mbed library with additional peripherals for ST F401 board

Fork of mbed-src by mbed official

This mbed LIB has additional peripherals for ST F401 board

  • UART2 : PA_3 rx, PA_2 tx
  • UART3 : PC_7 rx, PC_6 tx
  • I2C2 : PB_3 SDA, PB_10 SCL
  • I2C3 : PB_4 SDA, PA_8 SCL

targets/cmsis/TARGET_STM/TARGET_NUCLEO_F103RB/stm32f10x_tim.c

Committer:
mbed_official
Date:
2014-01-07
Revision:
70:c1fbde68b492
Parent:
52:a51c77007319
Child:
84:f54042cbc282

File content as of revision 70:c1fbde68b492:

/**
  ******************************************************************************
  * @file    stm32f10x_tim.c
  * @author  MCD Application Team
  * @version V3.5.0
  * @date    11-March-2011
  * @brief   This file provides all the TIM firmware functions.
 *******************************************************************************
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************
 */

/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_tim.h"
#include "stm32f10x_rcc.h"

/** @addtogroup STM32F10x_StdPeriph_Driver
  * @{
  */

/** @defgroup TIM 
  * @brief TIM driver modules
  * @{
  */

/** @defgroup TIM_Private_TypesDefinitions
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_Defines
  * @{
  */

/* ---------------------- TIM registers bit mask ------------------------ */
#define SMCR_ETR_Mask               ((uint16_t)0x00FF) 
#define CCMR_Offset                 ((uint16_t)0x0018)
#define CCER_CCE_Set                ((uint16_t)0x0001)  
#define	CCER_CCNE_Set               ((uint16_t)0x0004) 

/**
  * @}
  */

/** @defgroup TIM_Private_Macros
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_Variables
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_FunctionPrototypes
  * @{
  */

static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter);
/**
  * @}
  */

/** @defgroup TIM_Private_Macros
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_Variables
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_FunctionPrototypes
  * @{
  */

/**
  * @}
  */

/** @defgroup TIM_Private_Functions
  * @{
  */

/**
  * @brief  Deinitializes the TIMx peripheral registers to their default reset values.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @retval None
  */
void TIM_DeInit(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
 
  if (TIMx == TIM1)
  {
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, DISABLE);  
  }     
  else if (TIMx == TIM2)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, DISABLE);
  }
  else if (TIMx == TIM3)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, DISABLE);
  }
  else if (TIMx == TIM4)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, DISABLE);
  } 
  else if (TIMx == TIM5)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, DISABLE);
  } 
  else if (TIMx == TIM6)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, DISABLE);
  } 
  else if (TIMx == TIM7)
  {
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, DISABLE);
  } 
  else if (TIMx == TIM8)
  {
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, DISABLE);
  }
  else if (TIMx == TIM9)
  {      
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, DISABLE);  
   }  
  else if (TIMx == TIM10)
  {      
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, DISABLE);  
  }  
  else if (TIMx == TIM11) 
  {     
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, DISABLE);  
  }  
  else if (TIMx == TIM12)
  {      
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, DISABLE);  
  }  
  else if (TIMx == TIM13) 
  {       
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, DISABLE);  
  }
  else if (TIMx == TIM14) 
  {       
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, ENABLE);
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, DISABLE);  
  }        
  else if (TIMx == TIM15)
  {
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, DISABLE);
  } 
  else if (TIMx == TIM16)
  {
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, ENABLE);
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, DISABLE);
  } 
  else
  {
    if (TIMx == TIM17)
    {
      RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, ENABLE);
      RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, DISABLE);
    }  
  }
}

/**
  * @brief  Initializes the TIMx Time Base Unit peripheral according to 
  *         the specified parameters in the TIM_TimeBaseInitStruct.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  TIM_TimeBaseInitStruct: pointer to a TIM_TimeBaseInitTypeDef
  *         structure that contains the configuration information for the 
  *         specified TIM peripheral.
  * @retval None
  */
void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
{
  uint16_t tmpcr1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
  assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));
  assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));

  tmpcr1 = TIMx->CR1;  

  if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM2) || (TIMx == TIM3)||
     (TIMx == TIM4) || (TIMx == TIM5)) 
  {
    /* Select the Counter Mode */
    tmpcr1 &= (uint16_t)(~((uint16_t)(TIM_CR1_DIR | TIM_CR1_CMS)));
    tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;
  }
 
  if((TIMx != TIM6) && (TIMx != TIM7))
  {
    /* Set the clock division */
    tmpcr1 &= (uint16_t)(~((uint16_t)TIM_CR1_CKD));
    tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;
  }

  TIMx->CR1 = tmpcr1;

  /* Set the Autoreload value */
  TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;
 
  /* Set the Prescaler value */
  TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;
    
  if ((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)|| (TIMx == TIM16) || (TIMx == TIM17))  
  {
    /* Set the Repetition Counter value */
    TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter;
  }

  /* Generate an update event to reload the Prescaler and the Repetition counter
     values immediately */
  TIMx->EGR = TIM_PSCReloadMode_Immediate;           
}

/**
  * @brief  Initializes the TIMx Channel1 according to the specified
  *         parameters in the TIM_OCInitStruct.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
 /* Disable the Channel 1: Reset the CC1E Bit */
  TIMx->CCER &= (uint16_t)(~(uint16_t)TIM_CCER_CC1E);
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR1 register value */
  tmpccmrx = TIMx->CCMR1;
    
  /* Reset the Output Compare Mode Bits */
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC1M));
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_CC1S));

  /* Select the Output Compare Mode */
  tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1P));
  /* Set the Output Compare Polarity */
  tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;
  
  /* Set the Output State */
  tmpccer |= TIM_OCInitStruct->TIM_OutputState;
    
  if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)||
     (TIMx == TIM16)|| (TIMx == TIM17))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NP));
    /* Set the Output N Polarity */
    tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity;
    
    /* Reset the Output N State */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NE));    
    /* Set the Output N State */
    tmpccer |= TIM_OCInitStruct->TIM_OutputNState;
    
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1));
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1N));
    
    /* Set the Output Idle state */
    tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState;
    /* Set the Output N Idle state */
    tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState;
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse; 
 
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel2 according to the specified
  *         parameters in the TIM_OCInitStruct.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15 to select 
  *         the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
   /* Disable the Channel 2: Reset the CC2E Bit */
  TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC2E));
  
  /* Get the TIMx CCER register value */  
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR1 register value */
  tmpccmrx = TIMx->CCMR1;
    
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC2M));
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_CC2S));
  
  /* Select the Output Compare Mode */
  tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC2P));
  /* Set the Output Compare Polarity */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 4);
  
  /* Set the Output State */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 4);
    
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC2NP));
    /* Set the Output N Polarity */
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 4);
    
    /* Reset the Output N State */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC2NE));    
    /* Set the Output N State */
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 4);
    
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS2));
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS2N));
    
    /* Set the Output Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 2);
    /* Set the Output N Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 2);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR2 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel3 according to the specified
  *         parameters in the TIM_OCInitStruct.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
  /* Disable the Channel 2: Reset the CC2E Bit */
  TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC3E));
  
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR2 register value */
  tmpccmrx = TIMx->CCMR2;
    
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_OC3M));
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_CC3S));  
  /* Select the Output Compare Mode */
  tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC3P));
  /* Set the Output Compare Polarity */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 8);
  
  /* Set the Output State */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 8);
    
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    
    /* Reset the Output N Polarity level */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC3NP));
    /* Set the Output N Polarity */
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 8);
    /* Reset the Output N State */
    tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC3NE));
    
    /* Set the Output N State */
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 8);
    /* Reset the Output Compare and Output Compare N IDLE State */
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS3));
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS3N));
    /* Set the Output Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 4);
    /* Set the Output N Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 4);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR2 */
  TIMx->CCMR2 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR3 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIMx Channel4 according to the specified
  *         parameters in the TIM_OCInitStruct.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
   
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
  /* Disable the Channel 2: Reset the CC4E Bit */
  TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC4E));
  
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  /* Get the TIMx CR2 register value */
  tmpcr2 =  TIMx->CR2;
  
  /* Get the TIMx CCMR2 register value */
  tmpccmrx = TIMx->CCMR2;
    
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_OC4M));
  tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_CC4S));
  
  /* Select the Output Compare Mode */
  tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
  
  /* Reset the Output Polarity level */
  tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC4P));
  /* Set the Output Compare Polarity */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 12);
  
  /* Set the Output State */
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 12);
    
  if((TIMx == TIM1) || (TIMx == TIM8))
  {
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
    /* Reset the Output Compare IDLE State */
    tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS4));
    /* Set the Output Idle state */
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 6);
  }
  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;
  
  /* Write to TIMx CCMR2 */  
  TIMx->CCMR2 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR4 = TIM_OCInitStruct->TIM_Pulse;
  
