ADC Niose test Connect four analog signals to your MBED. and then run the Windows app. The four traces are displayed on an oscilloscope like display. I have used a USB HID DEVICE link, so connections to D+, D- are required. The MBED code is otherwise quite basic, So you can modify it to your own test needs. Additionaly, there is a 16 bit count value, in my MBED code Mainly to test if MSB & LSB are correct.

Dependencies:   mbed

Revision:
0:cbe01b678bd4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/HID/USBBusInterface_LPC11U.cpp	Sat Nov 19 22:54:22 2011 +0000
@@ -0,0 +1,660 @@
+// USBBusInterface_LPC11U.c
+// USB Bus Interface for NXP LPC11Uxx
+// Copyright (c) 2011 ARM Limited. All rights reserved.
+
+// Reference:
+// NXP UM10462 LPC11U1x User manual Rev. 1 � 14 April 2011
+
+#ifdef TARGET_LPC11U24
+
+#include "USBBusInterface.h"
+
+USBHAL * USBHAL::instance;
+
+
+// Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
+#define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
+
+// Convert physical endpoint number to register bit
+#define EP(endpoint) (1UL<<endpoint)
+
+// Convert physical to logical
+#define PHY_TO_LOG(endpoint)    ((endpoint)>>1)
+
+// Get endpoint direction
+#define IN_EP(endpoint)     ((endpoint) & 1U ? true : false)
+#define OUT_EP(endpoint)    ((endpoint) & 1U ? false : true)
+
+// USB RAM
+#define USB_RAM_START (0x20004000)
+#define USB_RAM_SIZE  (0x00000800)
+
+// SYSAHBCLKCTRL
+#define CLK_USB     (1UL<<14)
+#define CLK_USBRAM  (1UL<<27)
+
+// USB Information register
+#define FRAME_NR(a)     ((a) & 0x7ff)   // Frame number
+
+// USB Device Command/Status register
+#define DEV_ADDR_MASK   (0x7f)          // Device address
+#define DEV_ADDR(a)     ((a) & DEV_ADDR_MASK)
+#define DEV_EN          (1UL<<7)        // Device enable
+#define SETUP           (1UL<<8)        // SETUP token received
+#define PLL_ON          (1UL<<9)        // PLL enabled in suspend
+#define DCON            (1UL<<16)       // Device status - connect
+#define DSUS            (1UL<<17)       // Device status - suspend
+#define DCON_C          (1UL<<24)       // Connect change
+#define DSUS_C          (1UL<<25)       // Suspend change
+#define DRES_C          (1UL<<26)       // Reset change
+#define VBUSDEBOUNCED   (1UL<<28)       // Vbus detected
+
+// Endpoint Command/Status list
+#define CMDSTS_A                 (1UL<<31)          // Active
+#define CMDSTS_D                 (1UL<<30)          // Disable
+#define CMDSTS_S                 (1UL<<29)          // Stall
+#define CMDSTS_TR                (1UL<<28)          // Toggle Reset
+#define CMDSTS_RF                (1UL<<27)          // Rate Feedback mode
+#define CMDSTS_TV                (1UL<<27)          // Toggle Value
+#define CMDSTS_T                 (1UL<<26)          // Endpoint Type
+#define CMDSTS_NBYTES(n)         (((n)&0x3ff)<<16)  // Number of bytes
+#define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff)  // Buffer start address
+
+#define BYTES_REMAINING(s)       (((s)>>16)&0x3ff)  // Bytes remaining after transfer
+
+// USB Non-endpoint interrupt sources
+#define FRAME_INT   (1UL<<30)
+#define DEV_INT     (1UL<<31)
+
+static int epComplete = 0;
+
+// One entry for a double-buffered logical endpoint in the endpoint
+// command/status list. Endpoint 0 is single buffered, out[1] is used
+// for the SETUP packet and in[1] is not used
+typedef __packed struct {
+	uint32_t out[2];
+	uint32_t in[2];
+} EP_COMMAND_STATUS;
+
+typedef __packed struct {
+	uint8_t out[MAX_PACKET_SIZE_EP0];
+	uint8_t in[MAX_PACKET_SIZE_EP0];
+	uint8_t setup[SETUP_PACKET_SIZE];
+} CONTROL_TRANSFER;
+
+typedef __packed struct {
+	uint32_t    maxPacket;
+	uint32_t    buffer[2];
+	uint32_t    options;
+} EP_STATE;
+
+static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];
+
+// Pointer to the endpoint command/status list
+static EP_COMMAND_STATUS *ep = NULL;
+
+// Pointer to endpoint 0 data (IN/OUT and SETUP)
+static CONTROL_TRANSFER *ct = NULL;
+
+// Shadow DEVCMDSTAT register to avoid accidentally clearing flags or
+// initiating a remote wakeup event.
