CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

Committer:
emilmont
Date:
Thu May 30 17:10:11 2013 +0100
Revision:
2:da51fb522205
Parent:
1:fdd22bb7aa52
Child:
3:7a284390b0ce
Keep "cmsis-dsp" module in synch with its source

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
emilmont 1:fdd22bb7aa52 2 * Copyright (C) 2010 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
emilmont 1:fdd22bb7aa52 4 * $Date: 15. February 2012
emilmont 2:da51fb522205 5 * $Revision: V1.1.0
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_correlate_q31.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: Correlation of Q31 sequences.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
emilmont 1:fdd22bb7aa52 14 * Version 1.1.0 2012/02/15
emilmont 1:fdd22bb7aa52 15 * Updated with more optimizations, bug fixes and minor API changes.
emilmont 1:fdd22bb7aa52 16 *
emilmont 1:fdd22bb7aa52 17 * Version 1.0.11 2011/10/18
emilmont 1:fdd22bb7aa52 18 * Bug Fix in conv, correlation, partial convolution.
emilmont 1:fdd22bb7aa52 19 *
emilmont 1:fdd22bb7aa52 20 * Version 1.0.10 2011/7/15
emilmont 1:fdd22bb7aa52 21 * Big Endian support added and Merged M0 and M3/M4 Source code.
emilmont 1:fdd22bb7aa52 22 *
emilmont 1:fdd22bb7aa52 23 * Version 1.0.3 2010/11/29
emilmont 1:fdd22bb7aa52 24 * Re-organized the CMSIS folders and updated documentation.
emilmont 1:fdd22bb7aa52 25 *
emilmont 1:fdd22bb7aa52 26 * Version 1.0.2 2010/11/11
emilmont 1:fdd22bb7aa52 27 * Documentation updated.
emilmont 1:fdd22bb7aa52 28 *
emilmont 1:fdd22bb7aa52 29 * Version 1.0.1 2010/10/05
emilmont 1:fdd22bb7aa52 30 * Production release and review comments incorporated.
emilmont 1:fdd22bb7aa52 31 *
emilmont 1:fdd22bb7aa52 32 * Version 1.0.0 2010/09/20
emilmont 1:fdd22bb7aa52 33 * Production release and review comments incorporated
emilmont 1:fdd22bb7aa52 34 *
emilmont 1:fdd22bb7aa52 35 * Version 0.0.7 2010/06/10
emilmont 1:fdd22bb7aa52 36 * Misra-C changes done
emilmont 1:fdd22bb7aa52 37 *
emilmont 1:fdd22bb7aa52 38 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 39
emilmont 1:fdd22bb7aa52 40 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 41
emilmont 1:fdd22bb7aa52 42 /**
emilmont 1:fdd22bb7aa52 43 * @ingroup groupFilters
emilmont 1:fdd22bb7aa52 44 */
emilmont 1:fdd22bb7aa52 45
emilmont 1:fdd22bb7aa52 46 /**
emilmont 1:fdd22bb7aa52 47 * @addtogroup Corr
emilmont 1:fdd22bb7aa52 48 * @{
emilmont 1:fdd22bb7aa52 49 */
emilmont 1:fdd22bb7aa52 50
emilmont 1:fdd22bb7aa52 51 /**
emilmont 1:fdd22bb7aa52 52 * @brief Correlation of Q31 sequences.
emilmont 1:fdd22bb7aa52 53 * @param[in] *pSrcA points to the first input sequence.
emilmont 1:fdd22bb7aa52 54 * @param[in] srcALen length of the first input sequence.
emilmont 1:fdd22bb7aa52 55 * @param[in] *pSrcB points to the second input sequence.
emilmont 1:fdd22bb7aa52 56 * @param[in] srcBLen length of the second input sequence.
emilmont 1:fdd22bb7aa52 57 * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
emilmont 1:fdd22bb7aa52 58 * @return none.
