ADC Niose test Connect four analog signals to your MBED. and then run the Windows app. The four traces are displayed on an oscilloscope like display. I have used a USB HID DEVICE link, so connections to D+, D- are required. The MBED code is otherwise quite basic, So you can modify it to your own test needs. Additionaly, there is a 16 bit count value, in my MBED code Mainly to test if MSB & LSB are correct.

Dependencies:   mbed

HID/USBBusInterface_LPC11U.cpp

Committer:
ceri
Date:
2011-11-19
Revision:
0:cbe01b678bd4

File content as of revision 0:cbe01b678bd4:

// USBBusInterface_LPC11U.c
// USB Bus Interface for NXP LPC11Uxx
// Copyright (c) 2011 ARM Limited. All rights reserved.

// Reference:
// NXP UM10462 LPC11U1x User manual Rev. 1 � 14 April 2011

#ifdef TARGET_LPC11U24

#include "USBBusInterface.h"

USBHAL * USBHAL::instance;


// Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
#define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)

// Convert physical endpoint number to register bit
#define EP(endpoint) (1UL<<endpoint)

// Convert physical to logical
#define PHY_TO_LOG(endpoint)    ((endpoint)>>1)

// Get endpoint direction
#define IN_EP(endpoint)     ((endpoint) & 1U ? true : false)
#define OUT_EP(endpoint)    ((endpoint) & 1U ? false : true)

// USB RAM
#define USB_RAM_START (0x20004000)
#define USB_RAM_SIZE  (0x00000800)

// SYSAHBCLKCTRL
#define CLK_USB     (1UL<<14)
#define CLK_USBRAM  (1UL<<27)

// USB Information register
#define FRAME_NR(a)     ((a) & 0x7ff)   // Frame number

// USB Device Command/Status register
#define DEV_ADDR_MASK   (0x7f)          // Device address
#define DEV_ADDR(a)     ((a) & DEV_ADDR_MASK)
#define DEV_EN          (1UL<<7)        // Device enable
#define SETUP           (1UL<<8)        // SETUP token received
#define PLL_ON          (1UL<<9)        // PLL enabled in suspend
#define DCON            (1UL<<16)       // Device status - connect
#define DSUS            (1UL<<17)       // Device status - suspend
#define DCON_C          (1UL<<24)       // Connect change
#define DSUS_C          (1UL<<25)       // Suspend change
#define DRES_C          (1UL<<26)       // Reset change
#define VBUSDEBOUNCED   (1UL<<28)       // Vbus detected

// Endpoint Command/Status list
#define CMDSTS_A                 (1UL<<31)          // Active
#define CMDSTS_D                 (1UL<<30)          // Disable
#define CMDSTS_S                 (1UL<<29)          // Stall
#define CMDSTS_TR                (1UL<<28)          // Toggle Reset
#define CMDSTS_RF                (1UL<<27)          // Rate Feedback mode
#define CMDSTS_TV                (1UL<<27)          // Toggle Value
#define CMDSTS_T                 (1UL<<26)          // Endpoint Type
#define CMDSTS_NBYTES(n)         (((n)&0x3ff)<<16)  // Number of bytes
#define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff)  // Buffer start address

#define BYTES_REMAINING(s)       (((s)>>16)&0x3ff)  // Bytes remaining after transfer

// USB Non-endpoint interrupt sources
#define FRAME_INT   (1UL<<30)
#define DEV_INT     (1UL<<31)

static int epComplete = 0;

// One entry for a double-buffered logical endpoint in the endpoint
// command/status list. Endpoint 0 is single buffered, out[1] is used
// for the SETUP packet and in[1] is not used
typedef __packed struct {
	uint32_t out[2];
	uint32_t in[2];
} EP_COMMAND_STATUS;

typedef __packed struct {
	uint8_t out[MAX_PACKET_SIZE_EP0];
	uint8_t in[MAX_PACKET_SIZE_EP0];
	uint8_t setup[SETUP_PACKET_SIZE];
} CONTROL_TRANSFER;

typedef __packed struct {
	uint32_t    maxPacket;
	uint32_t    buffer[2];
	uint32_t    options;
} EP_STATE;

static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];

// Pointer to the endpoint command/status list
static EP_COMMAND_STATUS *ep = NULL;

// Pointer to endpoint 0 data (IN/OUT and SETUP)
static CONTROL_TRANSFER *ct = NULL;

// Shadow DEVCMDSTAT register to avoid accidentally clearing flags or
// initiating a remote wakeup event.
static volatile uint32_t devCmdStat;

// Pointers used to allocate USB RAM
static uint32_t usbRamPtr = USB_RAM_START;
static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here