+static volatile uint32_t devCmdStat;
+
+// Pointers used to allocate USB RAM
+static uint32_t usbRamPtr = USB_RAM_START;
+static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here
+
+#define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m))
+
+void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size);
+void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) {
+	if (size > 0) {
+		do {
+			*dst++ = *src++;
+		} while (--size > 0);
+	}
+}
+
+
+USBHAL::USBHAL(void) {
+	NVIC_DisableIRQ(USB_IRQn);
+
+	// USB_VBUS input, Pull down, Hysteresis enabled
+	//LPC_IOCON->PIO0_3 = 0x00000029;
+	// nUSB_CONNECT output
+	LPC_IOCON->PIO0_6 = 0x00000001;
+
+	// Enable clocks (USB registers, USB RAM)
+	LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;
+
+	// Ensure device disconnected (DCON not set)
+	LPC_USB->DEVCMDSTAT = 0;
+
+	// Device must be disconnected for at least 2.5uS
+	// to ensure that the USB host sees the device as
+	// disconnected if the target CPU is reset.
+	wait(0.3);
+
+
+	// Reserve space in USB RAM for endpoint command/status list
+	// Must be 256 byte aligned
+	usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
+	ep = (EP_COMMAND_STATUS *)usbRamPtr;
+	usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
+	LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;
+
+	// Reserve space in USB RAM for Endpoint 0
+	// Must be 64 byte aligned
+	usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
+	ct = (CONTROL_TRANSFER *)usbRamPtr;
+	usbRamPtr += sizeof(CONTROL_TRANSFER);
+	LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;
+
+	// Setup command/status list for EP0
+	ep[0].out[0] = 0;
+	ep[0].in[0] =  0;
+	ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);
+
+	// Route all interrupts to IRQ, some can be routed to
+	// USB_FIQ if you wish.
+	LPC_USB->INTROUTING = 0;
+
+	// Set device address 0, enable USB device, no remote wakeup
+	devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
+	LPC_USB->DEVCMDSTAT = devCmdStat;
+
+	// Enable interrupts for device events and EP0
+	LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT);
+	instance = this;
+	NVIC_SetVector(USB_IRQn, (uint32_t)&_usbisr);
+	NVIC_EnableIRQ(USB_IRQn);
+}
+
+USBHAL::~USBHAL(void) {
+	// Ensure device disconnected (DCON not set)
+	LPC_USB->DEVCMDSTAT = 0;
+
+	// Disable USB interrupts
+	NVIC_DisableIRQ(USB_IRQn);
+}
+
+void USBHAL::connect(void) {
+	devCmdStat |= DCON;
+	LPC_USB->DEVCMDSTAT = devCmdStat;
+}
+
+void USBHAL::disconnect(void) {
+	devCmdStat &= ~DCON;
+	LPC_USB->DEVCMDSTAT = devCmdStat;
+}
+
+void USBHAL::configureDevice(void) {
+}
+
+void USBHAL::unconfigureDevice(void) {
+}
+
+void USBHAL::EP0setup(uint8_t *buffer) {
+	// Copy setup packet data
+	USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
+}
+
+void USBHAL::EP0read(void) {
+	// Start an endpoint 0 read
+
+	// The USB ISR will call USBDevice_EP0out() when a packet has been read,
+	// the USBDevice layer then calls USBBusInterface_EP0getReadResult() to
+	// read the data.
