RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos

Fork of mbed-RtosI2cDriver by Helmut Schmücker

I2cRtosDriver

Overview

  • Based on RTOS
    • Less busy wait waste of CPU cycles
    • ... but some waste of CPU cycles by context switches
    • Frees up to 80% of CPU resources
  • Fixes the bug described in https://mbed.org/forum/bugs-suggestions/topic/4128/
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
  • Reuses parts of the official I2C implementation
  • The test and example programs work quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises left.
  • If you want to avoid the RTOS overhead MODI2C might be a better choice.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the tests/examples in I2CDriverTest01.h - I2CDriverTest05.h
  • The I2CDriver class is the central interface
    • I2CDriver provides a "fat" API for I2C master and slave access
    • It supports on the fly changes between master and slave mode.
    • All requests are blocking. Other threads might do their work while the calling thread waits for the i2c requests to be completed.
    • It ensures mutual exclusive access to the I2C HW.
      • This is realized by a static RTOS mutex for each I2C channel. The mutex is taken by the calling thread on any call of an I2CDriver-function.
      • Thus accesses are prioritized automatically by the priority of the calling user threads.
      • Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads.
      • Optionally the interface can be locked manually. Useful if one wants to perform a sequence of commands without interruption.
  • I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally
    • the constructors provide parameters for defining the frequency and the slave address
    • I2CMasterRtos provides a function to read data from a given slave register
    • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when the master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
    • The stop function provides a timeout mechanism and returns the status. Thus if someone on the bus inhibits the creation of a stop condition by keeping the scl or the sda line low the mbed master won't get freezed.
    • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead is negligible.

Design

The i2c read and write sequences have been realized in an interrupt service routine. The communicaton between the calling thread and the ISR is realized by a simple static transfer struct and a semaphore ... see i2cRtos_api.c
The start and stop functions still use the busy wait approach. They are not entered that frequently and usually they take less than 12µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be much benefit if one triggers the whole interrupt/task wait/switch sequence for that short period of time.

Performance

The following performance data have been measured with the small test applications in I2CDriverTest01.h and I2CDriverTest04.h . In these applications a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address+register; write address and read x byte of data). The measurements have been performed with the ISR/RTOS approach used by this driver and with the busy wait approach used by the official mbed I2C implementation. The i2c implementation can be selected via #define PREFIX in I2CDriver.cpp.