emilmont 1:fdd22bb7aa52 59 *
emilmont 1:fdd22bb7aa52 60 * @details
emilmont 1:fdd22bb7aa52 61 * <b>Scaling and Overflow Behavior:</b>
emilmont 1:fdd22bb7aa52 62 *
emilmont 1:fdd22bb7aa52 63 * \par
emilmont 1:fdd22bb7aa52 64 * The function is implemented using an internal 64-bit accumulator.
emilmont 1:fdd22bb7aa52 65 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
emilmont 1:fdd22bb7aa52 66 * There is no saturation on intermediate additions.
emilmont 1:fdd22bb7aa52 67 * Thus, if the accumulator overflows it wraps around and distorts the result.
emilmont 1:fdd22bb7aa52 68 * The input signals should be scaled down to avoid intermediate overflows.
emilmont 1:fdd22bb7aa52 69 * Scale down one of the inputs by 1/min(srcALen, srcBLen)to avoid overflows since a
emilmont 1:fdd22bb7aa52 70 * maximum of min(srcALen, srcBLen) number of additions is carried internally.
emilmont 1:fdd22bb7aa52 71 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
emilmont 1:fdd22bb7aa52 72 *
emilmont 1:fdd22bb7aa52 73 * \par
emilmont 1:fdd22bb7aa52 74 * See <code>arm_correlate_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
emilmont 1:fdd22bb7aa52 75 */
emilmont 1:fdd22bb7aa52 76
emilmont 1:fdd22bb7aa52 77 void arm_correlate_q31(
emilmont 1:fdd22bb7aa52 78 q31_t * pSrcA,
emilmont 1:fdd22bb7aa52 79 uint32_t srcALen,
emilmont 1:fdd22bb7aa52 80 q31_t * pSrcB,
emilmont 1:fdd22bb7aa52 81 uint32_t srcBLen,
emilmont 1:fdd22bb7aa52 82 q31_t * pDst)
emilmont 1:fdd22bb7aa52 83 {
emilmont 1:fdd22bb7aa52 84
emilmont 1:fdd22bb7aa52 85 #ifndef ARM_MATH_CM0
emilmont 1:fdd22bb7aa52 86
emilmont 1:fdd22bb7aa52 87 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 88
emilmont 1:fdd22bb7aa52 89 q31_t *pIn1; /* inputA pointer */
emilmont 1:fdd22bb7aa52 90 q31_t *pIn2; /* inputB pointer */
emilmont 1:fdd22bb7aa52 91 q31_t *pOut = pDst; /* output pointer */
emilmont 1:fdd22bb7aa52 92 q31_t *px; /* Intermediate inputA pointer */
emilmont 1:fdd22bb7aa52 93 q31_t *py; /* Intermediate inputB pointer */
emilmont 1:fdd22bb7aa52 94 q31_t *pSrc1; /* Intermediate pointers */
emilmont 1:fdd22bb7aa52 95 q63_t sum, acc0, acc1, acc2; /* Accumulators */
emilmont 1:fdd22bb7aa52 96 q31_t x0, x1, x2, c0; /* temporary variables for holding input and coefficient values */
emilmont 1:fdd22bb7aa52 97 uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
emilmont 1:fdd22bb7aa52 98 int32_t inc = 1; /* Destination address modifier */
emilmont 1:fdd22bb7aa52 99
emilmont 1:fdd22bb7aa52 100
emilmont 1:fdd22bb7aa52 101 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 102 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 103 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 104 /* But CORR(x, y) is reverse of CORR(y, x) */
emilmont 1:fdd22bb7aa52 105 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
emilmont 1:fdd22bb7aa52 106 /* and the destination pointer modifier, inc is set to -1 */
emilmont 1:fdd22bb7aa52 107 /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
emilmont 1:fdd22bb7aa52 108 /* But to improve the performance,
emilmont 1:fdd22bb7aa52 109 * we include zeroes in the output instead of zero padding either of the the inputs*/
emilmont 1:fdd22bb7aa52 110 /* If srcALen > srcBLen,
emilmont 1:fdd22bb7aa52 111 * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
emilmont 1:fdd22bb7aa52 112 /* If srcALen < srcBLen,
emilmont 1:fdd22bb7aa52 113 * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
emilmont 1:fdd22bb7aa52 114 if(srcALen >= srcBLen)
emilmont 1:fdd22bb7aa52 115 {
emilmont 1:fdd22bb7aa52 116 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 117 pIn1 = (pSrcA);
emilmont 1:fdd22bb7aa52 118
emilmont 1:fdd22bb7aa52 119 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 120 pIn2 = (pSrcB);
emilmont 1:fdd22bb7aa52 121
emilmont 1:fdd22bb7aa52 122 /* Number of output samples is calculated */
emilmont 1:fdd22bb7aa52 123 outBlockSize = (2u * srcALen) - 1u;
emilmont 1:fdd22bb7aa52 124
emilmont 1:fdd22bb7aa52 125 /* When srcALen > srcBLen, zero padding is done to srcB
emilmont 1:fdd22bb7aa52 126 * to make their lengths equal.