+
+	ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
+			| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
+}
+
+uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
+	// Complete an endpoint 0 read
+	uint32_t bytesRead;
+
+	// Find how many bytes were read
+	bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);
+
+	// Copy data
+	USBMemCopy(buffer, ct->out, bytesRead);
+	return bytesRead;
+}
+
+void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
+	// Start and endpoint 0 write
+
+	// The USB ISR will call USBDevice_EP0in() when the data has
+	// been written, the USBDevice layer then calls
+	// USBBusInterface_EP0getWriteResult() to complete the transaction.
+
+	// Copy data
+	USBMemCopy(ct->in, buffer, size);
+
+	// Start transfer
+	ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
+			| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
+}
+
+
+EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
+	ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \
+			| CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
+	return EP_PENDING;
+}
+
+EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) {
+	if (!(epComplete & EP(endpoint)))
+		return EP_PENDING;
+	else {
+		epComplete &= ~EP(endpoint);
+		// Find how many bytes were read
+		*bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[0]));
+		// Copy data
+		USBMemCopy(data, ct->out, *bytesRead);
+		return EP_COMPLETED;
+	}
+}
+
+void USBHAL::EP0getWriteResult(void) {
+	// Complete an endpoint 0 write
+
+	// Nothing required for this target
+	return;
+}
+
+void USBHAL::EP0stall(void) {
+	ep[0].in[0] = CMDSTS_S;
+	ep[0].out[0] = CMDSTS_S;
+}
+
+void USBHAL::setAddress(uint8_t address) {
+	devCmdStat &= ~DEV_ADDR_MASK;
+	devCmdStat |= DEV_ADDR(address);
+	LPC_USB->DEVCMDSTAT = devCmdStat;
+}
+
+EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
+	uint32_t flags = 0;
+	uint32_t bf;
+
+	// Validate parameters
+	if (data == NULL) {
+		return EP_INVALID;
+	}
+
+	if (endpoint > LAST_PHYSICAL_ENDPOINT) {
+		return EP_INVALID;
+	}
+
+	if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
+		return EP_INVALID;
+	}
+
+	if (size > endpointState[endpoint].maxPacket) {
+		return EP_INVALID;
+	}
+
+	if (LPC_USB->EPBUFCFG & EP(endpoint)) {
+		// Double buffered  // TODO: FIX THIS
+		if (LPC_USB->EPINUSE & EP(endpoint)) {
+			bf = 1;
+		} else {
+			bf = 0;
+		}
+	} else {
+		// Single buffered
+		bf = 0;
+	}
+
+	// Check if already active
+	if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
+		return EP_INVALID;
+	}
+
+	// Check if stalled
+	if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
+		return EP_STALLED;
+	}
+
+	// Copy data to USB RAM
+	USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);
+
+	// Add options
+	if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) {
+		flags |= CMDSTS_RF;
+	}
+
+	if (endpointState[endpoint].options & ISOCHRONOUS) {
+		flags |= CMDSTS_T;
+	}
+
+	// Add transfer
+	ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
+			endpointState[endpoint].buffer[bf]) \
+			| CMDSTS_NBYTES(size) | CMDSTS_A | flags;
+
+	return EP_PENDING;
+}
+
+EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
+	uint32_t bf;
+	// Validate parameters
+
+	if (endpoint > LAST_PHYSICAL_ENDPOINT) {
+		return EP_INVALID;
+	}
+
+	if (OUT_EP(endpoint)) {
+		return EP_INVALID;
+	}
+
+	if (LPC_USB->EPBUFCFG & EP(endpoint)) {
+		// Double buffered     // TODO: FIX THIS
+		if (LPC_USB->EPINUSE & EP(endpoint)) {
+			bf = 1;
+		} else {
+			bf = 0;
+		}
+	} else {
+		// Single buffered
+		bf = 0;
+	}
+
+	// Check if endpoint still active
+	if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
+		return EP_PENDING;
+	}
+
+	// Check if stalled
+	if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
+		return EP_STALLED;
+	}
+
+	return EP_COMPLETED;
+}
+
+void USBHAL::stallEndpoint(uint8_t endpoint) {
+
+	// TODO: should this clear active bit?