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Initializes the TIM peripheral according to the specified
  *         parameters in the TIM_ICInitStruct.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
{
  /* Check the parameters */
  assert_param(IS_TIM_CHANNEL(TIM_ICInitStruct->TIM_Channel));  
  assert_param(IS_TIM_IC_SELECTION(TIM_ICInitStruct->TIM_ICSelection));
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICInitStruct->TIM_ICPrescaler));
  assert_param(IS_TIM_IC_FILTER(TIM_ICInitStruct->TIM_ICFilter));
  
  if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM2) || (TIMx == TIM3) ||
     (TIMx == TIM4) ||(TIMx == TIM5))
  {
    assert_param(IS_TIM_IC_POLARITY(TIM_ICInitStruct->TIM_ICPolarity));
  }
  else
  {
    assert_param(IS_TIM_IC_POLARITY_LITE(TIM_ICInitStruct->TIM_ICPolarity));
  }
  if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
  {
    assert_param(IS_TIM_LIST8_PERIPH(TIMx));
    /* TI1 Configuration */
    TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
               TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
  else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_2)
  {
    assert_param(IS_TIM_LIST6_PERIPH(TIMx));
    /* TI2 Configuration */
    TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
               TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
  else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_3)
  {
    assert_param(IS_TIM_LIST3_PERIPH(TIMx));
    /* TI3 Configuration */
    TI3_Config(TIMx,  TIM_ICInitStruct->TIM_ICPolarity,
               TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC3Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
  else
  {
    assert_param(IS_TIM_LIST3_PERIPH(TIMx));
    /* TI4 Configuration */
    TI4_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
               TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC4Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
}

/**
  * @brief  Configures the TIM peripheral according to the specified
  *         parameters in the TIM_ICInitStruct to measure an external PWM signal.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure
  *         that contains the configuration information for the specified TIM peripheral.
  * @retval None
  */
void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
{
  uint16_t icoppositepolarity = TIM_ICPolarity_Rising;
  uint16_t icoppositeselection = TIM_ICSelection_DirectTI;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  /* Select the Opposite Input Polarity */
  if (TIM_ICInitStruct->TIM_ICPolarity == TIM_ICPolarity_Rising)
  {
    icoppositepolarity = TIM_ICPolarity_Falling;
  }
  else
  {
    icoppositepolarity = TIM_ICPolarity_Rising;
  }
  /* Select the Opposite Input */
  if (TIM_ICInitStruct->TIM_ICSelection == TIM_ICSelection_DirectTI)
  {
    icoppositeselection = TIM_ICSelection_IndirectTI;
  }
  else
  {
    icoppositeselection = TIM_ICSelection_DirectTI;
  }
  if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
  {
    /* TI1 Configuration */
    TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
    /* TI2 Configuration */
    TI2_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
  else
  { 
    /* TI2 Configuration */
    TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
               TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
    /* TI1 Configuration */
    TI1_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
    /* Set the Input Capture Prescaler value */
    TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
  }
}

/**
  * @brief  Configures the: Break feature, dead time, Lock level, the OSSI,
  *         the OSSR State and the AOE(automatic output enable).
  * @param  TIMx: where x can be  1 or 8 to select the TIM 
  * @param  TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure that
  *         contains the BDTR Register configuration  information for the TIM peripheral.
  * @retval None
  */
void TIM_BDTRConfig(TIM_TypeDef* TIMx, TIM_BDTRInitTypeDef *TIM_BDTRInitStruct)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_OSSR_STATE(TIM_BDTRInitStruct->TIM_OSSRState));
  assert_param(IS_TIM_OSSI_STATE(TIM_BDTRInitStruct->TIM_OSSIState));
  assert_param(IS_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->TIM_LOCKLevel));
  assert_param(IS_TIM_BREAK_STATE(TIM_BDTRInitStruct->TIM_Break));
  assert_param(IS_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->TIM_BreakPolarity));
  assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->TIM_AutomaticOutput));
  /* Set the Lock level, the Break enable Bit and the Ploarity, the OSSR State,
     the OSSI State, the dead time value and the Automatic Output Enable Bit */
  TIMx->BDTR = (uint32_t)TIM_BDTRInitStruct->TIM_OSSRState | TIM_BDTRInitStruct->TIM_OSSIState |
             TIM_BDTRInitStruct->TIM_LOCKLevel | TIM_BDTRInitStruct->TIM_DeadTime |
             TIM_BDTRInitStruct->TIM_Break | TIM_BDTRInitStruct->TIM_BreakPolarity |
             TIM_BDTRInitStruct->TIM_AutomaticOutput;
}

/**
  * @brief  Fills each TIM_TimeBaseInitStruct member with its default value.
  * @param  TIM_TimeBaseInitStruct : pointer to a TIM_TimeBaseInitTypeDef
  *         structure which will be initialized.
  * @retval None
  */
void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
{
  /* Set the default configuration */
  TIM_TimeBaseInitStruct->TIM_Period = 0xFFFF;
  TIM_TimeBaseInitStruct->TIM_Prescaler = 0x0000;
  TIM_TimeBaseInitStruct->TIM_ClockDivision = TIM_CKD_DIV1;
  TIM_TimeBaseInitStruct->TIM_CounterMode = TIM_CounterMode_Up;
  TIM_TimeBaseInitStruct->TIM_RepetitionCounter = 0x0000;
}

/**
  * @brief  Fills each TIM_OCInitStruct member with its default value.
  * @param  TIM_OCInitStruct : pointer to a TIM_OCInitTypeDef structure which will
  *         be initialized.
  * @retval None
  */
void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct)
{
  /* Set the default configuration */
  TIM_OCInitStruct->TIM_OCMode = TIM_OCMode_Timing;
  TIM_OCInitStruct->TIM_OutputState = TIM_OutputState_Disable;
  TIM_OCInitStruct->TIM_OutputNState = TIM_OutputNState_Disable;
  TIM_OCInitStruct->TIM_Pulse = 0x0000;
  TIM_OCInitStruct->TIM_OCPolarity = TIM_OCPolarity_High;
  TIM_OCInitStruct->TIM_OCNPolarity = TIM_OCPolarity_High;
  TIM_OCInitStruct->TIM_OCIdleState = TIM_OCIdleState_Reset;
  TIM_OCInitStruct->TIM_OCNIdleState = TIM_OCNIdleState_Reset;
}

/**
  * @brief  Fills each TIM_ICInitStruct member with its default value.
  * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure which will
  *         be initialized.
  * @retval None
  */
void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct)
{
  /* Set the default configuration */
  TIM_ICInitStruct->TIM_Channel = TIM_Channel_1;
  TIM_ICInitStruct->TIM_ICPolarity = TIM_ICPolarity_Rising;
  TIM_ICInitStruct->TIM_ICSelection = TIM_ICSelection_DirectTI;
  TIM_ICInitStruct->TIM_ICPrescaler = TIM_ICPSC_DIV1;
  TIM_ICInitStruct->TIM_ICFilter = 0x00;
}

/**
  * @brief  Fills each TIM_BDTRInitStruct member with its default value.
  * @param  TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure which
  *         will be initialized.
  * @retval None
  */
void TIM_BDTRStructInit(TIM_BDTRInitTypeDef* TIM_BDTRInitStruct)
{
  /* Set the default configuration */
  TIM_BDTRInitStruct->TIM_OSSRState = TIM_OSSRState_Disable;
  TIM_BDTRInitStruct->TIM_OSSIState = TIM_OSSIState_Disable;
  TIM_BDTRInitStruct->TIM_LOCKLevel = TIM_LOCKLevel_OFF;
  TIM_BDTRInitStruct->TIM_DeadTime = 0x00;
  TIM_BDTRInitStruct->TIM_Break = TIM_Break_Disable;
  TIM_BDTRInitStruct->TIM_BreakPolarity = TIM_BreakPolarity_Low;
  TIM_BDTRInitStruct->TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;
}

/**
  * @brief  Enables or disables the specified TIM peripheral.
  * @param  TIMx: where x can be 1 to 17 to select the TIMx peripheral.
  * @param  NewState: new state of the TIMx peripheral.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the TIM Counter */
    TIMx->CR1 |= TIM_CR1_CEN;
  }
  else
  {
    /* Disable the TIM Counter */
    TIMx->CR1 &= (uint16_t)(~((uint16_t)TIM_CR1_CEN));
  }
}

/**
  * @brief  Enables or disables the TIM peripheral Main Outputs.
  * @param  TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIMx peripheral.
  * @param  NewState: new state of the TIM peripheral Main Outputs.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Enable the TIM Main Output */
    TIMx->BDTR |= TIM_BDTR_MOE;
  }
  else
  {
    /* Disable the TIM Main Output */
    TIMx->BDTR &= (uint16_t)(~((uint16_t)TIM_BDTR_MOE));
  }  
}