emilmont 1:fdd22bb7aa52 127 * Instead, (outBlockSize - (srcALen + srcBLen - 1))
emilmont 1:fdd22bb7aa52 128 * number of output samples are made zero */
emilmont 1:fdd22bb7aa52 129 j = outBlockSize - (srcALen + (srcBLen - 1u));
emilmont 1:fdd22bb7aa52 130
emilmont 1:fdd22bb7aa52 131 /* Updating the pointer position to non zero value */
emilmont 1:fdd22bb7aa52 132 pOut += j;
emilmont 1:fdd22bb7aa52 133
emilmont 1:fdd22bb7aa52 134 }
emilmont 1:fdd22bb7aa52 135 else
emilmont 1:fdd22bb7aa52 136 {
emilmont 1:fdd22bb7aa52 137 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 138 pIn1 = (pSrcB);
emilmont 1:fdd22bb7aa52 139
emilmont 1:fdd22bb7aa52 140 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 141 pIn2 = (pSrcA);
emilmont 1:fdd22bb7aa52 142
emilmont 1:fdd22bb7aa52 143 /* srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 144 j = srcBLen;
emilmont 1:fdd22bb7aa52 145 srcBLen = srcALen;
emilmont 1:fdd22bb7aa52 146 srcALen = j;
emilmont 1:fdd22bb7aa52 147
emilmont 1:fdd22bb7aa52 148 /* CORR(x, y) = Reverse order(CORR(y, x)) */
emilmont 1:fdd22bb7aa52 149 /* Hence set the destination pointer to point to the last output sample */
emilmont 1:fdd22bb7aa52 150 pOut = pDst + ((srcALen + srcBLen) - 2u);
emilmont 1:fdd22bb7aa52 151
emilmont 1:fdd22bb7aa52 152 /* Destination address modifier is set to -1 */
emilmont 1:fdd22bb7aa52 153 inc = -1;
emilmont 1:fdd22bb7aa52 154
emilmont 1:fdd22bb7aa52 155 }
emilmont 1:fdd22bb7aa52 156
emilmont 1:fdd22bb7aa52 157 /* The function is internally
emilmont 1:fdd22bb7aa52 158 * divided into three parts according to the number of multiplications that has to be
emilmont 1:fdd22bb7aa52 159 * taken place between inputA samples and inputB samples. In the first part of the
emilmont 1:fdd22bb7aa52 160 * algorithm, the multiplications increase by one for every iteration.
emilmont 1:fdd22bb7aa52 161 * In the second part of the algorithm, srcBLen number of multiplications are done.
emilmont 1:fdd22bb7aa52 162 * In the third part of the algorithm, the multiplications decrease by one
emilmont 1:fdd22bb7aa52 163 * for every iteration.*/
emilmont 1:fdd22bb7aa52 164 /* The algorithm is implemented in three stages.
emilmont 1:fdd22bb7aa52 165 * The loop counters of each stage is initiated here. */
emilmont 1:fdd22bb7aa52 166 blockSize1 = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 167 blockSize2 = srcALen - (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 168 blockSize3 = blockSize1;
emilmont 1:fdd22bb7aa52 169
emilmont 1:fdd22bb7aa52 170 /* --------------------------
emilmont 1:fdd22bb7aa52 171 * Initializations of stage1
emilmont 1:fdd22bb7aa52 172 * -------------------------*/
emilmont 1:fdd22bb7aa52 173
emilmont 1:fdd22bb7aa52 174 /* sum = x[0] * y[srcBlen - 1]
emilmont 1:fdd22bb7aa52 175 * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
emilmont 1:fdd22bb7aa52 176 * ....