+
+	if (IN_EP(endpoint)) {
+		ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
+		ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
+	} else {
+		ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
+		ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
+	}
+}
+
+void USBHAL::unstallEndpoint(uint8_t endpoint) {
+	if (LPC_USB->EPBUFCFG & EP(endpoint)) {
+		// Double buffered
+		if (IN_EP(endpoint)) {
+			ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0
+			ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0
+
+			if (LPC_USB->EPINUSE & EP(endpoint)) {
+				ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S =0, TR=1, TV = 0
+			} else {
+				ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S =0, TR=1, TV = 0
+			}
+		} else {
+			ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0
+			ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0
+
+			if (LPC_USB->EPINUSE & EP(endpoint)) {
+				ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S =0, TR=1, TV = 0
+			} else {
+				ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S =0, TR=1, TV = 0
+			}
+		}
+	} else {
+		// Single buffered
+		if (IN_EP(endpoint)) {
+			ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S=0, TR=1, TV = 0
+		} else {
+			ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S=0, TR=1, TV = 0
+		}
+	}
+}
+
+bool USBHAL::getEndpointStallState(unsigned char endpoint) {
+	if (IN_EP(endpoint)) {
+		if (LPC_USB->EPINUSE & EP(endpoint)) {
+			if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) {
+				return true;
+			}
+		} else {
+			if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) {
+				return true;
+			}
+		}
+	} else {
+		if (LPC_USB->EPINUSE & EP(endpoint)) {
+			if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) {
+				return true;
+			}
+		} else {
+			if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) {
+				return true;
+			}
+		}
+	}
+
+	return false;
+}
+
+bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) {
+	uint32_t tmpEpRamPtr;
+
+	//  Support for double buffered endpoints needs to be fixed/finished in this
+	//  software - force single buffered for now.
+
+
+	options |= SINGLE_BUFFERED; // TODO - FIX THIS
+
+	if (endpoint > LAST_PHYSICAL_ENDPOINT) {
+		return false;
+	}
+
+	// Not applicable to the control endpoints
+	if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
+		return false;
+	}
+
+	// Allocate buffers in USB RAM
+	tmpEpRamPtr = epRamPtr;
+
+	// Must be 64 byte aligned
+	tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
+
+	if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
+		// Out of memory
+		return false;
+	}
+
+	// Allocate first buffer
+	endpointState[endpoint].buffer[0] = tmpEpRamPtr;
+	tmpEpRamPtr += maxPacket;
+
+	if (!(options & SINGLE_BUFFERED)) {
+		// Must be 64 byte aligned
+		tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
+
+		if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
+			// Out of memory
+			return false;
+		}
+
+		// Allocate second buffer
+		endpointState[endpoint].buffer[1] = tmpEpRamPtr;
+		tmpEpRamPtr += maxPacket;
+	}
+
+	// Commit to this USB RAM allocation
+	epRamPtr = tmpEpRamPtr;
+
+	// Remaining endpoint state values
+	endpointState[endpoint].maxPacket = maxPacket;
+	endpointState[endpoint].options = options;
+
+	// Enable double buffering if required
+	if (options & SINGLE_BUFFERED) {
+		LPC_USB->EPBUFCFG &= ~EP(endpoint);
+	} else {
+		// Double buffered
+		LPC_USB->EPBUFCFG |= EP(endpoint);
+	}
+
+	// Enable interrupt for OUT endpoint
+	LPC_USB->INTEN |= EP(endpoint);
+
+	// Enable endpoint
+	unstallEndpoint(endpoint);
+	return true;
+}
+
+void USBHAL::remoteWakeup(void) {
+	// Clearing DSUS bit initiates a remote wakeup if the
+	// device is currently enabled and suspended - otherwise
+	// it has no effect.
+	LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
+}
+
+
+static void disableEndpoints(void) {
+	uint32_t logEp;
+
+	// Ref. Table 158 "When a bus reset is received, software
+	// must set the disable bit of all endpoints to 1".
