RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos

Fork of mbed-RtosI2cDriver by Helmut Schmücker

I2cRtosDriver

Overview

  • Based on RTOS
    • Less busy wait waste of CPU cycles
    • ... but some waste of CPU cycles by context switches
    • Frees up to 80% of CPU resources
  • Fixes the bug described in https://mbed.org/forum/bugs-suggestions/topic/4128/
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
  • Reuses parts of the official I2C implementation
  • The test and example programs work quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises left.
  • If you want to avoid the RTOS overhead MODI2C might be a better choice.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the tests/examples in I2CDriverTest01.h - I2CDriverTest05.h
  • The I2CDriver class is the central interface
    • I2CDriver provides a "fat" API for I2C master and slave access
    • It supports on the fly changes between master and slave mode.
    • All requests are blocking. Other threads might do their work while the calling thread waits for the i2c requests to be completed.
    • It ensures mutual exclusive access to the I2C HW.
      • This is realized by a static RTOS mutex for each I2C channel. The mutex is taken by the calling thread on any call of an I2CDriver-function.
      • Thus accesses are prioritized automatically by the priority of the calling user threads.
      • Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads.
      • Optionally the interface can be locked manually. Useful if one wants to perform a sequence of commands without interruption.
  • I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally
    • the constructors provide parameters for defining the frequency and the slave address
    • I2CMasterRtos provides a function to read data from a given slave register
    • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when the master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
    • The stop function provides a timeout mechanism and returns the status. Thus if someone on the bus inhibits the creation of a stop condition by keeping the scl or the sda line low the mbed master won't get freezed.
    • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead is negligible.

Design

The i2c read and write sequences have been realized in an interrupt service routine. The communicaton between the calling thread and the ISR is realized by a simple static transfer struct and a semaphore ... see i2cRtos_api.c
The start and stop functions still use the busy wait approach. They are not entered that frequently and usually they take less than 12µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be much benefit if one triggers the whole interrupt/task wait/switch sequence for that short period of time.

Performance

The following performance data have been measured with the small test applications in I2CDriverTest01.h and I2CDriverTest04.h . In these applications a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address+register; write address and read x byte of data). The measurements have been performed with the ISR/RTOS approach used by this driver and with the busy wait approach used by the official mbed I2C implementation. The i2c implementation can be selected via #define PREFIX in I2CDriver.cpp.

  • The time for one read cycle is almost the same for both approaches
  • At full load the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas with the RTOS/ISR enabled driver it stays at 80%-90% on the LPC1768 and above 65% on the LPC11U24.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.791.090.593.391.990.386.8
t[µs]421714910141314518961
busy waitDC[%]57.127.78.185.868.748.23.8
t[µs]415710907128299503949
LPC17681byte/ms4byte/ms7byte/ms1byte/ms6byte/ms12byte/ms36byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.590.789.393.091.690.084.2
t[µs]415687959133254398977
busy waitDC[%]57.730.53.386.574.359.71.2
t[µs]408681953121243392974
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms23byte/ms
SRF08@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.277.581.178.771.4
t[µs]474975199374978
busy waitDC[%]51.82.480.5633.3
t[µs]442937156332928
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms32byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.176.881.078.667.1
t[µs]466922188316985
busy waitDC[%]52.87.281.769.87.4
t[µs]433893143268895
Committer:
humlet
Date:
Sun May 19 11:21:16 2013 +0000
Revision:
14:352609d395c1
Parent:
13:530968937ccb
almost beta?; ***refactored (removed mbed-NXP and mbed-src hacks/dependencies) ; *** bugs fixed; *** performance improved (read/write sequence now handled in ISR);

Who changed what in which revision?

