Bug fix release

Dependents:   AntiTheftGPS XbeeReceive XbeeSend Superball_Ball2 ... more

MODSERIAL is an easy to use library that extends Serial to add fully buffered input and output.

The features of MODSERIAL include:-

/media/uploads/mbedofficial/serial_interfaces.png

Connecting up the MODSERIAL module

The starting point for using MODSERIAL is the Mbed's own handbook for Serial library object. MODSERIAL inherits Serial and adds extensions for buffering. So getting started is easy. Follow the Mbed instructions for Serial to get setup. Here's a reproduction of Serial's simple code starter:-

1  #include "mbed.h"
2
3  Serial pc(USBTX, USBRX); // tx, rx
4 
5  int main() {
6      pc.printf("Hello World!");
7      while(1) {
8          pc.putc(pc.getc() + 1);
9      }
10 }

All we need to do to use MODSERIAL is to add a #include and alter one line thus:-

1  #include "mbed.h"
2  #include "MODSERIAL.h"
3  MODSERIAL pc(USBTX, USBRX); // tx, rx
4 
5  int main() {
6      pc.printf("Hello World!");
7      while(1) {
8          pc.putc(pc.getc() + 1);
9      }
10 }

As we can see, all we have done is add the header at line 2 and changed line 3 to specify the use of MODSERIAL in replacement for Serial. The default settings for MODSERIAL are that both the TX and RX buffers are assigned 256 bytes each of storage space. This storage space is acquired from the heap using malloc.

The default buffer assignment can be manipulated in three ways. First is the compile time setting which alters the default parameters used when creating a MODSERIAL object. This is done thus:-

1  #include "mbed.h"
2
3  #define MODSERIAL_DEFAULT_RX_BUFFER_SIZE 512
4  #define MODSERIAL_DEFAULT_TX_BUFFER_SIZE 1024 
5  #include "MODSERIAL.h"
6
7  MODSERIAL pc(USBTX, USBRX); // tx, rx
8  ...

By defining the two #defines before the #include "MODSERIAL.h" alters the defaults MODSERIAL uses to create it's buffers.

The second method is the run-time version. To get TX at 1024 and RX buffer at 512 as above during run-time initialisation, alter the constructor thus:-

1  #include "mbed.h"
2  #include "MODSERIAL.h"
3
4  // Make TX buffer 1024bytes and RX buffer use 512bytes.
5  MODSERIAL pc(USBTX, USBRX, 1024, 512); // tx, rx
6  ...

If you supply only one numeric value, as shown below, both TX and RX will have the same buffer sizes assigned to them:-

1  #include "mbed.h"
2  #include "MODSERIAL.h"
3
4  // Make both TX and RX use a 512byte buffer.
5  MODSERIAL pc(USBTX, USBRX, 512); // tx, rx
6  ...

The third method is reassigning a new buffer while the program is running. This allows the program to grow and shrink either buffer as required. However, there are caveats to do this as will be shown below.

First, expanding the buffer involves increasing the buffer size. This is fairly straight forward and is accomplished thus:-

1  #include "mbed.h"
2  #include "MODSERIAL.h"
3  MODSERIAL pc(USBTX, USBRX); // tx, rx
4 
5  int main() {
6
7      // Increase the TX buffer from the default 256bytes to 1024bytes.
8      if (pc.txBufferSetSize(1024) != MODSERIAL::Ok) {
9         error("Failed to allocate memory for new buffer");
10     }
11
12     pc.printf("Hello World!");
13     while(1) {
14         pc.putc(pc.getc() + 1);
15     }
16 }

As can be seen, growing the buffer is fairly straight forward. However, how it is done should be understood by the user. First, a new buffer allocation is made using malloc. Once acquired the current buffer is checked for contents. If the current buffer is not empty it is copied to the new buffer so the old buffer contents is maintained after resizing. The last step is then to free() the old memory buffer.

The buffer can also be contracted to a smaller length buffer. Here's the code:-

1  #include "mbed.h"
2  #include "MODSERIAL.h"
3  MODSERIAL pc(USBTX, USBRX); // tx, rx
4 
5  int main() {
6      int result;
7
8      // Decrease the TX buffer from the default 256bytes to 32bytes.
9      result = pc.txBufferSetSize(32);
10     if (result != MODSERIAL::Ok) {
11         switch(result) {
12             case MODSERIAL::BufferOversize: 
13                 error("Contents too big to fit into new allocation");
14                 break;
15             case MODSERIAL::NoMemory: 
16                 error("Not enough memory for new allocation");
17                 break;
18         }
19     }
11
12     pc.printf("Hello World!");
13     while(1) {
14         pc.putc(pc.getc() + 1);
15     }
16 }

Since buffer resizing involves the copying over of any existing old buffer contents the possibility exists that the current buffer contains more bytes than will fit into the new requested buffer. In these conditions the user must handle the return value of the resize functions. If the contents are of no concern then calling txBufferFlush() to empty of the contents before resizing.