#define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m))

void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size);
void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) {
	if (size > 0) {
		do {
			*dst++ = *src++;
		} while (--size > 0);
	}
}


USBHAL::USBHAL(void) {
	NVIC_DisableIRQ(USB_IRQn);

	// USB_VBUS input, Pull down, Hysteresis enabled
	//LPC_IOCON->PIO0_3 = 0x00000029;
	// nUSB_CONNECT output
	LPC_IOCON->PIO0_6 = 0x00000001;

	// Enable clocks (USB registers, USB RAM)
	LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;

	// Ensure device disconnected (DCON not set)
	LPC_USB->DEVCMDSTAT = 0;

	// Device must be disconnected for at least 2.5uS
	// to ensure that the USB host sees the device as
	// disconnected if the target CPU is reset.
	wait(0.3);


	// Reserve space in USB RAM for endpoint command/status list
	// Must be 256 byte aligned
	usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
	ep = (EP_COMMAND_STATUS *)usbRamPtr;
	usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
	LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;

	// Reserve space in USB RAM for Endpoint 0
	// Must be 64 byte aligned
	usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
	ct = (CONTROL_TRANSFER *)usbRamPtr;
	usbRamPtr += sizeof(CONTROL_TRANSFER);
	LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;

	// Setup command/status list for EP0
	ep[0].out[0] = 0;
	ep[0].in[0] =  0;
	ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);

	// Route all interrupts to IRQ, some can be routed to
	// USB_FIQ if you wish.
	LPC_USB->INTROUTING = 0;

	// Set device address 0, enable USB device, no remote wakeup
	devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
	LPC_USB->DEVCMDSTAT = devCmdStat;

	// Enable interrupts for device events and EP0
	LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT);
	instance = this;
	NVIC_SetVector(USB_IRQn, (uint32_t)&_usbisr);
	NVIC_EnableIRQ(USB_IRQn);
}

USBHAL::~USBHAL(void) {
	// Ensure device disconnected (DCON not set)
	LPC_USB->DEVCMDSTAT = 0;

	// Disable USB interrupts
	NVIC_DisableIRQ(USB_IRQn);
}

void USBHAL::connect(void) {
	devCmdStat |= DCON;
	LPC_USB->DEVCMDSTAT = devCmdStat;
}

void USBHAL::disconnect(void) {
	devCmdStat &= ~DCON;
	LPC_USB->DEVCMDSTAT = devCmdStat;
}

void USBHAL::configureDevice(void) {
}

void USBHAL::unconfigureDevice(void) {
}

void USBHAL::EP0setup(uint8_t *buffer) {
	// Copy setup packet data
	USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
}

void USBHAL::EP0read(void) {
	// Start an endpoint 0 read

	// The USB ISR will call USBDevice_EP0out() when a packet has been read,
	// the USBDevice layer then calls USBBusInterface_EP0getReadResult() to
	// read the data.

	ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
			| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
}

uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
	// Complete an endpoint 0 read
	uint32_t bytesRead;

	// Find how many bytes were read
	bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);

	// Copy data
	USBMemCopy(buffer, ct->out, bytesRead);
	return bytesRead;
}

void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
	// Start and endpoint 0 write

	// The USB ISR will call USBDevice_EP0in() when the data has
	// been written, the USBDevice layer then calls
	// USBBusInterface_EP0getWriteResult() to complete the transaction.

	// Copy data
	USBMemCopy(ct->in, buffer, size);

	// Start transfer
	ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
			| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
}


EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
	ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \
			| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
	return EP_PENDING;
}

EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) {
	if (!(epComplete & EP(endpoint)))
		return EP_PENDING;
	else {
		epComplete &= ~EP(endpoint);
		// Find how many bytes were read
		*bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[0]));
		// Copy data
		USBMemCopy(data, ct->out, *bytesRead);
		return EP_COMPLETED;
	}
}

void USBHAL::EP0getWriteResult(void) {
	// Complete an endpoint 0 write

	// Nothing required for this target
	return;
}

void USBHAL::EP0stall(void) {
	ep[0].in[0] = CMDSTS_S;
	ep[0].out[0] = CMDSTS_S;
}

void USBHAL::setAddress(uint8_t address) {
	devCmdStat &= ~DEV_ADDR_MASK;
	devCmdStat |= DEV_ADDR(address);
	LPC_USB->DEVCMDSTAT = devCmdStat;
}

EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
	uint32_t flags = 0;
	uint32_t bf;