/**
  * @brief  Enables or disables the specified TIM interrupts.
  * @param  TIMx: where x can be 1 to 17 to select the TIMx peripheral.
  * @param  TIM_IT: specifies the TIM interrupts sources to be enabled or disabled.
  *   This parameter can be any combination of the following values:
  *     @arg TIM_IT_Update: TIM update Interrupt source
  *     @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
  *     @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
  *     @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
  *     @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
  *     @arg TIM_IT_COM: TIM Commutation Interrupt source
  *     @arg TIM_IT_Trigger: TIM Trigger Interrupt source
  *     @arg TIM_IT_Break: TIM Break Interrupt source
  * @note 
  *   - TIM6 and TIM7 can only generate an update interrupt.
  *   - TIM9, TIM12 and TIM15 can have only TIM_IT_Update, TIM_IT_CC1,
  *      TIM_IT_CC2 or TIM_IT_Trigger. 
  *   - TIM10, TIM11, TIM13, TIM14, TIM16 and TIM17 can have TIM_IT_Update or TIM_IT_CC1.   
  *   - TIM_IT_Break is used only with TIM1, TIM8 and TIM15. 
  *   - TIM_IT_COM is used only with TIM1, TIM8, TIM15, TIM16 and TIM17.    
  * @param  NewState: new state of the TIM interrupts.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState)
{  
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_IT(TIM_IT));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the Interrupt sources */
    TIMx->DIER |= TIM_IT;
  }
  else
  {
    /* Disable the Interrupt sources */
    TIMx->DIER &= (uint16_t)~TIM_IT;
  }
}

/**
  * @brief  Configures the TIMx event to be generate by software.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  TIM_EventSource: specifies the event source.
  *   This parameter can be one or more of the following values:	   
  *     @arg TIM_EventSource_Update: Timer update Event source
  *     @arg TIM_EventSource_CC1: Timer Capture Compare 1 Event source
  *     @arg TIM_EventSource_CC2: Timer Capture Compare 2 Event source
  *     @arg TIM_EventSource_CC3: Timer Capture Compare 3 Event source
  *     @arg TIM_EventSource_CC4: Timer Capture Compare 4 Event source
  *     @arg TIM_EventSource_COM: Timer COM event source  
  *     @arg TIM_EventSource_Trigger: Timer Trigger Event source
  *     @arg TIM_EventSource_Break: Timer Break event source
  * @note 
  *   - TIM6 and TIM7 can only generate an update event. 
  *   - TIM_EventSource_COM and TIM_EventSource_Break are used only with TIM1 and TIM8.      
  * @retval None
  */
void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource)
{ 
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_EVENT_SOURCE(TIM_EventSource));
  
  /* Set the event sources */
  TIMx->EGR = TIM_EventSource;
}

/**
  * @brief  Configures the TIMx's DMA interface.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 15, 16 or 17 to select 
  *   the TIM peripheral.
  * @param  TIM_DMABase: DMA Base address.
  *   This parameter can be one of the following values:
  *     @arg TIM_DMABase_CR, TIM_DMABase_CR2, TIM_DMABase_SMCR,
  *          TIM_DMABase_DIER, TIM1_DMABase_SR, TIM_DMABase_EGR,
  *          TIM_DMABase_CCMR1, TIM_DMABase_CCMR2, TIM_DMABase_CCER,
  *          TIM_DMABase_CNT, TIM_DMABase_PSC, TIM_DMABase_ARR,
  *          TIM_DMABase_RCR, TIM_DMABase_CCR1, TIM_DMABase_CCR2,
  *          TIM_DMABase_CCR3, TIM_DMABase_CCR4, TIM_DMABase_BDTR,
  *          TIM_DMABase_DCR.
  * @param  TIM_DMABurstLength: DMA Burst length.
  *   This parameter can be one value between:
  *   TIM_DMABurstLength_1Transfer and TIM_DMABurstLength_18Transfers.
  * @retval None
  */
void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_TIM_DMA_BASE(TIM_DMABase));
  assert_param(IS_TIM_DMA_LENGTH(TIM_DMABurstLength));
  /* Set the DMA Base and the DMA Burst Length */
  TIMx->DCR = TIM_DMABase | TIM_DMABurstLength;
}

/**
  * @brief  Enables or disables the TIMx's DMA Requests.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 6, 7, 8, 15, 16 or 17 
  *   to select the TIM peripheral. 
  * @param  TIM_DMASource: specifies the DMA Request sources.
  *   This parameter can be any combination of the following values:
  *     @arg TIM_DMA_Update: TIM update Interrupt source
  *     @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
  *     @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
  *     @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
  *     @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
  *     @arg TIM_DMA_COM: TIM Commutation DMA source
  *     @arg TIM_DMA_Trigger: TIM Trigger DMA source
  * @param  NewState: new state of the DMA Request sources.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState)
{ 
  /* Check the parameters */
  assert_param(IS_TIM_LIST9_PERIPH(TIMx));
  assert_param(IS_TIM_DMA_SOURCE(TIM_DMASource));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the DMA sources */
    TIMx->DIER |= TIM_DMASource; 
  }
  else
  {
    /* Disable the DMA sources */
    TIMx->DIER &= (uint16_t)~TIM_DMASource;
  }
}

/**
  * @brief  Configures the TIMx internal Clock
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15
  *         to select the TIM peripheral.
  * @retval None
  */
void TIM_InternalClockConfig(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  /* Disable slave mode to clock the prescaler directly with the internal clock */
  TIMx->SMCR &=  (uint16_t)(~((uint16_t)TIM_SMCR_SMS));
}

/**
  * @brief  Configures the TIMx Internal Trigger as External Clock
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_ITRSource: Trigger source.
  *   This parameter can be one of the following values:
  * @param  TIM_TS_ITR0: Internal Trigger 0
  * @param  TIM_TS_ITR1: Internal Trigger 1
  * @param  TIM_TS_ITR2: Internal Trigger 2
  * @param  TIM_TS_ITR3: Internal Trigger 3
  * @retval None
  */
void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_INTERNAL_TRIGGER_SELECTION(TIM_InputTriggerSource));
  /* Select the Internal Trigger */
  TIM_SelectInputTrigger(TIMx, TIM_InputTriggerSource);
  /* Select the External clock mode1 */
  TIMx->SMCR |= TIM_SlaveMode_External1;
}

/**
  * @brief  Configures the TIMx Trigger as External Clock
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_TIxExternalCLKSource: Trigger source.
  *   This parameter can be one of the following values:
  *     @arg TIM_TIxExternalCLK1Source_TI1ED: TI1 Edge Detector
  *     @arg TIM_TIxExternalCLK1Source_TI1: Filtered Timer Input 1
  *     @arg TIM_TIxExternalCLK1Source_TI2: Filtered Timer Input 2
  * @param  TIM_ICPolarity: specifies the TIx Polarity.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPolarity_Rising
  *     @arg TIM_ICPolarity_Falling
  * @param  ICFilter : specifies the filter value.
  *   This parameter must be a value between 0x0 and 0xF.
  * @retval None
  */
void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource,
                                uint16_t TIM_ICPolarity, uint16_t ICFilter)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_TIXCLK_SOURCE(TIM_TIxExternalCLKSource));
  assert_param(IS_TIM_IC_POLARITY(TIM_ICPolarity));
  assert_param(IS_TIM_IC_FILTER(ICFilter));
  /* Configure the Timer Input Clock Source */
  if (TIM_TIxExternalCLKSource == TIM_TIxExternalCLK1Source_TI2)
  {
    TI2_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
  }
  else
  {
    TI1_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
  }
  /* Select the Trigger source */
  TIM_SelectInputTrigger(TIMx, TIM_TIxExternalCLKSource);
  /* Select the External clock mode1 */
  TIMx->SMCR |= TIM_SlaveMode_External1;
}

/**
  * @brief  Configures the External clock Mode1
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
  *   This parameter can be one of the following values:
  *     @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
  *     @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
  *     @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
  *     @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
  * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
  *   This parameter can be one of the following values:
  *     @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
  *     @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
  * @param  ExtTRGFilter: External Trigger Filter.
  *   This parameter must be a value between 0x00 and 0x0F
  * @retval None
  */
void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
                             uint16_t ExtTRGFilter)
{
  uint16_t tmpsmcr = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
  assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
  assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
  /* Configure the ETR Clock source */
  TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
  
  /* Get the TIMx SMCR register value */
  tmpsmcr = TIMx->SMCR;
  /* Reset the SMS Bits */
  tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_SMS));
  /* Select the External clock mode1 */
  tmpsmcr |= TIM_SlaveMode_External1;
  /* Select the Trigger selection : ETRF */
  tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_TS));
  tmpsmcr |= TIM_TS_ETRF;
  /* Write to TIMx SMCR */
  TIMx->SMCR = tmpsmcr;
}

/**
  * @brief  Configures the External clock Mode2
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
  *   This parameter can be one of the following values:
  *     @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
  *     @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
  *     @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
  *     @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
  * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
  *   This parameter can be one of the following values:
  *     @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
  *     @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
  * @param  ExtTRGFilter: External Trigger Filter.
  *   This parameter must be a value between 0x00 and 0x0F
  * @retval None
  */
void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, 
                             uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
  assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
  assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
  /* Configure the ETR Clock source */
  TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
  /* Enable the External clock mode2 */
  TIMx->SMCR |= TIM_SMCR_ECE;
}