UserRevisionLine numberNew contents of line
humlet 0:13c962fecb13 1 #include "I2CDriver.h"
humlet 9:65aae53a34de 2 #include "i2cRtos_api.h"
humlet 14:352609d395c1 3 //#include "rt_System.h"
humlet 0:13c962fecb13 4 #include "error.h"
humlet 0:13c962fecb13 5
humlet 1:90455d5bdd8c 6 using namespace mbed;
humlet 1:90455d5bdd8c 7 using namespace rtos;
humlet 0:13c962fecb13 8
humlet 14:352609d395c1 9 //DigitalOut I2CDriver::osci2(p7);
humlet 14:352609d395c1 10
humlet 14:352609d395c1 11 #define PREFIX i2cRtos
humlet 14:352609d395c1 12 //#define PREFIX i2c // fallback to offical busy wait i2c c-api for performance testing
humlet 13:530968937ccb 13 #define PASTER(x,y) x ## _ ## y
humlet 13:530968937ccb 14 #define EVALUATOR(x,y) PASTER(x,y)
humlet 13:530968937ccb 15 #define FUNCTION(fun) EVALUATOR(PREFIX, fun)
humlet 1:90455d5bdd8c 16
humlet 1:90455d5bdd8c 17 const PinName I2CDriver::c_sdas[] = {p9,p28};
humlet 1:90455d5bdd8c 18 const PinName I2CDriver::c_scls[] = {p10,p27};
humlet 1:90455d5bdd8c 19
humlet 1:90455d5bdd8c 20 I2CDriver::Channel* I2CDriver::s_channels[2] = {0,0};
humlet 0:13c962fecb13 21
humlet 3:967dde37e712 22 I2CDriver::I2CDriver(PinName sda, PinName scl, int hz, int slaveAdr):m_freq(hz),m_slaveAdr(slaveAdr)
humlet 3:967dde37e712 23 {
humlet 14:352609d395c1 24 // ensure exclusive access for initialization
humlet 14:352609d395c1 25 static Mutex mtx;
humlet 14:352609d395c1 26 bool locked = false;
humlet 14:352609d395c1 27 if(osKernelRunning()) { // but don't try to lock if rtos kernel is not running yet. (global/static definition)
humlet 14:352609d395c1 28 mtx.lock();
humlet 14:352609d395c1 29 locked = true;
humlet 14:352609d395c1 30 }
humlet 14:352609d395c1 31
humlet 3:967dde37e712 32 // check pins and determine i2c channel
humlet 3:967dde37e712 33 int channel=0;
humlet 3:967dde37e712 34 #if defined(TARGET_LPC1768) || defined(TARGET_LPC2368)
humlet 3:967dde37e712 35 if(sda==c_sdas[0] && scl==c_scls[0]) channel=0; // I2C_1
humlet 3:967dde37e712 36 else
humlet 3:967dde37e712 37 #endif
humlet 3:967dde37e712 38 if (sda==c_sdas[1] && scl==c_scls[1]) channel=1; //I2C_2 or I2C
humlet 9:65aae53a34de 39 else error("I2CDriver: Invalid I2C pins selected\n");
humlet 14:352609d395c1 40
humlet 14:352609d395c1 41 // initialize the selected i2c channel
humlet 9:65aae53a34de 42 if(s_channels[channel]==0) {
humlet 13:530968937ccb 43 s_channels[channel] = new I2CDriver::Channel;
humlet 13:530968937ccb 44 m_channel = s_channels[channel];
humlet 13:530968937ccb 45 m_channel->freq = 0;
humlet 13:530968937ccb 46 m_channel->slaveAdr = 0;
humlet 13:530968937ccb 47 m_channel->modeSlave = 0;
humlet 14:352609d395c1 48 m_channel->initialized=false; // defer i2c initialization util we are sure the rtos kernel is running (config() function)
humlet 8:5be85bd4c5ba 49 }
humlet 3:967dde37e712 50 m_channel = s_channels[channel];
humlet 14:352609d395c1 51 if(locked) mtx.unlock();
humlet 0:13c962fecb13 52 }
humlet 0:13c962fecb13 53
humlet 6:5b98c902a659 54 void I2CDriver::lock()
humlet 6:5b98c902a659 55 {
humlet 14:352609d395c1 56 //osci2.write(1);
humlet 6:5b98c902a659 57 // One and the same thread can lock twice, but then it needs also to unlock twice.
humlet 6:5b98c902a659 58 // exactly what we need here
humlet 6:5b98c902a659 59 m_channel->mutex.lock(osWaitForever);
humlet 14:352609d395c1 60 m_channel->callerID = osThreadGetId();
humlet 14:352609d395c1 61 m_channel->callerPrio = osThreadGetPriority(m_channel->callerID);
humlet 13:530968937ccb 62 // maximize thread prio
humlet 14:352609d395c1 63 osThreadSetPriority(m_channel->callerID, c_drvPrio); // hopefully not interrupted since the lock in the line above