	// Validate parameters
	if (data == NULL) {
		return EP_INVALID;
	}

	if (endpoint > LAST_PHYSICAL_ENDPOINT) {
		return EP_INVALID;
	}

	if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
		return EP_INVALID;
	}

	if (size > endpointState[endpoint].maxPacket) {
		return EP_INVALID;
	}

	if (LPC_USB->EPBUFCFG & EP(endpoint)) {
		// Double buffered  // TODO: FIX THIS
		if (LPC_USB->EPINUSE & EP(endpoint)) {
			bf = 1;
		} else {
			bf = 0;
		}
	} else {
		// Single buffered
		bf = 0;
	}

	// Check if already active
	if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
		return EP_INVALID;
	}

	// Check if stalled
	if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
		return EP_STALLED;
	}

	// Copy data to USB RAM
	USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);

	// Add options
	if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) {
		flags |= CMDSTS_RF;
	}

	if (endpointState[endpoint].options & ISOCHRONOUS) {
		flags |= CMDSTS_T;
	}

	// Add transfer
	ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
			endpointState[endpoint].buffer[bf]) \
			| CMDSTS_NBYTES(size) | CMDSTS_A | flags;

	return EP_PENDING;
}

EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
	uint32_t bf;
	// Validate parameters

	if (endpoint > LAST_PHYSICAL_ENDPOINT) {
		return EP_INVALID;
	}

	if (OUT_EP(endpoint)) {
		return EP_INVALID;
	}

	if (LPC_USB->EPBUFCFG & EP(endpoint)) {
		// Double buffered     // TODO: FIX THIS
		if (LPC_USB->EPINUSE & EP(endpoint)) {
			bf = 1;
		} else {
			bf = 0;
		}
	} else {
		// Single buffered
		bf = 0;
	}

	// Check if endpoint still active
	if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
		return EP_PENDING;
	}

	// Check if stalled
	if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
		return EP_STALLED;
	}

	return EP_COMPLETED;
}

void USBHAL::stallEndpoint(uint8_t endpoint) {

	// TODO: should this clear active bit?

	if (IN_EP(endpoint)) {
		ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
		ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
	} else {
		ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
		ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
	}
}

void USBHAL::unstallEndpoint(uint8_t endpoint) {
	if (LPC_USB->EPBUFCFG & EP(endpoint)) {
		// Double buffered
		if (IN_EP(endpoint)) {
			ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0
			ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0

			if (LPC_USB->EPINUSE & EP(endpoint)) {
				ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S =0, TR=1, TV = 0
			} else {
				ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S =0, TR=1, TV = 0
			}
		} else {
			ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0
			ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0

			if (LPC_USB->EPINUSE & EP(endpoint)) {
				ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S =0, TR=1, TV = 0
			} else {
				ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S =0, TR=1, TV = 0
			}
		}
	} else {
		// Single buffered
		if (IN_EP(endpoint)) {
			ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S=0, TR=1, TV = 0
		} else {
			ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S=0, TR=1, TV = 0
		}
	}
}

bool USBHAL::getEndpointStallState(unsigned char endpoint) {
	if (IN_EP(endpoint)) {
		if (LPC_USB->EPINUSE & EP(endpoint)) {
			if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) {
				return true;
			}
		} else {
			if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) {
				return true;
			}
		}
	} else {
		if (LPC_USB->EPINUSE & EP(endpoint)) {
			if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) {
				return true;
			}
		} else {
			if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) {
				return true;
			}
		}
	}

	return false;
}

bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) {
	uint32_t tmpEpRamPtr;

	//  Support for double buffered endpoints needs to be fixed/finished in this
	//  software - force single buffered for now.


	options |= SINGLE_BUFFERED; // TODO - FIX THIS

	if (endpoint > LAST_PHYSICAL_ENDPOINT) {
		return false;
	}

	// Not applicable to the control endpoints
	if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
		return false;
	}

	// Allocate buffers in USB RAM
	tmpEpRamPtr = epRamPtr;

	// Must be 64 byte aligned
	tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);

	if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
		// Out of memory
		return false;
	}

	// Allocate first buffer
	endpointState[endpoint].buffer[0] = tmpEpRamPtr;
	tmpEpRamPtr += maxPacket;

	if (!(options & SINGLE_BUFFERED)) {
		// Must be 64 byte aligned
		tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);

		if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
			// Out of memory
			return false;
		}

		// Allocate second buffer
		endpointState[endpoint].buffer[1] = tmpEpRamPtr;
		tmpEpRamPtr += maxPacket;
	}

	// Commit to this USB RAM allocation
	epRamPtr = tmpEpRamPtr;

	// Remaining endpoint state values
	endpointState[endpoint].maxPacket = maxPacket;
	endpointState[endpoint].options = options;

	// Enable double buffering if required
	if (options & SINGLE_BUFFERED) {
		LPC_USB->EPBUFCFG &= ~EP(endpoint);
	} else {
		// Double buffered
		LPC_USB->EPBUFCFG |= EP(endpoint);
	}