MODSERIAL Interrupts

Users of Serial will be familar with the fact that you can attach functions or methods to TxIrq or RxIrq. This attachment of callbacks allows users to have Interrupt Service Routines (ISR) for both the TX and RX channel of the Uart. MODSERIAL uses both of these callbacks to maintain it's buffers and so are not available to users. However, MODSERIAL does contain five potential callbacks the user can use. These are:-

  • TxIrq - This callback is used to inform the user's program that a character was transferred from the TX buffer to the Uart's TX THR FIFO.
  • RxIrq - This callback is used to inform the user's program that a character was transferred from the Uart's RX FIFO RBR to the RX buffer.
  • RxOvIrq - This callback is used to inform the user's program that a character in the Uart's RX FIFO RBR failed to transfer to the RX buffer because the RX buffer was full. The failed byte is availble via xxGetLastChar() methods.
  • TxOvIrq - As RX overflow above
  • TxEmpty - This callback is made when the last byte in the TX buffer is transferred to the Uart's TX THR FIFO. It informs the user's program that the TX buffer has become empty. However, it does not mean transmission is complete. See the example1.cpp example for more information.

Delineating "packets"

Many devices send information on RS232 interfaces in distinct "packets". As an example of this is NMEA information sent by many GPS modules. Each NMEA sentence is delineated by a '\n' newline character. Each sentence can be of vary length depending upon the information being sent, however, all are seperated by a '\n' newline. Detecting this if very simple with MODSERIAL. Here's an example:-

#include "mbed.h"
#include "MODSERIAL.h"

// Connect the TX of the GPS module to p10 RX input
MODSERIAL gps(NC, p10);

bool newline_detected = false;

// Called everytime a new character goes into
// the RX buffer. Test that character for \n
// Note, rxGetLastChar() gets the last char that
// we received but it does NOT remove it from
// the RX buffer.
void rxCallback(MODSERIAL_IRQ_INFO *q) {
    MODSERIAL *serial = q->serial;
    if ( serial->rxGetLastChar() == '\n') {
    	newline_detected = true;
    }
}

int main() {
    gps.baud(9600);
    gps.attach(&rxCallback, MODSERIAL::RxIrq);

    // Wait here until we detect the \n going into the buffer.
    while (! newline_detected ) ;    
    
    // When we get here the RX buffer now contains a NMEA sentence.
    // ...

}

Note, the txGetLastChar() and rxGetLastChar() methods only return the last character but they do not remove that character from the associated buffer.

If this is your first time using MODSERIAL or would just like to test it out then see the example.cpp that comes with the library.



Committer:
AjK
Date:
Sun Nov 21 13:58:53 2010 +0000
Revision:
3:0f10f536456e
1.4

Who changed what in which revision?