humlet 13:530968937ccb 64 // mutex code looks like that waiting threads are priority ordered
humlet 13:530968937ccb 65 // also priority inheritance seems to be provided
humlet 14:352609d395c1 66 //osci2.write(0);
humlet 6:5b98c902a659 67 }
humlet 6:5b98c902a659 68
humlet 6:5b98c902a659 69 void I2CDriver::unlock()
humlet 6:5b98c902a659 70 {
humlet 14:352609d395c1 71 //osci2.write(1);
humlet 13:530968937ccb 72 // free the mutex and restore original prio
humlet 14:352609d395c1 73 //rt_tsk_lock(); // just prevent beeing preempted after restoring prio before freeing the mutex
humlet 14:352609d395c1 74 osThreadSetPriority(m_channel->callerID, m_channel->callerPrio);
humlet 14:352609d395c1 75 m_channel->mutex.unlock();
humlet 14:352609d395c1 76 //rt_tsk_unlock();
humlet 14:352609d395c1 77 //osci2.write(0);
humlet 6:5b98c902a659 78 }
humlet 6:5b98c902a659 79
humlet 13:530968937ccb 80 void I2CDriver::config()
humlet 0:13c962fecb13 81 {
humlet 14:352609d395c1 82 //osci2.write(1);
humlet 14:352609d395c1 83 // check and initialize driver
humlet 14:352609d395c1 84 if(!m_channel->initialized) {
humlet 14:352609d395c1 85 int channel = m_channel==s_channels[0] ? 0 : 1; // ...ugly
humlet 14:352609d395c1 86 FUNCTION(init)(&m_channel->i2c, c_sdas[channel], c_scls[channel]);
humlet 14:352609d395c1 87 m_channel->initialized=true;
humlet 14:352609d395c1 88 }
humlet 13:530968937ccb 89 // check and update frequency
humlet 13:530968937ccb 90 if(m_freq != m_channel->freq) {
humlet 13:530968937ccb 91 m_channel->freq = m_freq;
humlet 13:530968937ccb 92 i2c_frequency(&m_channel->i2c, m_freq);
humlet 13:530968937ccb 93 }
humlet 13:530968937ccb 94 // check and update slave/master mode
humlet 13:530968937ccb 95 if(m_modeSlave != m_channel->modeSlave) {
humlet 13:530968937ccb 96 m_channel->modeSlave = m_modeSlave;
humlet 13:530968937ccb 97 i2c_slave_mode(&m_channel->i2c, m_modeSlave);
humlet 13:530968937ccb 98 }
humlet 13:530968937ccb 99 // check and update slave address
humlet 13:530968937ccb 100 if(m_modeSlave && m_slaveAdr != m_channel->slaveAdr) {
humlet 13:530968937ccb 101 m_channel->slaveAdr = m_slaveAdr;
humlet 13:530968937ccb 102 i2c_slave_address(&m_channel->i2c, 0, m_slaveAdr, 0);
humlet 13:530968937ccb 103 }
humlet 14:352609d395c1 104 //osci2.write(0);
humlet 0:13c962fecb13 105 }
humlet 0:13c962fecb13 106
humlet 3:967dde37e712 107 int I2CDriver::readMaster(int address, char *data, int length, bool repeated)
humlet 1:90455d5bdd8c 108 {
humlet 13:530968937ccb 109 m_modeSlave = false;
humlet 13:530968937ccb 110 lockNconfig();
humlet 13:530968937ccb 111 int ret = FUNCTION(read)(&m_channel->i2c, address, data, length, (repeated?0:1));
humlet 13:530968937ccb 112 unlock();
humlet 13:530968937ccb 113 return ret;
humlet 1:90455d5bdd8c 114 }
humlet 3:967dde37e712 115 int I2CDriver::readMaster(int address, uint8_t _register, char *data, int length, bool repeated)
humlet 3:967dde37e712 116 {
humlet 13:530968937ccb 117 m_modeSlave = false;
humlet 13:530968937ccb 118 lockNconfig();
humlet 13:530968937ccb 119 int ret = FUNCTION(write)(&m_channel->i2c, address,(const char*)&_register, 1, 0);
humlet 13:530968937ccb 120 if(!ret) ret = FUNCTION(read)(&m_channel->i2c, address, data, length, (repeated?0:1));
humlet 13:530968937ccb 121 unlock();
humlet 13:530968937ccb 122 return ret;
humlet 3:967dde37e712 123 }
humlet 3:967dde37e712 124 int I2CDriver::readMaster(int ack)
humlet 1:90455d5bdd8c 125 {
humlet 13:530968937ccb 126 m_modeSlave = false;
humlet 13:530968937ccb 127 lockNconfig();
humlet 13:530968937ccb 128 int ret = i2cRtos_byte_read(&m_channel->i2c, (ack?0:1));
humlet 13:530968937ccb 129 unlock();
humlet 13:530968937ccb 130 return ret;
humlet 1:90455d5bdd8c 131 }