emilmont 1:fdd22bb7aa52 177 * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
emilmont 1:fdd22bb7aa52 178 */
emilmont 1:fdd22bb7aa52 179
emilmont 1:fdd22bb7aa52 180 /* In this stage the MAC operations are increased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 181 The count variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 182 count = 1u;
emilmont 1:fdd22bb7aa52 183
emilmont 1:fdd22bb7aa52 184 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 185 px = pIn1;
emilmont 1:fdd22bb7aa52 186
emilmont 1:fdd22bb7aa52 187 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 188 pSrc1 = pIn2 + (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 189 py = pSrc1;
emilmont 1:fdd22bb7aa52 190
emilmont 1:fdd22bb7aa52 191 /* ------------------------
emilmont 1:fdd22bb7aa52 192 * Stage1 process
emilmont 1:fdd22bb7aa52 193 * ----------------------*/
emilmont 1:fdd22bb7aa52 194
emilmont 1:fdd22bb7aa52 195 /* The first stage starts here */
emilmont 1:fdd22bb7aa52 196 while(blockSize1 > 0u)
emilmont 1:fdd22bb7aa52 197 {
emilmont 1:fdd22bb7aa52 198 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 199 sum = 0;
emilmont 1:fdd22bb7aa52 200
emilmont 1:fdd22bb7aa52 201 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 202 k = count >> 2;
emilmont 1:fdd22bb7aa52 203
emilmont 1:fdd22bb7aa52 204 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 205 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 206 while(k > 0u)
emilmont 1:fdd22bb7aa52 207 {
emilmont 1:fdd22bb7aa52 208 /* x[0] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 209 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 210 /* x[1] * y[srcBLen - 3] */
emilmont 1:fdd22bb7aa52 211 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 212 /* x[2] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 213 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 214 /* x[3] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 215 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 216
emilmont 1:fdd22bb7aa52 217 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 218 k--;
emilmont 1:fdd22bb7aa52 219 }
emilmont 1:fdd22bb7aa52 220
emilmont 1:fdd22bb7aa52 221 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 222 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 223 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 224
emilmont 1:fdd22bb7aa52 225 while(k > 0u)
emilmont 1:fdd22bb7aa52 226 {
emilmont 1:fdd22bb7aa52 227 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 228 /* x[0] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 229 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 230
emilmont 1:fdd22bb7aa52 231 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 232 k--;
emilmont 1:fdd22bb7aa52 233 }
emilmont 1:fdd22bb7aa52 234
emilmont 1:fdd22bb7aa52 235 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 236 *pOut = (q31_t) (sum >> 31);
emilmont 1:fdd22bb7aa52 237 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 238 pOut += inc;
emilmont 1:fdd22bb7aa52 239
emilmont 1:fdd22bb7aa52 240 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 241 py = pSrc1 - count;
emilmont 1:fdd22bb7aa52 242 px = pIn1;
emilmont 1:fdd22bb7aa52 243
emilmont 1:fdd22bb7aa52 244 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 245 count++;
emilmont 1:fdd22bb7aa52 246
emilmont 1:fdd22bb7aa52 247 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 248 blockSize1--;
emilmont 1:fdd22bb7aa52 249 }
emilmont 1:fdd22bb7aa52 250
emilmont 1:fdd22bb7aa52 251 /* --------------------------
emilmont 1:fdd22bb7aa52 252 * Initializations of stage2
emilmont 1:fdd22bb7aa52 253 * ------------------------*/
emilmont 1:fdd22bb7aa52 254
emilmont 1:fdd22bb7aa52 255 /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 256 * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 257 * ....