	// Enable interrupt for OUT endpoint
	LPC_USB->INTEN |= EP(endpoint);

	// Enable endpoint
	unstallEndpoint(endpoint);
	return true;
}

void USBHAL::remoteWakeup(void) {
	// Clearing DSUS bit initiates a remote wakeup if the
	// device is currently enabled and suspended - otherwise
	// it has no effect.
	LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
}


static void disableEndpoints(void) {
	uint32_t logEp;

	// Ref. Table 158 "When a bus reset is received, software
	// must set the disable bit of all endpoints to 1".

	for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) {
		ep[logEp].out[0] = CMDSTS_D;
		ep[logEp].out[1] = CMDSTS_D;
		ep[logEp].in[0] =  CMDSTS_D;
		ep[logEp].in[1] =  CMDSTS_D;
	}

	// Start of USB RAM for endpoints > 0
	epRamPtr = usbRamPtr;
}



void USBHAL::_usbisr(void)
{
	instance->usbisr();
}


void USBHAL::usbisr(void) {
	// Start of frame
	if (LPC_USB->INTSTAT & FRAME_INT) {
		// Clear SOF interrupt
		LPC_USB->INTSTAT = FRAME_INT;

		// SOF event, read frame number
		SOF(FRAME_NR(LPC_USB->INFO));
	}

	// Device state
	if (LPC_USB->INTSTAT & DEV_INT) {
		LPC_USB->INTSTAT = DEV_INT;

		if (LPC_USB->DEVCMDSTAT & DCON_C) {
			// Connect status changed
			LPC_USB->DEVCMDSTAT = devCmdStat | DCON_C;

			connectStateChanged((LPC_USB->DEVCMDSTAT & DCON) != 0);
		}

		if (LPC_USB->DEVCMDSTAT & DSUS_C) {
			// Suspend status changed
			LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;

			suspendStateChanged((LPC_USB->DEVCMDSTAT & DSUS) != 0);
		}

		if (LPC_USB->DEVCMDSTAT & DRES_C) {
			// Bus reset
			LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;

			// Disable endpoints > 0
			disableEndpoints();

			// Bus reset event
			busReset();
		}
	}

	// Endpoint 0
	if (LPC_USB->INTSTAT & EP(EP0OUT)) {
		// Clear EP0OUT/SETUP interrupt
		LPC_USB->INTSTAT = EP(EP0OUT);

		// Check if SETUP
		if (LPC_USB->DEVCMDSTAT & SETUP) {
			// Clear Active and Stall bits for EP0
			// Documentation does not make it clear if we must use the
			// EPSKIP register to achieve this, Fig. 16 and NXP reference
			// code suggests we can just clear the Active bits - check with
			// NXP to be sure.
			ep[0].in[0] = 0;
			ep[0].out[0] = 0;

			// Clear EP0IN interrupt
			LPC_USB->INTSTAT = EP(EP0IN);

			// Clear SETUP (and INTONNAK_CI/O) in device status register
			LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;

			// EP0 SETUP event (SETUP data received)
			EP0setupCallback();
		} else {
			// EP0OUT ACK event (OUT data received)
			EP0out();
		}
	}

	if (LPC_USB->INTSTAT & EP(EP0IN)) {
		// Clear EP0IN interrupt
		LPC_USB->INTSTAT = EP(EP0IN);

		// EP0IN ACK event (IN data sent)
		EP0in();
	}

	if (LPC_USB->INTSTAT & EP(EP1IN)) {
		// Clear EP1IN interrupt
		LPC_USB->INTSTAT = EP(EP1IN);
		epComplete |= EP(EP1IN);
	}

	if (LPC_USB->INTSTAT & EP(EP1OUT)) {
		// Clear EP1OUT interrupt
		LPC_USB->INTSTAT = EP(EP1OUT);
		epComplete |= EP(EP1OUT);
	}

	if (LPC_USB->INTSTAT & EP(EPBULK_IN)) {
		// Clear EPBULK_OUT interrupt
		LPC_USB->INTSTAT = EP(EPBULK_IN);
		epComplete |= EP(EPBULK_IN);
		if(EPBULK_IN_callback())
			epComplete &= ~EP(EPBULK_IN);
	}

	if (LPC_USB->INTSTAT & EP(EPBULK_OUT)) {
		// Clear EPBULK_OUT interrupt
		LPC_USB->INTSTAT = EP(EPBULK_OUT);
		epComplete |= EP(EPBULK_OUT);
		//Call callback function. If true, clear epComplete
		if(EPBULK_OUT_callback())
			epComplete &= ~EP(EPBULK_OUT);
	}

}

#endif