UserRevisionLine numberNew contents of line
AjK 3:0f10f536456e 1 /*
AjK 3:0f10f536456e 2 Copyright (c) 2010 Andy Kirkham
AjK 3:0f10f536456e 3
AjK 3:0f10f536456e 4 Permission is hereby granted, free of charge, to any person obtaining a copy
AjK 3:0f10f536456e 5 of this software and associated documentation files (the "Software"), to deal
AjK 3:0f10f536456e 6 in the Software without restriction, including without limitation the rights
AjK 3:0f10f536456e 7 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
AjK 3:0f10f536456e 8 copies of the Software, and to permit persons to whom the Software is
AjK 3:0f10f536456e 9 furnished to do so, subject to the following conditions:
AjK 3:0f10f536456e 10
AjK 3:0f10f536456e 11 The above copyright notice and this permission notice shall be included in
AjK 3:0f10f536456e 12 all copies or substantial portions of the Software.
AjK 3:0f10f536456e 13
AjK 3:0f10f536456e 14 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
AjK 3:0f10f536456e 15 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
AjK 3:0f10f536456e 16 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AjK 3:0f10f536456e 17 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
AjK 3:0f10f536456e 18 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
AjK 3:0f10f536456e 19 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
AjK 3:0f10f536456e 20 THE SOFTWARE.
AjK 3:0f10f536456e 21 */
AjK 3:0f10f536456e 22
AjK 3:0f10f536456e 23 #include "MODSERIAL.h"
AjK 3:0f10f536456e 24 #include "MACROS.h"
AjK 3:0f10f536456e 25
AjK 3:0f10f536456e 26 #define DMA_CHANNEL_ENABLE 1
AjK 3:0f10f536456e 27
AjK 3:0f10f536456e 28 #define DMA_CHANNEL_SRC_PERIPHERAL_UART0_TX (8UL << 1)
AjK 3:0f10f536456e 29 #define DMA_CHANNEL_SRC_PERIPHERAL_UART0_RX (9UL << 1)
AjK 3:0f10f536456e 30 #define DMA_CHANNEL_SRC_PERIPHERAL_UART1_TX (10UL << 1)
AjK 3:0f10f536456e 31 #define DMA_CHANNEL_SRC_PERIPHERAL_UART1_RX (11UL << 1)
AjK 3:0f10f536456e 32 #define DMA_CHANNEL_SRC_PERIPHERAL_UART2_TX (12UL << 1)
AjK 3:0f10f536456e 33 #define DMA_CHANNEL_SRC_PERIPHERAL_UART2_RX (13UL << 1)
AjK 3:0f10f536456e 34 #define DMA_CHANNEL_SRC_PERIPHERAL_UART3_TX (14UL << 1)
AjK 3:0f10f536456e 35 #define DMA_CHANNEL_SRC_PERIPHERAL_UART3_RX (15UL << 1)
AjK 3:0f10f536456e 36 #define DMA_CHANNEL_DST_PERIPHERAL_UART0_TX (8UL << 6)
AjK 3:0f10f536456e 37 #define DMA_CHANNEL_DST_PERIPHERAL_UART0_RX (9UL << 6)
AjK 3:0f10f536456e 38 #define DMA_CHANNEL_DST_PERIPHERAL_UART1_TX (10UL << 6)
AjK 3:0f10f536456e 39 #define DMA_CHANNEL_DST_PERIPHERAL_UART1_RX (11UL << 6)
AjK 3:0f10f536456e 40 #define DMA_CHANNEL_DST_PERIPHERAL_UART2_TX (12UL << 6)
AjK 3:0f10f536456e 41 #define DMA_CHANNEL_DST_PERIPHERAL_UART2_RX (13UL << 6)
AjK 3:0f10f536456e 42 #define DMA_CHANNEL_DST_PERIPHERAL_UART3_TX (14UL << 6)
AjK 3:0f10f536456e 43 #define DMA_CHANNEL_DST_PERIPHERAL_UART3_RX (15UL << 6)
AjK 3:0f10f536456e 44
AjK 3:0f10f536456e 45 #define DMA_CHANNEL_SRC_INC (1UL << 26)
AjK 3:0f10f536456e 46 #define DMA_CHANNEL_DST_INC (1UL << 27)
AjK 3:0f10f536456e 47 #define DMA_CHANNEL_TCIE (1UL << 31)
AjK 3:0f10f536456e 48 #define DMA_TRANSFER_TYPE_M2M (0UL << 11)
AjK 3:0f10f536456e 49 #define DMA_TRANSFER_TYPE_M2P (1UL << 11)