/**
  * @brief  Configures the TIMx External Trigger (ETR).
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
  *   This parameter can be one of the following values:
  *     @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
  *     @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
  *     @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
  *     @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
  * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
  *   This parameter can be one of the following values:
  *     @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
  *     @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
  * @param  ExtTRGFilter: External Trigger Filter.
  *   This parameter must be a value between 0x00 and 0x0F
  * @retval None
  */
void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
                   uint16_t ExtTRGFilter)
{
  uint16_t tmpsmcr = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
  assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
  assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
  tmpsmcr = TIMx->SMCR;
  /* Reset the ETR Bits */
  tmpsmcr &= SMCR_ETR_Mask;
  /* Set the Prescaler, the Filter value and the Polarity */
  tmpsmcr |= (uint16_t)(TIM_ExtTRGPrescaler | (uint16_t)(TIM_ExtTRGPolarity | (uint16_t)(ExtTRGFilter << (uint16_t)8)));
  /* Write to TIMx SMCR */
  TIMx->SMCR = tmpsmcr;
}

/**
  * @brief  Configures the TIMx Prescaler.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  Prescaler: specifies the Prescaler Register value
  * @param  TIM_PSCReloadMode: specifies the TIM Prescaler Reload mode
  *   This parameter can be one of the following values:
  *     @arg TIM_PSCReloadMode_Update: The Prescaler is loaded at the update event.
  *     @arg TIM_PSCReloadMode_Immediate: The Prescaler is loaded immediately.
  * @retval None
  */
void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_PRESCALER_RELOAD(TIM_PSCReloadMode));
  /* Set the Prescaler value */
  TIMx->PSC = Prescaler;
  /* Set or reset the UG Bit */
  TIMx->EGR = TIM_PSCReloadMode;
}

/**
  * @brief  Specifies the TIMx Counter Mode to be used.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_CounterMode: specifies the Counter Mode to be used
  *   This parameter can be one of the following values:
  *     @arg TIM_CounterMode_Up: TIM Up Counting Mode
  *     @arg TIM_CounterMode_Down: TIM Down Counting Mode
  *     @arg TIM_CounterMode_CenterAligned1: TIM Center Aligned Mode1
  *     @arg TIM_CounterMode_CenterAligned2: TIM Center Aligned Mode2
  *     @arg TIM_CounterMode_CenterAligned3: TIM Center Aligned Mode3
  * @retval None
  */
void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode)
{
  uint16_t tmpcr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_COUNTER_MODE(TIM_CounterMode));
  tmpcr1 = TIMx->CR1;
  /* Reset the CMS and DIR Bits */
  tmpcr1 &= (uint16_t)(~((uint16_t)(TIM_CR1_DIR | TIM_CR1_CMS)));
  /* Set the Counter Mode */
  tmpcr1 |= TIM_CounterMode;
  /* Write to TIMx CR1 register */
  TIMx->CR1 = tmpcr1;
}

/**
  * @brief  Selects the Input Trigger source
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_InputTriggerSource: The Input Trigger source.
  *   This parameter can be one of the following values:
  *     @arg TIM_TS_ITR0: Internal Trigger 0
  *     @arg TIM_TS_ITR1: Internal Trigger 1
  *     @arg TIM_TS_ITR2: Internal Trigger 2
  *     @arg TIM_TS_ITR3: Internal Trigger 3
  *     @arg TIM_TS_TI1F_ED: TI1 Edge Detector
  *     @arg TIM_TS_TI1FP1: Filtered Timer Input 1
  *     @arg TIM_TS_TI2FP2: Filtered Timer Input 2
  *     @arg TIM_TS_ETRF: External Trigger input
  * @retval None
  */
void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
{
  uint16_t tmpsmcr = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_TRIGGER_SELECTION(TIM_InputTriggerSource));
  /* Get the TIMx SMCR register value */
  tmpsmcr = TIMx->SMCR;
  /* Reset the TS Bits */
  tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_TS));
  /* Set the Input Trigger source */
  tmpsmcr |= TIM_InputTriggerSource;
  /* Write to TIMx SMCR */
  TIMx->SMCR = tmpsmcr;
}

/**
  * @brief  Configures the TIMx Encoder Interface.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_EncoderMode: specifies the TIMx Encoder Mode.
  *   This parameter can be one of the following values:
  *     @arg TIM_EncoderMode_TI1: Counter counts on TI1FP1 edge depending on TI2FP2 level.
  *     @arg TIM_EncoderMode_TI2: Counter counts on TI2FP2 edge depending on TI1FP1 level.
  *     @arg TIM_EncoderMode_TI12: Counter counts on both TI1FP1 and TI2FP2 edges depending
  *                                on the level of the other input.
  * @param  TIM_IC1Polarity: specifies the IC1 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPolarity_Falling: IC Falling edge.
  *     @arg TIM_ICPolarity_Rising: IC Rising edge.
  * @param  TIM_IC2Polarity: specifies the IC2 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPolarity_Falling: IC Falling edge.
  *     @arg TIM_ICPolarity_Rising: IC Rising edge.
  * @retval None
  */
void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode,
                                uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity)
{
  uint16_t tmpsmcr = 0;
  uint16_t tmpccmr1 = 0;
  uint16_t tmpccer = 0;
    
  /* Check the parameters */
  assert_param(IS_TIM_LIST5_PERIPH(TIMx));
  assert_param(IS_TIM_ENCODER_MODE(TIM_EncoderMode));
  assert_param(IS_TIM_IC_POLARITY(TIM_IC1Polarity));
  assert_param(IS_TIM_IC_POLARITY(TIM_IC2Polarity));

  /* Get the TIMx SMCR register value */
  tmpsmcr = TIMx->SMCR;
  
  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = TIMx->CCMR1;
  
  /* Get the TIMx CCER register value */
  tmpccer = TIMx->CCER;
  
  /* Set the encoder Mode */
  tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_SMS));
  tmpsmcr |= TIM_EncoderMode;
  
  /* Select the Capture Compare 1 and the Capture Compare 2 as input */
  tmpccmr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR1_CC1S)) & (uint16_t)(~((uint16_t)TIM_CCMR1_CC2S)));
  tmpccmr1 |= TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC2S_0;
  
  /* Set the TI1 and the TI2 Polarities */
  tmpccer &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCER_CC1P)) & ((uint16_t)~((uint16_t)TIM_CCER_CC2P)));
  tmpccer |= (uint16_t)(TIM_IC1Polarity | (uint16_t)(TIM_IC2Polarity << (uint16_t)4));
  
  /* Write to TIMx SMCR */
  TIMx->SMCR = tmpsmcr;
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmr1;
  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Forces the TIMx output 1 waveform to active or inactive level.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *   This parameter can be one of the following values:
  *     @arg TIM_ForcedAction_Active: Force active level on OC1REF
  *     @arg TIM_ForcedAction_InActive: Force inactive level on OC1REF.
  * @retval None
  */
void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC1M Bits */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1M);
  /* Configure The Forced output Mode */
  tmpccmr1 |= TIM_ForcedAction;
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Forces the TIMx output 2 waveform to active or inactive level.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *   This parameter can be one of the following values:
  *     @arg TIM_ForcedAction_Active: Force active level on OC2REF
  *     @arg TIM_ForcedAction_InActive: Force inactive level on OC2REF.
  * @retval None
  */
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC2M Bits */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2M);
  /* Configure The Forced output Mode */
  tmpccmr1 |= (uint16_t)(TIM_ForcedAction << 8);
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Forces the TIMx output 3 waveform to active or inactive level.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *   This parameter can be one of the following values:
  *     @arg TIM_ForcedAction_Active: Force active level on OC3REF
  *     @arg TIM_ForcedAction_InActive: Force inactive level on OC3REF.
  * @retval None
  */
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC1M Bits */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3M);
  /* Configure The Forced output Mode */
  tmpccmr2 |= TIM_ForcedAction;
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Forces the TIMx output 4 waveform to active or inactive level.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
  *   This parameter can be one of the following values:
  *     @arg TIM_ForcedAction_Active: Force active level on OC4REF
  *     @arg TIM_ForcedAction_InActive: Force inactive level on OC4REF.
  * @retval None
  */
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC2M Bits */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4M);
  /* Configure The Forced output Mode */
  tmpccmr2 |= (uint16_t)(TIM_ForcedAction << 8);
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Enables or disables TIMx peripheral Preload register on ARR.
  * @param  TIMx: where x can be  1 to 17 to select the TIM peripheral.
  * @param  NewState: new state of the TIMx peripheral Preload register
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Set the ARR Preload Bit */
    TIMx->CR1 |= TIM_CR1_ARPE;
  }
  else
  {
    /* Reset the ARR Preload Bit */
    TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_ARPE);
  }
}