emilmont 1:fdd22bb7aa52 258 * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 259 */
emilmont 1:fdd22bb7aa52 260
emilmont 1:fdd22bb7aa52 261 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 262 px = pIn1;
emilmont 1:fdd22bb7aa52 263
emilmont 1:fdd22bb7aa52 264 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 265 py = pIn2;
emilmont 1:fdd22bb7aa52 266
emilmont 1:fdd22bb7aa52 267 /* count is index by which the pointer pIn1 to be incremented */
emilmont 1:fdd22bb7aa52 268 count = 0u;
emilmont 1:fdd22bb7aa52 269
emilmont 1:fdd22bb7aa52 270 /* -------------------
emilmont 1:fdd22bb7aa52 271 * Stage2 process
emilmont 1:fdd22bb7aa52 272 * ------------------*/
emilmont 1:fdd22bb7aa52 273
emilmont 1:fdd22bb7aa52 274 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
emilmont 1:fdd22bb7aa52 275 * So, to loop unroll over blockSize2,
emilmont 1:fdd22bb7aa52 276 * srcBLen should be greater than or equal to 4 */
emilmont 1:fdd22bb7aa52 277 if(srcBLen >= 4u)
emilmont 1:fdd22bb7aa52 278 {
emilmont 1:fdd22bb7aa52 279 /* Loop unroll by 3 */
emilmont 1:fdd22bb7aa52 280 blkCnt = blockSize2 / 3;
emilmont 1:fdd22bb7aa52 281
emilmont 1:fdd22bb7aa52 282 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 283 {
emilmont 1:fdd22bb7aa52 284 /* Set all accumulators to zero */
emilmont 1:fdd22bb7aa52 285 acc0 = 0;
emilmont 1:fdd22bb7aa52 286 acc1 = 0;
emilmont 1:fdd22bb7aa52 287 acc2 = 0;
emilmont 1:fdd22bb7aa52 288
emilmont 1:fdd22bb7aa52 289 /* read x[0], x[1] samples */
emilmont 1:fdd22bb7aa52 290 x0 = *(px++);
emilmont 1:fdd22bb7aa52 291 x1 = *(px++);
emilmont 1:fdd22bb7aa52 292
emilmont 1:fdd22bb7aa52 293 /* Apply loop unrolling and compute 3 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 294 k = srcBLen / 3;
emilmont 1:fdd22bb7aa52 295
emilmont 1:fdd22bb7aa52 296 /* First part of the processing with loop unrolling. Compute 3 MACs at a time.
emilmont 1:fdd22bb7aa52 297 ** a second loop below computes MACs for the remaining 1 to 2 samples. */
emilmont 1:fdd22bb7aa52 298 do
emilmont 1:fdd22bb7aa52 299 {
emilmont 1:fdd22bb7aa52 300 /* Read y[0] sample */
emilmont 1:fdd22bb7aa52 301 c0 = *(py);
emilmont 1:fdd22bb7aa52 302
emilmont 1:fdd22bb7aa52 303 /* Read x[2] sample */
emilmont 1:fdd22bb7aa52 304 x2 = *(px);
emilmont 1:fdd22bb7aa52 305
emilmont 1:fdd22bb7aa52 306 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 307 /* acc0 += x[0] * y[0] */
emilmont 1:fdd22bb7aa52 308 acc0 += ((q63_t) x0 * c0);
emilmont 1:fdd22bb7aa52 309 /* acc1 += x[1] * y[0] */
emilmont 1:fdd22bb7aa52 310 acc1 += ((q63_t) x1 * c0);
emilmont 1:fdd22bb7aa52 311 /* acc2 += x[2] * y[0] */
emilmont 1:fdd22bb7aa52 312 acc2 += ((q63_t) x2 * c0);
emilmont 1:fdd22bb7aa52 313
emilmont 1:fdd22bb7aa52 314 /* Read y[1] sample */
emilmont 1:fdd22bb7aa52 315 c0 = *(py + 1u);
emilmont 1:fdd22bb7aa52 316
emilmont 1:fdd22bb7aa52 317 /* Read x[3] sample */
emilmont 1:fdd22bb7aa52 318 x0 = *(px + 1u);
emilmont 1:fdd22bb7aa52 319
emilmont 1:fdd22bb7aa52 320 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 321 /* acc0 += x[1] * y[1] */
emilmont 1:fdd22bb7aa52 322 acc0 += ((q63_t) x1 * c0);
emilmont 1:fdd22bb7aa52 323 /* acc1 += x[2] * y[1] */
emilmont 1:fdd22bb7aa52 324 acc1 += ((q63_t) x2 * c0);
emilmont 1:fdd22bb7aa52 325 /* acc2 += x[3] * y[1] */
emilmont 1:fdd22bb7aa52 326 acc2 += ((q63_t) x0 * c0);
emilmont 1:fdd22bb7aa52 327
emilmont 1:fdd22bb7aa52 328 /* Read y[2] sample */