AjK 3:0f10f536456e 50 #define DMA_TRANSFER_TYPE_P2M (2UL << 11)
AjK 3:0f10f536456e 51 #define DMA_TRANSFER_TYPE_P2P (3UL << 11)
AjK 3:0f10f536456e 52 #define DMA_MASK_IE (1UL << 14)
AjK 3:0f10f536456e 53 #define DMA_MASK_ITC (1UL << 15)
AjK 3:0f10f536456e 54 #define DMA_LOCK (1UL << 16)
AjK 3:0f10f536456e 55 #define DMA_ACTIVE (1UL << 17)
AjK 3:0f10f536456e 56 #define DMA_HALT (1UL << 18)
AjK 3:0f10f536456e 57
AjK 3:0f10f536456e 58 namespace AjK {
AjK 3:0f10f536456e 59
AjK 3:0f10f536456e 60 extern "C" void isr_dma_core(void);
AjK 3:0f10f536456e 61
AjK 3:0f10f536456e 62 class MODSERIAL *modserial_this[4] = {
AjK 3:0f10f536456e 63 (class MODSERIAL *)NULL,
AjK 3:0f10f536456e 64 (class MODSERIAL *)NULL,
AjK 3:0f10f536456e 65 (class MODSERIAL *)NULL,
AjK 3:0f10f536456e 66 (class MODSERIAL *)NULL };
AjK 3:0f10f536456e 67
AjK 3:0f10f536456e 68 uint32_t old_dma_vector = 0;
AjK 3:0f10f536456e 69 typedef void (*MODSERIALFN)(void);
AjK 3:0f10f536456e 70
AjK 3:0f10f536456e 71
AjK 3:0f10f536456e 72
AjK 3:0f10f536456e 73 int
AjK 3:0f10f536456e 74 MODSERIAL::dmaSend(char *buffer, int length, dmaChannel q)
AjK 3:0f10f536456e 75 {
AjK 3:0f10f536456e 76 LPC_GPDMACH_TypeDef *dma_base = dmaSetup(q);
AjK 3:0f10f536456e 77
AjK 3:0f10f536456e 78 switch( _uidx ) {
AjK 3:0f10f536456e 79 case 0: LPC_UART0->DMAREQSEL &= ~(1UL << 0) & 0xFF; break;
AjK 3:0f10f536456e 80 case 1: LPC_UART0->DMAREQSEL &= ~(1UL << 2) & 0xFF; break;
AjK 3:0f10f536456e 81 case 2: LPC_UART0->DMAREQSEL &= ~(1UL << 4) & 0xFF; break;
AjK 3:0f10f536456e 82 case 3: LPC_UART0->DMAREQSEL &= ~(1UL << 6) & 0xFF; break;
AjK 3:0f10f536456e 83 default: error("No _uidx to request select for DMA UART peripheral destination.");
AjK 3:0f10f536456e 84 }
AjK 3:0f10f536456e 85
AjK 3:0f10f536456e 86 dma_base->DMACCSrcAddr = (uint32_t)buffer;
AjK 3:0f10f536456e 87 dma_base->DMACCDestAddr = (uint32_t)_base + MODSERIAL_THR;
AjK 3:0f10f536456e 88 dma_base->DMACCLLI = 0;
AjK 3:0f10f536456e 89 dma_base->DMACCControl = DMA_CHANNEL_TCIE | DMA_CHANNEL_SRC_INC | (uint32_t)length;
AjK 3:0f10f536456e 90
AjK 3:0f10f536456e 91 uint32_t DestPeripheral = DMA_CHANNEL_DST_PERIPHERAL_UART0_TX;
AjK 3:0f10f536456e 92 switch ( _uidx ) {
AjK 3:0f10f536456e 93 case 0: DestPeripheral = DMA_CHANNEL_DST_PERIPHERAL_UART0_TX; break;
AjK 3:0f10f536456e 94 case 1: DestPeripheral = DMA_CHANNEL_DST_PERIPHERAL_UART1_TX; break;
AjK 3:0f10f536456e 95 case 2: DestPeripheral = DMA_CHANNEL_DST_PERIPHERAL_UART2_TX; break;
AjK 3:0f10f536456e 96 case 3: DestPeripheral = DMA_CHANNEL_DST_PERIPHERAL_UART3_TX; break;
AjK 3:0f10f536456e 97 default: error("No _uidx to identify DMA peripheral destination."); // Redundent.
AjK 3:0f10f536456e 98 }
AjK 3:0f10f536456e 99
AjK 3:0f10f536456e 100 /* Enable SSP0 DMA. */
AjK 3:0f10f536456e 101 //LPC_SSP0->DMACR = 0x3;
AjK 3:0f10f536456e 102
AjK 3:0f10f536456e 103 // Enable Channel
AjK 3:0f10f536456e 104 dma_base->DMACCConfig = DMA_CHANNEL_ENABLE |
AjK 3:0f10f536456e 105 DestPeripheral |
AjK 3:0f10f536456e 106 DMA_TRANSFER_TYPE_M2P |
AjK 3:0f10f536456e 107 DMA_MASK_IE |
AjK 3:0f10f536456e 108 DMA_MASK_ITC;
AjK 3:0f10f536456e 109
AjK 3:0f10f536456e 110 /* Wait until at least one byte has arrived into the RX FIFO