/**
  * @brief  Selects the TIM peripheral Commutation event.
  * @param  TIMx: where x can be  1, 8, 15, 16 or 17 to select the TIMx peripheral
  * @param  NewState: new state of the Commutation event.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_SelectCOM(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Set the COM Bit */
    TIMx->CR2 |= TIM_CR2_CCUS;
  }
  else
  {
    /* Reset the COM Bit */
    TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_CCUS);
  }
}

/**
  * @brief  Selects the TIMx peripheral Capture Compare DMA source.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 15, 16 or 17 to select 
  *         the TIM peripheral.
  * @param  NewState: new state of the Capture Compare DMA source
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Set the CCDS Bit */
    TIMx->CR2 |= TIM_CR2_CCDS;
  }
  else
  {
    /* Reset the CCDS Bit */
    TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_CCDS);
  }
}

/**
  * @brief  Sets or Resets the TIM peripheral Capture Compare Preload Control bit.
  * @param  TIMx: where x can be   1, 2, 3, 4, 5, 8 or 15 
  *         to select the TIMx peripheral
  * @param  NewState: new state of the Capture Compare Preload Control bit
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_CCPreloadControl(TIM_TypeDef* TIMx, FunctionalState NewState)
{ 
  /* Check the parameters */
  assert_param(IS_TIM_LIST5_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Set the CCPC Bit */
    TIMx->CR2 |= TIM_CR2_CCPC;
  }
  else
  {
    /* Reset the CCPC Bit */
    TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_CCPC);
  }
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR1.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPreload_Enable
  *     @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC1PE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1PE);
  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr1 |= TIM_OCPreload;
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR2.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15 to select 
  *         the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPreload_Enable
  *     @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC2PE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2PE);
  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr1 |= (uint16_t)(TIM_OCPreload << 8);
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR3.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPreload_Enable
  *     @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC3PE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3PE);
  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr2 |= TIM_OCPreload;
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR4.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPreload_Enable
  *     @arg TIM_OCPreload_Disable
  * @retval None
  */
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC4PE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4PE);
  /* Enable or Disable the Output Compare Preload feature */
  tmpccmr2 |= (uint16_t)(TIM_OCPreload << 8);
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Configures the TIMx Output Compare 1 Fast feature.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCFast_Enable: TIM output compare fast enable
  *     @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC1FE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1FE);
  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr1 |= TIM_OCFast;
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Configures the TIMx Output Compare 2 Fast feature.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 12 or 15 to select 
  *         the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCFast_Enable: TIM output compare fast enable
  *     @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
  /* Get the TIMx CCMR1 register value */
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC2FE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2FE);
  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr1 |= (uint16_t)(TIM_OCFast << 8);
  /* Write to TIMx CCMR1 */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Configures the TIMx Output Compare 3 Fast feature.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCFast_Enable: TIM output compare fast enable
  *     @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
  /* Get the TIMx CCMR2 register value */
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC3FE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3FE);
  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr2 |= TIM_OCFast;
  /* Write to TIMx CCMR2 */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Configures the TIMx Output Compare 4 Fast feature.
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCFast_Enable: TIM output compare fast enable
  *     @arg TIM_OCFast_Disable: TIM output compare fast disable
  * @retval None
  */
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
  /* Get the TIMx CCMR2 register value */
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC4FE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4FE);
  /* Enable or Disable the Output Compare Fast Bit */
  tmpccmr2 |= (uint16_t)(TIM_OCFast << 8);
  /* Write to TIMx CCMR2 */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Clears or safeguards the OCREF1 signal on an external event
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCClear_Enable: TIM Output clear enable
  *     @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));

  tmpccmr1 = TIMx->CCMR1;

  /* Reset the OC1CE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1CE);
  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr1 |= TIM_OCClear;
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Clears or safeguards the OCREF2 signal on an external event
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCClear_Enable: TIM Output clear enable
  *     @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint16_t tmpccmr1 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
  tmpccmr1 = TIMx->CCMR1;
  /* Reset the OC2CE Bit */
  tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2CE);
  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr1 |= (uint16_t)(TIM_OCClear << 8);
  /* Write to TIMx CCMR1 register */
  TIMx->CCMR1 = tmpccmr1;
}

/**
  * @brief  Clears or safeguards the OCREF3 signal on an external event
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCClear_Enable: TIM Output clear enable
  *     @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC3CE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3CE);
  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr2 |= TIM_OCClear;
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Clears or safeguards the OCREF4 signal on an external event
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCClear_Enable: TIM Output clear enable
  *     @arg TIM_OCClear_Disable: TIM Output clear disable
  * @retval None
  */
void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
{
  uint16_t tmpccmr2 = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
  tmpccmr2 = TIMx->CCMR2;
  /* Reset the OC4CE Bit */
  tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4CE);
  /* Enable or Disable the Output Compare Clear Bit */
  tmpccmr2 |= (uint16_t)(TIM_OCClear << 8);
  /* Write to TIMx CCMR2 register */
  TIMx->CCMR2 = tmpccmr2;
}

/**
  * @brief  Configures the TIMx channel 1 polarity.
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC1 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPolarity_High: Output Compare active high
  *     @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC1P Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC1P);
  tmpccer |= TIM_OCPolarity;
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx Channel 1N polarity.
  * @param  TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_OCNPolarity: specifies the OC1N Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCNPolarity_High: Output Compare active high
  *     @arg TIM_OCNPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
   
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC1NP Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC1NP);
  tmpccer |= TIM_OCNPolarity;
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 2 polarity.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC2 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPolarity_High: Output Compare active high
  *     @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC2P Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC2P);
  tmpccer |= (uint16_t)(TIM_OCPolarity << 4);
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx Channel 2N polarity.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_OCNPolarity: specifies the OC2N Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCNPolarity_High: Output Compare active high
  *     @arg TIM_OCNPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
  
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC2NP Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC2NP);
  tmpccer |= (uint16_t)(TIM_OCNPolarity << 4);
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 3 polarity.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC3 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPolarity_High: Output Compare active high
  *     @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC3P Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC3P);
  tmpccer |= (uint16_t)(TIM_OCPolarity << 8);
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx Channel 3N polarity.
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
  * @param  TIM_OCNPolarity: specifies the OC3N Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCNPolarity_High: Output Compare active high
  *     @arg TIM_OCNPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
{
  uint16_t tmpccer = 0;
 
  /* Check the parameters */
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
    
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC3NP Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC3NP);
  tmpccer |= (uint16_t)(TIM_OCNPolarity << 8);
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configures the TIMx channel 4 polarity.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_OCPolarity: specifies the OC4 Polarity
  *   This parameter can be one of the following values:
  *     @arg TIM_OCPolarity_High: Output Compare active high
  *     @arg TIM_OCPolarity_Low: Output Compare active low
  * @retval None
  */
void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
{
  uint16_t tmpccer = 0;
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
  tmpccer = TIMx->CCER;
  /* Set or Reset the CC4P Bit */
  tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC4P);
  tmpccer |= (uint16_t)(TIM_OCPolarity << 12);
  /* Write to TIMx CCER register */
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Enables or disables the TIM Capture Compare Channel x.
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_Channel: specifies the TIM Channel
  *   This parameter can be one of the following values:
  *     @arg TIM_Channel_1: TIM Channel 1
  *     @arg TIM_Channel_2: TIM Channel 2
  *     @arg TIM_Channel_3: TIM Channel 3
  *     @arg TIM_Channel_4: TIM Channel 4
  * @param  TIM_CCx: specifies the TIM Channel CCxE bit new state.
  *   This parameter can be: TIM_CCx_Enable or TIM_CCx_Disable. 
  * @retval None
  */
void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx)
{
  uint16_t tmp = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_CHANNEL(TIM_Channel));
  assert_param(IS_TIM_CCX(TIM_CCx));

  tmp = CCER_CCE_Set << TIM_Channel;

  /* Reset the CCxE Bit */
  TIMx->CCER &= (uint16_t)~ tmp;

  /* Set or reset the CCxE Bit */ 
  TIMx->CCER |=  (uint16_t)(TIM_CCx << TIM_Channel);
}

/**
  * @brief  Enables or disables the TIM Capture Compare Channel xN.
  * @param  TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM peripheral.
  * @param  TIM_Channel: specifies the TIM Channel
  *   This parameter can be one of the following values:
  *     @arg TIM_Channel_1: TIM Channel 1
  *     @arg TIM_Channel_2: TIM Channel 2
  *     @arg TIM_Channel_3: TIM Channel 3
  * @param  TIM_CCxN: specifies the TIM Channel CCxNE bit new state.
  *   This parameter can be: TIM_CCxN_Enable or TIM_CCxN_Disable. 
  * @retval None
  */
void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN)
{
  uint16_t tmp = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
  assert_param(IS_TIM_COMPLEMENTARY_CHANNEL(TIM_Channel));
  assert_param(IS_TIM_CCXN(TIM_CCxN));

  tmp = CCER_CCNE_Set << TIM_Channel;