emilmont 1:fdd22bb7aa52 329 c0 = *(py + 2u);
emilmont 1:fdd22bb7aa52 330
emilmont 1:fdd22bb7aa52 331 /* Read x[4] sample */
emilmont 1:fdd22bb7aa52 332 x1 = *(px + 2u);
emilmont 1:fdd22bb7aa52 333
emilmont 1:fdd22bb7aa52 334 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 335 /* acc0 += x[2] * y[2] */
emilmont 1:fdd22bb7aa52 336 acc0 += ((q63_t) x2 * c0);
emilmont 1:fdd22bb7aa52 337 /* acc1 += x[3] * y[2] */
emilmont 1:fdd22bb7aa52 338 acc1 += ((q63_t) x0 * c0);
emilmont 1:fdd22bb7aa52 339 /* acc2 += x[4] * y[2] */
emilmont 1:fdd22bb7aa52 340 acc2 += ((q63_t) x1 * c0);
emilmont 1:fdd22bb7aa52 341
emilmont 1:fdd22bb7aa52 342 /* update scratch pointers */
emilmont 1:fdd22bb7aa52 343 px += 3u;
emilmont 1:fdd22bb7aa52 344 py += 3u;
emilmont 1:fdd22bb7aa52 345
emilmont 1:fdd22bb7aa52 346 } while(--k);
emilmont 1:fdd22bb7aa52 347
emilmont 1:fdd22bb7aa52 348 /* If the srcBLen is not a multiple of 3, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 349 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 350 k = srcBLen - (3 * (srcBLen / 3));
emilmont 1:fdd22bb7aa52 351
emilmont 1:fdd22bb7aa52 352 while(k > 0u)
emilmont 1:fdd22bb7aa52 353 {
emilmont 1:fdd22bb7aa52 354 /* Read y[4] sample */
emilmont 1:fdd22bb7aa52 355 c0 = *(py++);
emilmont 1:fdd22bb7aa52 356
emilmont 1:fdd22bb7aa52 357 /* Read x[7] sample */
emilmont 1:fdd22bb7aa52 358 x2 = *(px++);
emilmont 1:fdd22bb7aa52 359
emilmont 1:fdd22bb7aa52 360 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 361 /* acc0 += x[4] * y[4] */
emilmont 1:fdd22bb7aa52 362 acc0 += ((q63_t) x0 * c0);
emilmont 1:fdd22bb7aa52 363 /* acc1 += x[5] * y[4] */
emilmont 1:fdd22bb7aa52 364 acc1 += ((q63_t) x1 * c0);
emilmont 1:fdd22bb7aa52 365 /* acc2 += x[6] * y[4] */
emilmont 1:fdd22bb7aa52 366 acc2 += ((q63_t) x2 * c0);
emilmont 1:fdd22bb7aa52 367
emilmont 1:fdd22bb7aa52 368 /* Reuse the present samples for the next MAC */
emilmont 1:fdd22bb7aa52 369 x0 = x1;
emilmont 1:fdd22bb7aa52 370 x1 = x2;
emilmont 1:fdd22bb7aa52 371
emilmont 1:fdd22bb7aa52 372 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 373 k--;
emilmont 1:fdd22bb7aa52 374 }
emilmont 1:fdd22bb7aa52 375
emilmont 1:fdd22bb7aa52 376 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 377 *pOut = (q31_t) (acc0 >> 31);
emilmont 1:fdd22bb7aa52 378 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 379 pOut += inc;
emilmont 1:fdd22bb7aa52 380
emilmont 1:fdd22bb7aa52 381 *pOut = (q31_t) (acc1 >> 31);
emilmont 1:fdd22bb7aa52 382 pOut += inc;
emilmont 1:fdd22bb7aa52 383
emilmont 1:fdd22bb7aa52 384 *pOut = (q31_t) (acc2 >> 31);
emilmont 1:fdd22bb7aa52 385 pOut += inc;
emilmont 1:fdd22bb7aa52 386
emilmont 1:fdd22bb7aa52 387 /* Increment the pointer pIn1 index, count by 3 */
emilmont 1:fdd22bb7aa52 388 count += 3u;
emilmont 1:fdd22bb7aa52 389
emilmont 1:fdd22bb7aa52 390 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 391 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 392 py = pIn2;
emilmont 1:fdd22bb7aa52 393
emilmont 1:fdd22bb7aa52 394
emilmont 1:fdd22bb7aa52 395 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 396 blkCnt--;
emilmont 1:fdd22bb7aa52 397 }
emilmont 1:fdd22bb7aa52 398
emilmont 1:fdd22bb7aa52 399 /* If the blockSize2 is not a multiple of 3, compute any remaining output samples here.
emilmont 1:fdd22bb7aa52 400 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 401 blkCnt = blockSize2 - 3 * (blockSize2 / 3);
emilmont 1:fdd22bb7aa52 402