  • The time for one read cycle is almost the same for both approaches
  • At full load the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas with the RTOS/ISR enabled driver it stays at 80%-90% on the LPC1768 and above 65% on the LPC11U24.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.791.090.593.391.990.386.8
t[µs]421714910141314518961
busy waitDC[%]57.127.78.185.868.748.23.8
t[µs]415710907128299503949
LPC17681byte/ms4byte/ms7byte/ms1byte/ms6byte/ms12byte/ms36byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.590.789.393.091.690.084.2
t[µs]415687959133254398977
busy waitDC[%]57.730.53.386.574.359.71.2
t[µs]408681953121243392974
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms23byte/ms
SRF08@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.277.581.178.771.4
t[µs]474975199374978
busy waitDC[%]51.82.480.5633.3
t[µs]442937156332928
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms32byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.176.881.078.667.1
t[µs]466922188316985
busy waitDC[%]52.87.281.769.87.4
t[µs]433893143268895
Committer:
humlet
Date:
Sat Apr 13 13:37:29 2013 +0000
Revision:
0:13c962fecb13
Child:
1:90455d5bdd8c
intermediate;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
humlet 0:13c962fecb13 1 #include "I2CDriver.h"
humlet 0:13c962fecb13 2 #include "error.h"
humlet 0:13c962fecb13 3
humlet 0:13c962fecb13 4 #define ISR2DRV_SIG (1<<0);
humlet 0:13c962fecb13 5 #define DRV_USR_SIG (1<<1);
humlet 0:13c962fecb13 6
humlet 0:13c962fecb13 7 Channel I2CDriver::channels[2]= {0,0};
humlet 0:13c962fecb13 8
humlet 0:13c962fecb13 9
humlet 0:13c962fecb13 10 void I2CDriver::channel_0_ISR()
humlet 0:13c962fecb13 11 {
humlet 0:13c962fecb13 12 osSignalSet( channels[0].driver, ISR2DRV_SIG);
humlet 0:13c962fecb13 13 NVIC_DisableIRQ(I2C1_IRQn); //I2C_IRQn
humlet 0:13c962fecb13 14 }
humlet 0:13c962fecb13 15
humlet 0:13c962fecb13 16
humlet 0:13c962fecb13 17 void I2CDriver::channel_1_ISR()
humlet 0:13c962fecb13 18 {
humlet 0:13c962fecb13 19 osSignalSet( channels[1].driver, ISR2DRV_SIG);
humlet 0:13c962fecb13 20 NVIC_DisableIRQ(I2C2_IRQn); //I2C_IRQn
humlet 0:13c962fecb13 21 }
humlet 0:13c962fecb13 22
humlet 0:13c962fecb13 23
humlet 0:13c962fecb13 24 void I2CDriver::threadFun(void* const args)
humlet 0:13c962fecb13 25 {
humlet 0:13c962fecb13 26 int channelIdx = (int)args;
humlet 0:13c962fecb13 27 Channel channel;
humlet 0:13c962fecb13 28 s_channels[channelIdx] = &channel;
humlet 0:13c962fecb13 29
humlet 0:13c962fecb13 30 channel.driver = Thread::gettid();
humlet 0:13c962fecb13 31
humlet 0:13c962fecb13 32 if(channelIdx==0)NVIC_SetVector(I2C1_IRQn, (uint32_t)I2CDriver::channel_0_ISR);
humlet 0:13c962fecb13 33 if(channelIdx==1)NVIC_SetVector(I2C2_IRQn, (uint32_t)I2CDriver::channel_1_ISR);
humlet 0:13c962fecb13 34
humlet 0:13c962fecb13 35 I2C i2c(c_sda[channelIdx], c_scl[channelIdx]);
humlet 0:13c962fecb13 36
humlet 0:13c962fecb13 37 while(1) {
humlet 0:13c962fecb13 38 osSignalWait(DRV_USR_SIG,0);
humlet 0:13c962fecb13 39 switch(channels[channel].transfer.cmd) {
humlet 0:13c962fecb13 40 case START:
humlet 0:13c962fecb13 41 if(channel.freq!=channel.transfer.freq) i2c.frequency
humlet 0:13c962fecb13 42 i2c.start();
humlet 0:13c962fecb13 43 break;
humlet 0:13c962fecb13 44 case STOP:
humlet 0:13c962fecb13 45 i2c.stop();
humlet 0:13c962fecb13 46 break;
humlet 0:13c962fecb13 47 }
humlet 0:13c962fecb13 48 s_threads[2]
humlet 0:13c962fecb13 49 }
humlet 0:13c962fecb13 50 }
humlet 0:13c962fecb13 51
humlet 0:13c962fecb13 52
humlet 0:13c962fecb13 53 I2CDriver::I2CDriver(PinName sda, PinName scl)
humlet 0:13c962fecb13 54 {
humlet 0:13c962fecb13 55 // check pins and determine i2c channel
humlet 0:13c962fecb13 56 int channel=0;
humlet 0:13c962fecb13 57 if(sda==sdas[0] && scl==scls[0]) channel=0; // I2C_1
humlet 0:13c962fecb13 58 else if (sda==sdas[1] && scl==scls[1]) channel=1; //I2C_2
humlet 0:13c962fecb13 59 else error("I2CDriver: Invalid I2C pinns selected");
humlet 0:13c962fecb13 60
humlet 0:13c962fecb13 61 if(s_channels[channel]==0)
humlet 0:13c962fecb13 62 new Thread(threadFun,(void *)channel,osPriorityRealtime);
humlet 0:13c962fecb13 63
humlet 0:13c962fecb13 64 m_channel = *(s_channel[channel]);
humlet 0:13c962fecb13 65 }
humlet 0:13c962fecb13 66
humlet 0:13c962fecb13 67 void I2CDriver::sendNwait(){
humlet 0:13c962fecb13 68 osSignalSet( m_channel.driver, DRV_USR_SIG);
humlet 0:13c962fecb13 69 osSignalWait(DRV_USR_SIG,osWaitForever);
humlet 0:13c962fecb13 70 }
humlet 0:13c962fecb13 71
humlet 0:13c962fecb13 72 void I2CDriver::frequency(int hz);
humlet 0:13c962fecb13 73
humlet 0:13c962fecb13 74
humlet 0:13c962fecb13 75 int I2CDriver::read(int address, char *data, int length, bool repeated = false);
humlet 0:13c962fecb13 76
humlet 0:13c962fecb13 77
humlet 0:13c962fecb13 78 int I2CDriver::read(int ack);
humlet 0:13c962fecb13 79
humlet 0:13c962fecb13 80
humlet 0:13c962fecb13 81 int I2CDriver::write(int address, const char *data, int length, bool repeated = false);
humlet 0:13c962fecb13 82
humlet 0:13c962fecb13 83
humlet 0:13c962fecb13 84 int I2CDriver::write(int data);
humlet 0:13c962fecb13 85
humlet 0:13c962fecb13 86
humlet 0:13c962fecb13 87 void I2CDriver::start(void){
humlet 0:13c962fecb13 88 lock();
humlet 0:13c962fecb13 89 m_channel.transfer.freq = _hz;
humlet 0:13c962fecb13 90 m_channel.transfer.cmd = START;
humlet 0:13c962fecb13 91 sendNwait();
humlet 0:13c962fecb13 92 unlock();
humlet 0:13c962fecb13 93 }
humlet 0:13c962fecb13 94
humlet 0:13c962fecb13 95
humlet 0:13c962fecb13 96 void I2CDriver::stop(void){
humlet 0:13c962fecb13 97 lock();
humlet 0:13c962fecb13 98 m_channel.transfer.freq = _hz;
humlet 0:13c962fecb13 99 m_channel.transfer.cmd = STOP;
humlet 0:13c962fecb13 100 sendNwait();
humlet 0:13c962fecb13 101 unlock();
humlet 0:13c962fecb13 102 }