0), X(1,0), X(2,0));
madcowswe 21:167dacfe0b14 196 //Update Printing
madcowswe 21:167dacfe0b14 197 float statecpy[] = {X(0,0), X(1,0), X(2,0)};
madcowswe 21:167dacfe0b14 198 Printing::updateval(0, statecpy, 3);
madcowswe 16:52250d8d8fce 199
madcowswe 21:167dacfe0b14 200 float Pcpy[] = {P(0,0), P(0,1), P(1,0), P(1,1)};
madcowswe 21:167dacfe0b14 201 Printing::updateval(1, Pcpy, 4);
madcowswe 16:52250d8d8fce 202
madcowswe 16:52250d8d8fce 203 statelock.unlock();
madcowswe 16:52250d8d8fce 204 }
madcowswe 16:52250d8d8fce 205 }
madcowswe 16:52250d8d8fce 206
madcowswe 20:70d651156779 207
madcowswe 20:70d651156779 208 void predict_event_setter(){
madcowswe 20:70d651156779 209 if(predict_thread_ptr)
madcowswe 20:70d651156779 210 predict_thread_ptr->signal_set(0x1);
madcowswe 20:70d651156779 211 else
madcowswe 20:70d651156779 212 OLED4 = 1;
madcowswe 20:70d651156779 213 }
madcowswe 20:70d651156779 214
madcowswe 20:70d651156779 215 void start_predict_ticker(Thread* predict_thread_ptr_in){
madcowswe 20:70d651156779 216 predict_thread_ptr = predict_thread_ptr_in;
madcowswe 20:70d651156779 217 predictticker.attach(predict_event_setter, KALMAN_PREDICT_PERIOD);
madcowswe 20:70d651156779 218 }
madcowswe 20:70d651156779 219
madcowswe 20:70d651156779 220 void runupdate(measurement_t type, float value, float variance)
madcowswe 16:52250d8d8fce 221 {
madcowswe 20:70d651156779 222 if (!Kalman_inited) {
madcowswe 16:52250d8d8fce 223 RawReadings[type] = value;
madcowswe 20:70d651156779 224 } else {
madcowswe 17:6263e90bf3ba 225
madcowswe 20:70d651156779 226 if (type >= IR0 && type <= IR2)
madcowswe 22:6e3218cf75f8 227 RawReadings[type] = value - IRphaseOffset;
madcowswe 20:70d651156779 228 else
madcowswe 20:70d651156779 229 RawReadings[type] = value;
madcowswe 20:70d651156779 230
madcowswe 17:6263e90bf3ba 231
madcowswe 16:52250d8d8fce 232 measurmentdata* measured = (measurmentdata*)measureMQ.alloc();
madcowswe 16:52250d8d8fce 233 if (measured) {
madcowswe 16:52250d8d8fce 234 measured->mtype = type;
madcowswe 16:52250d8d8fce 235 measured->value = value;
madcowswe 16:52250d8d8fce 236 measured->variance = variance;
madcowswe 16:52250d8d8fce 237
madcowswe 16:52250d8d8fce 238 osStatus putret = measureMQ.put(measured);
madcowswe 20:70d651156779 239 //if (putret)
madcowswe 20:70d651156779 240 //OLED4 = 1;
madcowswe 16:52250d8d8fce 241 // printf("putting in MQ error code %#x\r\n", putret);
madcowswe 16:52250d8d8fce 242 } else {
madcowswe 20:70d651156779 243 //OLED4 = 1;
madcowswe 16:52250d8d8fce 244 //printf("MQalloc returned NULL ptr\r\n");
madcowswe 16:52250d8d8fce 245 }
madcowswe 20:70d651156779 246
madcowswe 16:52250d8d8fce 247 }
madcowswe 20:70d651156779 248
madcowswe 16:52250d8d8fce 249
madcowswe 16:52250d8d8fce 250 }
madcowswe 20:70d651156779 251 /*
madcowswe 21:167dacfe0b14 252 void Kalman::updateloop(void const*)
madcowswe 16:52250d8d8fce 253 {
madcowswe 16:52250d8d8fce 254