emilmont 1:fdd22bb7aa52 403 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 404 {
emilmont 1:fdd22bb7aa52 405 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 406 sum = 0;
emilmont 1:fdd22bb7aa52 407
emilmont 1:fdd22bb7aa52 408 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 409 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 410
emilmont 1:fdd22bb7aa52 411 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 412 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 413 while(k > 0u)
emilmont 1:fdd22bb7aa52 414 {
emilmont 1:fdd22bb7aa52 415 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 416 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 417 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 418 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 419 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 420
emilmont 1:fdd22bb7aa52 421 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 422 k--;
emilmont 1:fdd22bb7aa52 423 }
emilmont 1:fdd22bb7aa52 424
emilmont 1:fdd22bb7aa52 425 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 426 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 427 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 428
emilmont 1:fdd22bb7aa52 429 while(k > 0u)
emilmont 1:fdd22bb7aa52 430 {
emilmont 1:fdd22bb7aa52 431 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 432 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 433
emilmont 1:fdd22bb7aa52 434 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 435 k--;
emilmont 1:fdd22bb7aa52 436 }
emilmont 1:fdd22bb7aa52 437
emilmont 1:fdd22bb7aa52 438 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 439 *pOut = (q31_t) (sum >> 31);
emilmont 1:fdd22bb7aa52 440 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 441 pOut += inc;
emilmont 1:fdd22bb7aa52 442
emilmont 1:fdd22bb7aa52 443 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 444 count++;
emilmont 1:fdd22bb7aa52 445
emilmont 1:fdd22bb7aa52 446 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 447 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 448 py = pIn2;
emilmont 1:fdd22bb7aa52 449
emilmont 1:fdd22bb7aa52 450 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 451 blkCnt--;
emilmont 1:fdd22bb7aa52 452 }
emilmont 1:fdd22bb7aa52 453 }
emilmont 1:fdd22bb7aa52 454 else
emilmont 1:fdd22bb7aa52 455 {
emilmont 1:fdd22bb7aa52 456 /* If the srcBLen is not a multiple of 4,
emilmont 1:fdd22bb7aa52 457 * the blockSize2 loop cannot be unrolled by 4 */
emilmont 1:fdd22bb7aa52 458 blkCnt = blockSize2;
emilmont 1:fdd22bb7aa52 459
emilmont 1:fdd22bb7aa52 460 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 461 {
emilmont 1:fdd22bb7aa52 462 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 463 sum = 0;
emilmont 1:fdd22bb7aa52 464
emilmont 1:fdd22bb7aa52 465 /* Loop over srcBLen */
emilmont 1:fdd22bb7aa52 466 k = srcBLen;
emilmont 1:fdd22bb7aa52 467
emilmont 1:fdd22bb7aa52 468 while(k > 0u)
emilmont 1:fdd22bb7aa52 469 {
emilmont 1:fdd22bb7aa52 470 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 471 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 472
emilmont 1:fdd22bb7aa52 473 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 474 k--;
emilmont 1:fdd22bb7aa52 475 }
emilmont 1:fdd22bb7aa52 476
emilmont 1:fdd22bb7aa52 477 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 478 *pOut = (q31_t) (sum >> 31);
emilmont 1:fdd22bb7aa52 479 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 480 pOut += inc;