humlet 3:967dde37e712 132 int I2CDriver::writeMaster(int address, const char *data, int length, bool repeated)
humlet 1:90455d5bdd8c 133 {
humlet 13:530968937ccb 134 m_modeSlave = false;
humlet 13:530968937ccb 135 lockNconfig();
humlet 13:530968937ccb 136 int ret = FUNCTION(write)(&m_channel->i2c, address, data, length, (repeated?0:1));
humlet 13:530968937ccb 137 unlock();
humlet 13:530968937ccb 138 return ret;
humlet 1:90455d5bdd8c 139 }
humlet 3:967dde37e712 140 int I2CDriver::writeMaster(int data)
humlet 1:90455d5bdd8c 141 {
humlet 13:530968937ccb 142 m_modeSlave = false;
humlet 13:530968937ccb 143 lockNconfig();
humlet 13:530968937ccb 144 int ret = i2cRtos_byte_write(&m_channel->i2c, data);
humlet 13:530968937ccb 145 unlock();
humlet 13:530968937ccb 146 return ret;
humlet 0:13c962fecb13 147 }
humlet 3:967dde37e712 148 void I2CDriver::startMaster(void)
humlet 1:90455d5bdd8c 149 {
humlet 13:530968937ccb 150 m_modeSlave = false;
humlet 13:530968937ccb 151 lockNconfig();
humlet 13:530968937ccb 152 i2c_start(&m_channel->i2c);
humlet 13:530968937ccb 153 unlock();
humlet 3:967dde37e712 154 }
humlet 13:530968937ccb 155 bool I2CDriver::stopMaster(void)
humlet 3:967dde37e712 156 {
humlet 13:530968937ccb 157 m_modeSlave = false;
humlet 13:530968937ccb 158 lockNconfig();
humlet 13:530968937ccb 159 bool ret=i2cRtos_stop(&m_channel->i2c);
humlet 13:530968937ccb 160 unlock();
humlet 13:530968937ccb 161 return ret;
humlet 3:967dde37e712 162 }
humlet 3:967dde37e712 163 void I2CDriver::stopSlave(void)
humlet 3:967dde37e712 164 {
humlet 13:530968937ccb 165 m_modeSlave = true;
humlet 13:530968937ccb 166 lockNconfig();
humlet 13:530968937ccb 167 i2c_stop(&m_channel->i2c);
humlet 13:530968937ccb 168 unlock();
humlet 3:967dde37e712 169 }
humlet 3:967dde37e712 170 int I2CDriver::receiveSlave(uint32_t timeout_ms)
humlet 3:967dde37e712 171 {
humlet 13:530968937ccb 172 m_modeSlave = true;
humlet 13:530968937ccb 173 lockNconfig();
humlet 13:530968937ccb 174 int ret = i2cRtos_slave_receive(&m_channel->i2c, timeout_ms);
humlet 13:530968937ccb 175 unlock();
humlet 13:530968937ccb 176 return ret;
humlet 3:967dde37e712 177 }
humlet 3:967dde37e712 178 int I2CDriver::readSlave(char* data, int length)
humlet 3:967dde37e712 179 {
humlet 13:530968937ccb 180 m_modeSlave = true;
humlet 13:530968937ccb 181 lockNconfig();
humlet 13:530968937ccb 182 int ret = i2cRtos_slave_read(&m_channel->i2c, data, length);
humlet 13:530968937ccb 183 unlock();
humlet 13:530968937ccb 184 return ret;
humlet 3:967dde37e712 185 }
humlet 3:967dde37e712 186 int I2CDriver::readSlave(void)
humlet 3:967dde37e712 187 {
humlet 13:530968937ccb 188 m_modeSlave = true;
humlet 13:530968937ccb 189 lockNconfig();
humlet 13:530968937ccb 190 int ret = i2cRtos_byte_read(&m_channel->i2c, 0);
humlet 13:530968937ccb 191 unlock();
humlet 13:530968937ccb 192 return ret;
humlet 3:967dde37e712 193 }
humlet 3:967dde37e712 194 int I2CDriver::writeSlave(const char *data, int length)
humlet 3:967dde37e712 195 {
humlet 13:530968937ccb 196 m_modeSlave = true;
humlet 13:530968937ccb 197 lockNconfig();
humlet 13:530968937ccb 198 int ret = i2cRtos_slave_write(&m_channel->i2c, data, length);
humlet 13:530968937ccb 199 unlock();
humlet 13:530968937ccb 200 return ret;
humlet 3:967dde37e712 201 }
humlet 3:967dde37e712 202 int I2CDriver::writeSlave(int data)
humlet 3:967dde37e712 203 {
humlet 13:530968937ccb 204 m_modeSlave = true;
humlet 13:530968937ccb 205 lockNconfig();
humlet 13:530968937ccb 206 int ret = i2cRtos_byte_write(&m_channel->i2c, data);
humlet 13:530968937ccb 207 unlock();
humlet 13:530968937ccb 208 return ret;
humlet 1:90455d5bdd8c 209 }
humlet 1:90455d5bdd8c 210
humlet 1:90455d5bdd8c 211
humlet 3:967dde37e712 212
humlet 3:967dde37e712 213