madcowswe 16:52250d8d8fce 255 //sonar Y chanels
madcowswe 16:52250d8d8fce 256 ui.regid(2, 1);
madcowswe 16:52250d8d8fce 257 ui.regid(3, 1);
madcowswe 16:52250d8d8fce 258 ui.regid(4, 1);
madcowswe 16:52250d8d8fce 259
madcowswe 16:52250d8d8fce 260 //IR Y chanels
madcowswe 16:52250d8d8fce 261 ui.regid(5, 1);
madcowswe 16:52250d8d8fce 262 ui.regid(6, 1);
madcowswe 16:52250d8d8fce 263 ui.regid(7, 1);
madcowswe 16:52250d8d8fce 264
madcowswe 16:52250d8d8fce 265 measurement_t type;
madcowswe 16:52250d8d8fce 266 float value,variance,rbx,rby,expecdist,Y;
madcowswe 16:52250d8d8fce 267 float dhdx,dhdy;
madcowswe 16:52250d8d8fce 268 bool aborton2stddev = false;
madcowswe 16:52250d8d8fce 269
madcowswe 16:52250d8d8fce 270 Matrix<float, 1, 3> H;
madcowswe 16:52250d8d8fce 271
madcowswe 16:52250d8d8fce 272 float S;
madcowswe 16:52250d8d8fce 273 Matrix<float, 3, 3> I3( identity< Matrix<float, 3, 3> >() );
madcowswe 16:52250d8d8fce 274
madcowswe 16:52250d8d8fce 275
madcowswe 16:52250d8d8fce 276 while (1) {
madcowswe 16:52250d8d8fce 277 OLED2 = !OLED2;
madcowswe 16:52250d8d8fce 278
madcowswe 16:52250d8d8fce 279 osEvent evt = measureMQ.get();
madcowswe 16:52250d8d8fce 280
madcowswe 16:52250d8d8fce 281 if (evt.status == osEventMail) {
madcowswe 16:52250d8d8fce 282
madcowswe 16:52250d8d8fce 283 measurmentdata &measured = *(measurmentdata*)evt.value.p;
madcowswe 16:52250d8d8fce 284 type = measured.mtype; //Note, may support more measurment types than sonar in the future!
madcowswe 16:52250d8d8fce 285 value = measured.value;
madcowswe 16:52250d8d8fce 286 variance = measured.variance;
madcowswe 16:52250d8d8fce 287
madcowswe 16:52250d8d8fce 288 // don't forget to free the memory
madcowswe 16:52250d8d8fce 289 measureMQ.free(&measured);
madcowswe 16:52250d8d8fce 290
madcowswe 16:52250d8d8fce 291 if (type <= maxmeasure) {
madcowswe 16:52250d8d8fce 292
madcowswe 16:52250d8d8fce 293 if (type <= SONAR3) {
madcowswe 16:52250d8d8fce 294
madcowswe 16:52250d8d8fce 295 InitLock.lock();
madcowswe 16:52250d8d8fce 296 float dist = value / 1000.0f - Sonar_Offset; //converting to m from mm,subtract the offset
madcowswe 16:52250d8d8fce 297 InitLock.unlock();
madcowswe 16:52250d8d8fce 298
madcowswe 16:52250d8d8fce 299 int sonarid = type;
madcowswe 16:52250d8d8fce 300 aborton2stddev = true;
madcowswe 16:52250d8d8fce 301
madcowswe 16:52250d8d8fce 302 statelock.lock();
madcowswe 16:52250d8d8fce 303 //update the current sonar readings
madcowswe 16:52250d8d8fce 304 SonarMeasures[sonarid] = dist;
madcowswe 16:52250d8d8fce 305
madcowswe 16:52250d8d8fce 306 rbx = X(0) - beaconpos[sonarid].x/1000.0f;
madcowswe 16:52250d8d8fce 307 rby = X(1) - beaconpos[sonarid].y/1000.0f;
madcowswe 16:52250d8d8fce 308
madcowswe 16:52250d8d8fce 309 expecdist = hypot(rbx, rby);//sqrt(rbx*rbx + rby*rby);
madcowswe 16:52250d8d8fce 310 Y = dist - expecdist;
madcowswe 16:52250d8d8fce 311
madcowswe 16:52250d8d8fce 312 //send to ui