  /* Reset the CCxNE Bit */
  TIMx->CCER &= (uint16_t) ~tmp;

  /* Set or reset the CCxNE Bit */ 
  TIMx->CCER |=  (uint16_t)(TIM_CCxN << TIM_Channel);
}

/**
  * @brief  Selects the TIM Output Compare Mode.
  * @note   This function disables the selected channel before changing the Output
  *         Compare Mode.
  *         User has to enable this channel using TIM_CCxCmd and TIM_CCxNCmd functions.
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_Channel: specifies the TIM Channel
  *   This parameter can be one of the following values:
  *     @arg TIM_Channel_1: TIM Channel 1
  *     @arg TIM_Channel_2: TIM Channel 2
  *     @arg TIM_Channel_3: TIM Channel 3
  *     @arg TIM_Channel_4: TIM Channel 4
  * @param  TIM_OCMode: specifies the TIM Output Compare Mode.
  *   This parameter can be one of the following values:
  *     @arg TIM_OCMode_Timing
  *     @arg TIM_OCMode_Active
  *     @arg TIM_OCMode_Toggle
  *     @arg TIM_OCMode_PWM1
  *     @arg TIM_OCMode_PWM2
  *     @arg TIM_ForcedAction_Active
  *     @arg TIM_ForcedAction_InActive
  * @retval None
  */
void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode)
{
  uint32_t tmp = 0;
  uint16_t tmp1 = 0;

  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_CHANNEL(TIM_Channel));
  assert_param(IS_TIM_OCM(TIM_OCMode));

  tmp = (uint32_t) TIMx;
  tmp += CCMR_Offset;

  tmp1 = CCER_CCE_Set << (uint16_t)TIM_Channel;

  /* Disable the Channel: Reset the CCxE Bit */
  TIMx->CCER &= (uint16_t) ~tmp1;

  if((TIM_Channel == TIM_Channel_1) ||(TIM_Channel == TIM_Channel_3))
  {
    tmp += (TIM_Channel>>1);

    /* Reset the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp &= (uint32_t)~((uint32_t)TIM_CCMR1_OC1M);
   
    /* Configure the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp |= TIM_OCMode;
  }
  else
  {
    tmp += (uint16_t)(TIM_Channel - (uint16_t)4)>> (uint16_t)1;

    /* Reset the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp &= (uint32_t)~((uint32_t)TIM_CCMR1_OC2M);
    
    /* Configure the OCxM bits in the CCMRx register */
    *(__IO uint32_t *) tmp |= (uint16_t)(TIM_OCMode << 8);
  }
}

/**
  * @brief  Enables or Disables the TIMx Update event.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  NewState: new state of the TIMx UDIS bit
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Set the Update Disable Bit */
    TIMx->CR1 |= TIM_CR1_UDIS;
  }
  else
  {
    /* Reset the Update Disable Bit */
    TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_UDIS);
  }
}

/**
  * @brief  Configures the TIMx Update Request Interrupt source.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  TIM_UpdateSource: specifies the Update source.
  *   This parameter can be one of the following values:
  *     @arg TIM_UpdateSource_Regular: Source of update is the counter overflow/underflow
                                       or the setting of UG bit, or an update generation
                                       through the slave mode controller.
  *     @arg TIM_UpdateSource_Global: Source of update is counter overflow/underflow.
  * @retval None
  */
void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_UPDATE_SOURCE(TIM_UpdateSource));
  if (TIM_UpdateSource != TIM_UpdateSource_Global)
  {
    /* Set the URS Bit */
    TIMx->CR1 |= TIM_CR1_URS;
  }
  else
  {
    /* Reset the URS Bit */
    TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_URS);
  }
}

/**
  * @brief  Enables or disables the TIMx's Hall sensor interface.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  NewState: new state of the TIMx Hall sensor interface.
  *   This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  if (NewState != DISABLE)
  {
    /* Set the TI1S Bit */
    TIMx->CR2 |= TIM_CR2_TI1S;
  }
  else
  {
    /* Reset the TI1S Bit */
    TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_TI1S);
  }
}

/**
  * @brief  Selects the TIMx's One Pulse Mode.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  TIM_OPMode: specifies the OPM Mode to be used.
  *   This parameter can be one of the following values:
  *     @arg TIM_OPMode_Single
  *     @arg TIM_OPMode_Repetitive
  * @retval None
  */
void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_OPM_MODE(TIM_OPMode));
  /* Reset the OPM Bit */
  TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_OPM);
  /* Configure the OPM Mode */
  TIMx->CR1 |= TIM_OPMode;
}

/**
  * @brief  Selects the TIMx Trigger Output Mode.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_TRGOSource: specifies the Trigger Output source.
  *   This paramter can be one of the following values:
  *
  *  - For all TIMx
  *     @arg TIM_TRGOSource_Reset:  The UG bit in the TIM_EGR register is used as the trigger output (TRGO).
  *     @arg TIM_TRGOSource_Enable: The Counter Enable CEN is used as the trigger output (TRGO).
  *     @arg TIM_TRGOSource_Update: The update event is selected as the trigger output (TRGO).
  *
  *  - For all TIMx except TIM6 and TIM7
  *     @arg TIM_TRGOSource_OC1: The trigger output sends a positive pulse when the CC1IF flag
  *                              is to be set, as soon as a capture or compare match occurs (TRGO).
  *     @arg TIM_TRGOSource_OC1Ref: OC1REF signal is used as the trigger output (TRGO).
  *     @arg TIM_TRGOSource_OC2Ref: OC2REF signal is used as the trigger output (TRGO).
  *     @arg TIM_TRGOSource_OC3Ref: OC3REF signal is used as the trigger output (TRGO).
  *     @arg TIM_TRGOSource_OC4Ref: OC4REF signal is used as the trigger output (TRGO).
  *
  * @retval None
  */
void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST7_PERIPH(TIMx));
  assert_param(IS_TIM_TRGO_SOURCE(TIM_TRGOSource));
  /* Reset the MMS Bits */
  TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_MMS);
  /* Select the TRGO source */
  TIMx->CR2 |=  TIM_TRGOSource;
}

/**
  * @brief  Selects the TIMx Slave Mode.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_SlaveMode: specifies the Timer Slave Mode.
  *   This parameter can be one of the following values:
  *     @arg TIM_SlaveMode_Reset: Rising edge of the selected trigger signal (TRGI) re-initializes
  *                               the counter and triggers an update of the registers.
  *     @arg TIM_SlaveMode_Gated:     The counter clock is enabled when the trigger signal (TRGI) is high.
  *     @arg TIM_SlaveMode_Trigger:   The counter starts at a rising edge of the trigger TRGI.
  *     @arg TIM_SlaveMode_External1: Rising edges of the selected trigger (TRGI) clock the counter.
  * @retval None
  */
void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_SLAVE_MODE(TIM_SlaveMode));
 /* Reset the SMS Bits */
  TIMx->SMCR &= (uint16_t)~((uint16_t)TIM_SMCR_SMS);
  /* Select the Slave Mode */
  TIMx->SMCR |= TIM_SlaveMode;
}

/**
  * @brief  Sets or Resets the TIMx Master/Slave Mode.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_MasterSlaveMode: specifies the Timer Master Slave Mode.
  *   This parameter can be one of the following values:
  *     @arg TIM_MasterSlaveMode_Enable: synchronization between the current timer
  *                                      and its slaves (through TRGO).
  *     @arg TIM_MasterSlaveMode_Disable: No action
  * @retval None
  */
void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_MSM_STATE(TIM_MasterSlaveMode));
  /* Reset the MSM Bit */
  TIMx->SMCR &= (uint16_t)~((uint16_t)TIM_SMCR_MSM);
  
  /* Set or Reset the MSM Bit */
  TIMx->SMCR |= TIM_MasterSlaveMode;
}

/**
  * @brief  Sets the TIMx Counter Register value
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  Counter: specifies the Counter register new value.
  * @retval None
  */
void TIM_SetCounter(TIM_TypeDef* TIMx, uint16_t Counter)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  /* Set the Counter Register value */
  TIMx->CNT = Counter;
}

/**
  * @brief  Sets the TIMx Autoreload Register value
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  Autoreload: specifies the Autoreload register new value.
  * @retval None
  */
void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint16_t Autoreload)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  /* Set the Autoreload Register value */
  TIMx->ARR = Autoreload;
}

/**
  * @brief  Sets the TIMx Capture Compare1 Register value
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  Compare1: specifies the Capture Compare1 register new value.
  * @retval None
  */
void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  /* Set the Capture Compare1 Register value */
  TIMx->CCR1 = Compare1;
}

/**
  * @brief  Sets the TIMx Capture Compare2 Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  Compare2: specifies the Capture Compare2 register new value.
  * @retval None
  */
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  /* Set the Capture Compare2 Register value */
  TIMx->CCR2 = Compare2;
}