AjK 3:0f10f536456e 111 and then start-up the Channel1 DMA to begin transferring them. */
AjK 3:0f10f536456e 112 // while((LPC_SSP0->SR & (1UL << 2)) == 0);
AjK 3:0f10f536456e 113
AjK 3:0f10f536456e 114 /* Enable Channel1 */
AjK 3:0f10f536456e 115 /*
AjK 3:0f10f536456e 116 LPC_GPDMACH1->DMACCConfig = DMA_CHANNEL_ENABLE |
AjK 3:0f10f536456e 117 DMA_CHANNEL_SRC_PERIPHERAL_SSP0_RX |
AjK 3:0f10f536456e 118 DMA_TRANSFER_TYPE_P2M |
AjK 3:0f10f536456e 119 DMA_MASK_IE |
AjK 3:0f10f536456e 120 DMA_MASK_ITC;
AjK 3:0f10f536456e 121 */
AjK 3:0f10f536456e 122
AjK 3:0f10f536456e 123 /* SSP0 CS line and "page_read_in_progress" flag are now
AjK 3:0f10f536456e 124 under DMA/SSP0 interrupt control. See the DMA ISR handlers
AjK 3:0f10f536456e 125 and SSP0 ISR handlers for more information. */
AjK 3:0f10f536456e 126
AjK 3:0f10f536456e 127 return 1;
AjK 3:0f10f536456e 128 }
AjK 3:0f10f536456e 129
AjK 3:0f10f536456e 130 void
AjK 3:0f10f536456e 131 MODSERIAL::isr_tx_dma(void)
AjK 3:0f10f536456e 132 {
AjK 3:0f10f536456e 133
AjK 3:0f10f536456e 134 }
AjK 3:0f10f536456e 135
AjK 3:0f10f536456e 136 void
AjK 3:0f10f536456e 137 MODSERIAL::isr_rx_dma(void)
AjK 3:0f10f536456e 138 {
AjK 3:0f10f536456e 139
AjK 3:0f10f536456e 140 }
AjK 3:0f10f536456e 141
AjK 3:0f10f536456e 142 LPC_GPDMACH_TypeDef *
AjK 3:0f10f536456e 143 MODSERIAL::dmaSetup(dmaChannel q)
AjK 3:0f10f536456e 144 {
AjK 3:0f10f536456e 145 if (LPC_SC->PCONP & (1UL << 29) == 0 ) {
AjK 3:0f10f536456e 146 LPC_SC->PCONP |= (1UL << 29);
AjK 3:0f10f536456e 147 LPC_GPDMA->DMACConfig = 1;
AjK 3:0f10f536456e 148 }
AjK 3:0f10f536456e 149
AjK 3:0f10f536456e 150 if ( old_dma_vector == NULL ) old_dma_vector = NVIC_GetVector(DMA_IRQn);
AjK 3:0f10f536456e 151 NVIC_SetVector(DMA_IRQn, (uint32_t)isr_dma_core);
AjK 3:0f10f536456e 152 NVIC_EnableIRQ(DMA_IRQn);
AjK 3:0f10f536456e 153
AjK 3:0f10f536456e 154 modserial_this[_uidx] = this;
AjK 3:0f10f536456e 155
AjK 3:0f10f536456e 156 LPC_GPDMA->DMACIntTCClear = (1UL << (int)dmaInUse);
AjK 3:0f10f536456e 157
AjK 3:0f10f536456e 158 LPC_GPDMACH_TypeDef *dma_base = dmaSelectChannel( q );
AjK 3:0f10f536456e 159 return dma_base;
AjK 3:0f10f536456e 160 }
AjK 3:0f10f536456e 161
AjK 3:0f10f536456e 162 void
AjK 3:0f10f536456e 163 MODSERIAL::this_reset(void)
AjK 3:0f10f536456e 164 {
AjK 3:0f10f536456e 165 modserial_this[_uidx] = (class MODSERIAL *)NULL;
AjK 3:0f10f536456e 166 }
AjK 3:0f10f536456e 167
AjK 3:0f10f536456e 168 extern "C" void isr_dma_core(void)
AjK 3:0f10f536456e 169 {
AjK 3:0f10f536456e 170 for (int i = 0; i < 4; i++) {
AjK 3:0f10f536456e 171 if (modserial_this[i] != (class MODSERIAL *)NULL) {
AjK 3:0f10f536456e 172 if (modserial_this[i]->dmaInUse[MODSERIAL::RxIrq] != MODSERIAL::NotInUse) {
AjK 3:0f10f536456e 173 modserial_this[i]->isr_rx_dma();
AjK 3:0f10f536456e 174 }
AjK 3:0f10f536456e 175 if (modserial_this[i]->dmaInUse[MODSERIAL::TxIrq] != MODSERIAL::NotInUse) {
AjK 3:0f10f536456e 176 modserial_this[i]->isr_tx_dma();
AjK 3:0f10f536456e 177 }
AjK 3:0f10f536456e 178 }
AjK 3:0f10f536456e 179 }
AjK 3:0f10f536456e 180 if (old_dma_vector) {
AjK 3:0f10f536456e 181 ((MODSERIALFN)old_dma_vector)();
AjK 3:0f10f536456e 182 }
AjK 3:0f10f536456e 183 }
AjK 3:0f10f536456e 184
AjK 3:0f10f536456e 185 }; // namespace AjK ends