madcowswe 16:52250d8d8fce 313 ui.updateval(sonarid+2, Y);
madcowswe 16:52250d8d8fce 314
madcowswe 16:52250d8d8fce 315 dhdx = rbx / expecdist;
madcowswe 16:52250d8d8fce 316 dhdy = rby / expecdist;
madcowswe 16:52250d8d8fce 317
madcowswe 16:52250d8d8fce 318 H = dhdx, dhdy, 0;
madcowswe 16:52250d8d8fce 319
madcowswe 16:52250d8d8fce 320 } else if (type <= IR3) {
madcowswe 16:52250d8d8fce 321
madcowswe 16:52250d8d8fce 322 aborton2stddev = false;
madcowswe 16:52250d8d8fce 323 int IRidx = type-3;
madcowswe 16:52250d8d8fce 324
madcowswe 16:52250d8d8fce 325 // subtract the IR offset
madcowswe 16:52250d8d8fce 326 InitLock.lock();
madcowswe 16:52250d8d8fce 327 value -= IR_Offset;
madcowswe 16:52250d8d8fce 328 InitLock.unlock();
madcowswe 16:52250d8d8fce 329
madcowswe 16:52250d8d8fce 330 statelock.lock();
madcowswe 16:52250d8d8fce 331 IRMeasures[IRidx] = value;
madcowswe 16:52250d8d8fce 332
madcowswe 16:52250d8d8fce 333 rbx = X(0) - beaconpos[IRidx].x/1000.0f;
madcowswe 16:52250d8d8fce 334 rby = X(1) - beaconpos[IRidx].y/1000.0f;
madcowswe 16:52250d8d8fce 335
madcowswe 16:52250d8d8fce 336 float expecang = atan2(-rby, -rbx) - X(2);
madcowswe 16:52250d8d8fce 337 Y = rectifyAng(value - expecang);
madcowswe 16:52250d8d8fce 338
madcowswe 16:52250d8d8fce 339 //send to ui
madcowswe 16:52250d8d8fce 340 ui.updateval(IRidx + 5, Y);
madcowswe 16:52250d8d8fce 341
madcowswe 16:52250d8d8fce 342 float dstsq = rbx*rbx + rby*rby;
madcowswe 16:52250d8d8fce 343 H = -rby/dstsq, rbx/dstsq, -1;
madcowswe 16:52250d8d8fce 344 }
madcowswe 16:52250d8d8fce 345
madcowswe 16:52250d8d8fce 346 Matrix<float, 3, 1> PH (P * trans(H));
madcowswe 16:52250d8d8fce 347 S = (H * PH)(0,0) + variance;
madcowswe 16:52250d8d8fce 348
madcowswe 16:52250d8d8fce 349 if (aborton2stddev && Y*Y > 4 * S) {
madcowswe 16:52250d8d8fce 350 statelock.unlock();
madcowswe 16:52250d8d8fce 351 continue;
madcowswe 16:52250d8d8fce 352 }
madcowswe 16:52250d8d8fce 353
madcowswe 16:52250d8d8fce 354 Matrix<float, 3, 1> K (PH * (1/S));
madcowswe 16:52250d8d8fce 355
madcowswe 16:52250d8d8fce 356 //Updating state
madcowswe 16:52250d8d8fce 357 X += col(K, 0) * Y;
madcowswe 16:52250d8d8fce 358 X(2) = rectifyAng(X(2));
madcowswe 16:52250d8d8fce 359
madcowswe 16:52250d8d8fce 360 P = (I3 - K * H) * P;
madcowswe 16:52250d8d8fce 361
madcowswe 16:52250d8d8fce 362 statelock.unlock();
madcowswe 16:52250d8d8fce 363
madcowswe 16:52250d8d8fce 364 }
madcowswe 16:52250d8d8fce 365
madcowswe 16:52250d8d8fce 366 } else {
madcowswe 16:52250d8d8fce 367 OLED4 = 1;
madcowswe 16:52250d8d8fce 368 //printf("ERROR: in updateloop, code %#x", evt);
madcowswe 16:52250d8d8fce 369 }
madcowswe 16:52250d8d8fce 370
madcowswe 16:52250d8d8fce 371 }
madcowswe 16:52250d8d8fce 372
madcowswe 16:52250d8d8fce 373 }
madcowswe 16:52250d8d8fce 374
madcowswe 19:4b993a9a156e 375 */
madcowswe 19:4b993a9a156e 376
madcowswe 16:52250d8d8fce 377 } //Kalman Namespace