/**
  * @brief  Sets the TIMx Capture Compare3 Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  Compare3: specifies the Capture Compare3 register new value.
  * @retval None
  */
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  /* Set the Capture Compare3 Register value */
  TIMx->CCR3 = Compare3;
}

/**
  * @brief  Sets the TIMx Capture Compare4 Register value
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  Compare4: specifies the Capture Compare4 register new value.
  * @retval None
  */
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  /* Set the Capture Compare4 Register value */
  TIMx->CCR4 = Compare4;
}

/**
  * @brief  Sets the TIMx Input Capture 1 prescaler.
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_ICPSC: specifies the Input Capture1 prescaler new value.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPSC_DIV1: no prescaler
  *     @arg TIM_ICPSC_DIV2: capture is done once every 2 events
  *     @arg TIM_ICPSC_DIV4: capture is done once every 4 events
  *     @arg TIM_ICPSC_DIV8: capture is done once every 8 events
  * @retval None
  */
void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
  /* Reset the IC1PSC Bits */
  TIMx->CCMR1 &= (uint16_t)~((uint16_t)TIM_CCMR1_IC1PSC);
  /* Set the IC1PSC value */
  TIMx->CCMR1 |= TIM_ICPSC;
}

/**
  * @brief  Sets the TIMx Input Capture 2 prescaler.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_ICPSC: specifies the Input Capture2 prescaler new value.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPSC_DIV1: no prescaler
  *     @arg TIM_ICPSC_DIV2: capture is done once every 2 events
  *     @arg TIM_ICPSC_DIV4: capture is done once every 4 events
  *     @arg TIM_ICPSC_DIV8: capture is done once every 8 events
  * @retval None
  */
void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
  /* Reset the IC2PSC Bits */
  TIMx->CCMR1 &= (uint16_t)~((uint16_t)TIM_CCMR1_IC2PSC);
  /* Set the IC2PSC value */
  TIMx->CCMR1 |= (uint16_t)(TIM_ICPSC << 8);
}

/**
  * @brief  Sets the TIMx Input Capture 3 prescaler.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ICPSC: specifies the Input Capture3 prescaler new value.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPSC_DIV1: no prescaler
  *     @arg TIM_ICPSC_DIV2: capture is done once every 2 events
  *     @arg TIM_ICPSC_DIV4: capture is done once every 4 events
  *     @arg TIM_ICPSC_DIV8: capture is done once every 8 events
  * @retval None
  */
void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
  /* Reset the IC3PSC Bits */
  TIMx->CCMR2 &= (uint16_t)~((uint16_t)TIM_CCMR2_IC3PSC);
  /* Set the IC3PSC value */
  TIMx->CCMR2 |= TIM_ICPSC;
}

/**
  * @brief  Sets the TIMx Input Capture 4 prescaler.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ICPSC: specifies the Input Capture4 prescaler new value.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPSC_DIV1: no prescaler
  *     @arg TIM_ICPSC_DIV2: capture is done once every 2 events
  *     @arg TIM_ICPSC_DIV4: capture is done once every 4 events
  *     @arg TIM_ICPSC_DIV8: capture is done once every 8 events
  * @retval None
  */
void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
{  
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
  /* Reset the IC4PSC Bits */
  TIMx->CCMR2 &= (uint16_t)~((uint16_t)TIM_CCMR2_IC4PSC);
  /* Set the IC4PSC value */
  TIMx->CCMR2 |= (uint16_t)(TIM_ICPSC << 8);
}

/**
  * @brief  Sets the TIMx Clock Division value.
  * @param  TIMx: where x can be  1 to 17 except 6 and 7 to select 
  *   the TIM peripheral.
  * @param  TIM_CKD: specifies the clock division value.
  *   This parameter can be one of the following value:
  *     @arg TIM_CKD_DIV1: TDTS = Tck_tim
  *     @arg TIM_CKD_DIV2: TDTS = 2*Tck_tim
  *     @arg TIM_CKD_DIV4: TDTS = 4*Tck_tim
  * @retval None
  */
void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  assert_param(IS_TIM_CKD_DIV(TIM_CKD));
  /* Reset the CKD Bits */
  TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_CKD);
  /* Set the CKD value */
  TIMx->CR1 |= TIM_CKD;
}

/**
  * @brief  Gets the TIMx Input Capture 1 value.
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @retval Capture Compare 1 Register value.
  */
uint16_t TIM_GetCapture1(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST8_PERIPH(TIMx));
  /* Get the Capture 1 Register value */
  return TIMx->CCR1;
}

/**
  * @brief  Gets the TIMx Input Capture 2 value.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @retval Capture Compare 2 Register value.
  */
uint16_t TIM_GetCapture2(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
  /* Get the Capture 2 Register value */
  return TIMx->CCR2;
}

/**
  * @brief  Gets the TIMx Input Capture 3 value.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @retval Capture Compare 3 Register value.
  */
uint16_t TIM_GetCapture3(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
  /* Get the Capture 3 Register value */
  return TIMx->CCR3;
}

/**
  * @brief  Gets the TIMx Input Capture 4 value.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @retval Capture Compare 4 Register value.
  */
uint16_t TIM_GetCapture4(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
  /* Get the Capture 4 Register value */
  return TIMx->CCR4;
}

/**
  * @brief  Gets the TIMx Counter value.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @retval Counter Register value.
  */
uint16_t TIM_GetCounter(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  /* Get the Counter Register value */
  return TIMx->CNT;
}

/**
  * @brief  Gets the TIMx Prescaler value.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @retval Prescaler Register value.
  */
uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  /* Get the Prescaler Register value */
  return TIMx->PSC;
}

/**
  * @brief  Checks whether the specified TIM flag is set or not.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  TIM_FLAG: specifies the flag to check.
  *   This parameter can be one of the following values:
  *     @arg TIM_FLAG_Update: TIM update Flag
  *     @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
  *     @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
  *     @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
  *     @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
  *     @arg TIM_FLAG_COM: TIM Commutation Flag
  *     @arg TIM_FLAG_Trigger: TIM Trigger Flag
  *     @arg TIM_FLAG_Break: TIM Break Flag
  *     @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 overcapture Flag
  *     @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 overcapture Flag
  *     @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 overcapture Flag
  *     @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 overcapture Flag
  * @note
  *   - TIM6 and TIM7 can have only one update flag. 
  *   - TIM9, TIM12 and TIM15 can have only TIM_FLAG_Update, TIM_FLAG_CC1,
  *      TIM_FLAG_CC2 or TIM_FLAG_Trigger. 
  *   - TIM10, TIM11, TIM13, TIM14, TIM16 and TIM17 can have TIM_FLAG_Update or TIM_FLAG_CC1.   
  *   - TIM_FLAG_Break is used only with TIM1, TIM8 and TIM15. 
  *   - TIM_FLAG_COM is used only with TIM1, TIM8, TIM15, TIM16 and TIM17.    
  * @retval The new state of TIM_FLAG (SET or RESET).
  */
FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
{ 
  ITStatus bitstatus = RESET;  
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_GET_FLAG(TIM_FLAG));
  
  if ((TIMx->SR & TIM_FLAG) != (uint16_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  return bitstatus;
}

/**
  * @brief  Clears the TIMx's pending flags.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  TIM_FLAG: specifies the flag bit to clear.
  *   This parameter can be any combination of the following values:
  *     @arg TIM_FLAG_Update: TIM update Flag
  *     @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
  *     @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
  *     @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
  *     @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
  *     @arg TIM_FLAG_COM: TIM Commutation Flag
  *     @arg TIM_FLAG_Trigger: TIM Trigger Flag
  *     @arg TIM_FLAG_Break: TIM Break Flag
  *     @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 overcapture Flag
  *     @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 overcapture Flag
  *     @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 overcapture Flag
  *     @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 overcapture Flag
  * @note
  *   - TIM6 and TIM7 can have only one update flag. 
  *   - TIM9, TIM12 and TIM15 can have only TIM_FLAG_Update, TIM_FLAG_CC1,
  *      TIM_FLAG_CC2 or TIM_FLAG_Trigger. 
  *   - TIM10, TIM11, TIM13, TIM14, TIM16 and TIM17 can have TIM_FLAG_Update or TIM_FLAG_CC1.   
  *   - TIM_FLAG_Break is used only with TIM1, TIM8 and TIM15. 
  *   - TIM_FLAG_COM is used only with TIM1, TIM8, TIM15, TIM16 and TIM17.   
  * @retval None
  */
void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
{  
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_CLEAR_FLAG(TIM_FLAG));
   