+
+	for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) {
+		ep[logEp].out[0] = CMDSTS_D;
+		ep[logEp].out[1] = CMDSTS_D;
+		ep[logEp].in[0] =  CMDSTS_D;
+		ep[logEp].in[1] =  CMDSTS_D;
+	}
+
+	// Start of USB RAM for endpoints > 0
+	epRamPtr = usbRamPtr;
+}
+
+
+
+void USBHAL::_usbisr(void)
+{
+	instance->usbisr();
+}
+
+
+void USBHAL::usbisr(void) {
+	// Start of frame
+	if (LPC_USB->INTSTAT & FRAME_INT) {
+		// Clear SOF interrupt
+		LPC_USB->INTSTAT = FRAME_INT;
+
+		// SOF event, read frame number
+		SOF(FRAME_NR(LPC_USB->INFO));
+	}
+
+	// Device state
+	if (LPC_USB->INTSTAT & DEV_INT) {
+		LPC_USB->INTSTAT = DEV_INT;
+
+		if (LPC_USB->DEVCMDSTAT & DCON_C) {
+			// Connect status changed
+			LPC_USB->DEVCMDSTAT = devCmdStat | DCON_C;
+
+			connectStateChanged((LPC_USB->DEVCMDSTAT & DCON) != 0);
+		}
+
+		if (LPC_USB->DEVCMDSTAT & DSUS_C) {
+			// Suspend status changed
+			LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;
+
+			suspendStateChanged((LPC_USB->DEVCMDSTAT & DSUS) != 0);
+		}
+
+		if (LPC_USB->DEVCMDSTAT & DRES_C) {
+			// Bus reset
+			LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;
+
+			// Disable endpoints > 0
+			disableEndpoints();
+
+			// Bus reset event
+			busReset();
+		}
+	}
+
+	// Endpoint 0
+	if (LPC_USB->INTSTAT & EP(EP0OUT)) {
+		// Clear EP0OUT/SETUP interrupt
+		LPC_USB->INTSTAT = EP(EP0OUT);
+
+		// Check if SETUP
+		if (LPC_USB->DEVCMDSTAT & SETUP) {
+			// Clear Active and Stall bits for EP0
+			// Documentation does not make it clear if we must use the
+			// EPSKIP register to achieve this, Fig. 16 and NXP reference
+			// code suggests we can just clear the Active bits - check with
+			// NXP to be sure.
+			ep[0].in[0] = 0;
+			ep[0].out[0] = 0;
+
+			// Clear EP0IN interrupt
+			LPC_USB->INTSTAT = EP(EP0IN);
+
+			// Clear SETUP (and INTONNAK_CI/O) in device status register
+			LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;
+
+			// EP0 SETUP event (SETUP data received)
+			EP0setupCallback();
+		} else {
+			// EP0OUT ACK event (OUT data received)
+			EP0out();
+		}
+	}
+
+	if (LPC_USB->INTSTAT & EP(EP0IN)) {
+		// Clear EP0IN interrupt
+		LPC_USB->INTSTAT = EP(EP0IN);
+
+		// EP0IN ACK event (IN data sent)
+		EP0in();
+	}
+
+	if (LPC_USB->INTSTAT & EP(EP1IN)) {
+		// Clear EP1IN interrupt
+		LPC_USB->INTSTAT = EP(EP1IN);
+		epComplete |= EP(EP1IN);
+	}
+
+	if (LPC_USB->INTSTAT & EP(EP1OUT)) {
+		// Clear EP1OUT interrupt
+		LPC_USB->INTSTAT = EP(EP1OUT);
+		epComplete |= EP(EP1OUT);
+	}
+
+	if (LPC_USB->INTSTAT & EP(EPBULK_IN)) {
+		// Clear EPBULK_OUT interrupt
+		LPC_USB->INTSTAT = EP(EPBULK_IN);
+		epComplete |= EP(EPBULK_IN);
+		if(EPBULK_IN_callback())
+			epComplete &= ~EP(EPBULK_IN);
+	}
+
+	if (LPC_USB->INTSTAT & EP(EPBULK_OUT)) {
+		// Clear EPBULK_OUT interrupt
+		LPC_USB->INTSTAT = EP(EPBULK_OUT);
+		epComplete |= EP(EPBULK_OUT);
+		//Call callback function. If true, clear epComplete
+		if(EPBULK_OUT_callback())
+			epComplete &= ~EP(EPBULK_OUT);
+	}
+
+}
+
+#endif