  /* Clear the flags */
  TIMx->SR = (uint16_t)~TIM_FLAG;
}

/**
  * @brief  Checks whether the TIM interrupt has occurred or not.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  TIM_IT: specifies the TIM interrupt source to check.
  *   This parameter can be one of the following values:
  *     @arg TIM_IT_Update: TIM update Interrupt source
  *     @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
  *     @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
  *     @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
  *     @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
  *     @arg TIM_IT_COM: TIM Commutation Interrupt source
  *     @arg TIM_IT_Trigger: TIM Trigger Interrupt source
  *     @arg TIM_IT_Break: TIM Break Interrupt source
  * @note
  *   - TIM6 and TIM7 can generate only an update interrupt.
  *   - TIM9, TIM12 and TIM15 can have only TIM_IT_Update, TIM_IT_CC1,
  *      TIM_IT_CC2 or TIM_IT_Trigger. 
  *   - TIM10, TIM11, TIM13, TIM14, TIM16 and TIM17 can have TIM_IT_Update or TIM_IT_CC1.   
  *   - TIM_IT_Break is used only with TIM1, TIM8 and TIM15. 
  *   - TIM_IT_COM is used only with TIM1, TIM8, TIM15, TIM16 and TIM17.  
  * @retval The new state of the TIM_IT(SET or RESET).
  */
ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT)
{
  ITStatus bitstatus = RESET;  
  uint16_t itstatus = 0x0, itenable = 0x0;
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_GET_IT(TIM_IT));
   
  itstatus = TIMx->SR & TIM_IT;
  
  itenable = TIMx->DIER & TIM_IT;
  if ((itstatus != (uint16_t)RESET) && (itenable != (uint16_t)RESET))
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  return bitstatus;
}

/**
  * @brief  Clears the TIMx's interrupt pending bits.
  * @param  TIMx: where x can be 1 to 17 to select the TIM peripheral.
  * @param  TIM_IT: specifies the pending bit to clear.
  *   This parameter can be any combination of the following values:
  *     @arg TIM_IT_Update: TIM1 update Interrupt source
  *     @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
  *     @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
  *     @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
  *     @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
  *     @arg TIM_IT_COM: TIM Commutation Interrupt source
  *     @arg TIM_IT_Trigger: TIM Trigger Interrupt source
  *     @arg TIM_IT_Break: TIM Break Interrupt source
  * @note
  *   - TIM6 and TIM7 can generate only an update interrupt.
  *   - TIM9, TIM12 and TIM15 can have only TIM_IT_Update, TIM_IT_CC1,
  *      TIM_IT_CC2 or TIM_IT_Trigger. 
  *   - TIM10, TIM11, TIM13, TIM14, TIM16 and TIM17 can have TIM_IT_Update or TIM_IT_CC1.   
  *   - TIM_IT_Break is used only with TIM1, TIM8 and TIM15. 
  *   - TIM_IT_COM is used only with TIM1, TIM8, TIM15, TIM16 and TIM17.    
  * @retval None
  */
void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT)
{
  /* Check the parameters */
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
  assert_param(IS_TIM_IT(TIM_IT));
  /* Clear the IT pending Bit */
  TIMx->SR = (uint16_t)~TIM_IT;
}

/**
  * @brief  Configure the TI1 as Input.
  * @param  TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
  * @param  TIM_ICPolarity : The Input Polarity.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPolarity_Rising
  *     @arg TIM_ICPolarity_Falling
  * @param  TIM_ICSelection: specifies the input to be used.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1.
  *     @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2.
  *     @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC.
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
  *   This parameter must be a value between 0x00 and 0x0F.
  * @retval None
  */
static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter)
{
  uint16_t tmpccmr1 = 0, tmpccer = 0;
  /* Disable the Channel 1: Reset the CC1E Bit */
  TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC1E);
  tmpccmr1 = TIMx->CCMR1;
  tmpccer = TIMx->CCER;
  /* Select the Input and set the filter */
  tmpccmr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR1_CC1S)) & ((uint16_t)~((uint16_t)TIM_CCMR1_IC1F)));
  tmpccmr1 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
  
  if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM2) || (TIMx == TIM3) ||
     (TIMx == TIM4) ||(TIMx == TIM5))
  {
    /* Select the Polarity and set the CC1E Bit */
    tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC1P));
    tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC1E);
  }
  else
  {
    /* Select the Polarity and set the CC1E Bit */
    tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC1P | TIM_CCER_CC1NP));
    tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC1E);
  }

  /* Write to TIMx CCMR1 and CCER registers */
  TIMx->CCMR1 = tmpccmr1;
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configure the TI2 as Input.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
  * @param  TIM_ICPolarity : The Input Polarity.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPolarity_Rising
  *     @arg TIM_ICPolarity_Falling
  * @param  TIM_ICSelection: specifies the input to be used.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2.
  *     @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1.
  *     @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC.
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
  *   This parameter must be a value between 0x00 and 0x0F.
  * @retval None
  */
static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter)
{
  uint16_t tmpccmr1 = 0, tmpccer = 0, tmp = 0;
  /* Disable the Channel 2: Reset the CC2E Bit */
  TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC2E);
  tmpccmr1 = TIMx->CCMR1;
  tmpccer = TIMx->CCER;
  tmp = (uint16_t)(TIM_ICPolarity << 4);
  /* Select the Input and set the filter */
  tmpccmr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR1_CC2S)) & ((uint16_t)~((uint16_t)TIM_CCMR1_IC2F)));
  tmpccmr1 |= (uint16_t)(TIM_ICFilter << 12);
  tmpccmr1 |= (uint16_t)(TIM_ICSelection << 8);
  
  if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM2) || (TIMx == TIM3) ||
     (TIMx == TIM4) ||(TIMx == TIM5))
  {
    /* Select the Polarity and set the CC2E Bit */
    tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC2P));
    tmpccer |=  (uint16_t)(tmp | (uint16_t)TIM_CCER_CC2E);
  }
  else
  {
    /* Select the Polarity and set the CC2E Bit */
    tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC2P | TIM_CCER_CC2NP));
    tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC2E);
  }
  
  /* Write to TIMx CCMR1 and CCER registers */
  TIMx->CCMR1 = tmpccmr1 ;
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configure the TI3 as Input.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ICPolarity : The Input Polarity.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPolarity_Rising
  *     @arg TIM_ICPolarity_Falling
  * @param  TIM_ICSelection: specifies the input to be used.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3.
  *     @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4.
  *     @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC.
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
  *   This parameter must be a value between 0x00 and 0x0F.
  * @retval None
  */
static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter)
{
  uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
  /* Disable the Channel 3: Reset the CC3E Bit */
  TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC3E);
  tmpccmr2 = TIMx->CCMR2;
  tmpccer = TIMx->CCER;
  tmp = (uint16_t)(TIM_ICPolarity << 8);
  /* Select the Input and set the filter */
  tmpccmr2 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR2_CC3S)) & ((uint16_t)~((uint16_t)TIM_CCMR2_IC3F)));
  tmpccmr2 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
    
  if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM2) || (TIMx == TIM3) ||
     (TIMx == TIM4) ||(TIMx == TIM5))
  {
    /* Select the Polarity and set the CC3E Bit */
    tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC3P));
    tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC3E);
  }
  else
  {
    /* Select the Polarity and set the CC3E Bit */
    tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC3P | TIM_CCER_CC3NP));
    tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC3E);
  }
  
  /* Write to TIMx CCMR2 and CCER registers */
  TIMx->CCMR2 = tmpccmr2;
  TIMx->CCER = tmpccer;
}

/**
  * @brief  Configure the TI4 as Input.
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
  * @param  TIM_ICPolarity : The Input Polarity.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICPolarity_Rising
  *     @arg TIM_ICPolarity_Falling
  * @param  TIM_ICSelection: specifies the input to be used.
  *   This parameter can be one of the following values:
  *     @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4.
  *     @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3.
  *     @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC.
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
  *   This parameter must be a value between 0x00 and 0x0F.
  * @retval None
  */
static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
                       uint16_t TIM_ICFilter)
{
  uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;

   /* Disable the Channel 4: Reset the CC4E Bit */
  TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC4E);
  tmpccmr2 = TIMx->CCMR2;
  tmpccer = TIMx->CCER;
  tmp = (uint16_t)(TIM_ICPolarity << 12);
  /* Select the Input and set the filter */
  tmpccmr2 &= (uint16_t)((uint16_t)(~(uint16_t)TIM_CCMR2_CC4S) & ((uint16_t)~((uint16_t)TIM_CCMR2_IC4F)));
  tmpccmr2 |= (uint16_t)(TIM_ICSelection << 8);
  tmpccmr2 |= (uint16_t)(TIM_ICFilter << 12);
  
  if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM2) || (TIMx == TIM3) ||
     (TIMx == TIM4) ||(TIMx == TIM5))
  {
    /* Select the Polarity and set the CC4E Bit */
    tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC4P));
    tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC4E);
  }
  else
  {
    /* Select the Polarity and set the CC4E Bit */
    tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC3P | TIM_CCER_CC4NP));
    tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC4E);
  }
  /* Write to TIMx CCMR2 and CCER registers */
  TIMx->CCMR2 = tmpccmr2;
  TIMx->CCER = tmpccer;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/