emilmont 1:fdd22bb7aa52 481
emilmont 1:fdd22bb7aa52 482 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 483 count++;
emilmont 1:fdd22bb7aa52 484
emilmont 1:fdd22bb7aa52 485 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 486 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 487 py = pIn2;
emilmont 1:fdd22bb7aa52 488
emilmont 1:fdd22bb7aa52 489 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 490 blkCnt--;
emilmont 1:fdd22bb7aa52 491 }
emilmont 1:fdd22bb7aa52 492 }
emilmont 1:fdd22bb7aa52 493
emilmont 1:fdd22bb7aa52 494 /* --------------------------
emilmont 1:fdd22bb7aa52 495 * Initializations of stage3
emilmont 1:fdd22bb7aa52 496 * -------------------------*/
emilmont 1:fdd22bb7aa52 497
emilmont 1:fdd22bb7aa52 498 /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 499 * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 500 * ....
emilmont 1:fdd22bb7aa52 501 * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
emilmont 1:fdd22bb7aa52 502 * sum += x[srcALen-1] * y[0]
emilmont 1:fdd22bb7aa52 503 */
emilmont 1:fdd22bb7aa52 504
emilmont 1:fdd22bb7aa52 505 /* In this stage the MAC operations are decreased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 506 The count variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 507 count = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 508
emilmont 1:fdd22bb7aa52 509 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 510 pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
emilmont 1:fdd22bb7aa52 511 px = pSrc1;
emilmont 1:fdd22bb7aa52 512
emilmont 1:fdd22bb7aa52 513 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 514 py = pIn2;
emilmont 1:fdd22bb7aa52 515
emilmont 1:fdd22bb7aa52 516 /* -------------------
emilmont 1:fdd22bb7aa52 517 * Stage3 process
emilmont 1:fdd22bb7aa52 518 * ------------------*/
emilmont 1:fdd22bb7aa52 519
emilmont 1:fdd22bb7aa52 520 while(blockSize3 > 0u)
emilmont 1:fdd22bb7aa52 521 {
emilmont 1:fdd22bb7aa52 522 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 523 sum = 0;
emilmont 1:fdd22bb7aa52 524
emilmont 1:fdd22bb7aa52 525 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 526 k = count >> 2u;
emilmont 1:fdd22bb7aa52 527
emilmont 1:fdd22bb7aa52 528 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 529 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 530 while(k > 0u)
emilmont 1:fdd22bb7aa52 531 {
emilmont 1:fdd22bb7aa52 532 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 533 /* sum += x[srcALen - srcBLen + 4] * y[3] */
emilmont 1:fdd22bb7aa52 534 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 535 /* sum += x[srcALen - srcBLen + 3] * y[2] */
emilmont 1:fdd22bb7aa52 536 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 537 /* sum += x[srcALen - srcBLen + 2] * y[1] */
emilmont 1:fdd22bb7aa52 538 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 539 /* sum += x[srcALen - srcBLen + 1] * y[0] */
emilmont 1:fdd22bb7aa52 540 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 541
emilmont 1:fdd22bb7aa52 542 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 543 k--;
emilmont 1:fdd22bb7aa52 544 }
emilmont 1:fdd22bb7aa52 545
emilmont 1:fdd22bb7aa52 546 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 547 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 548 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 549
emilmont 1:fdd22bb7aa52 550 while(k > 0u)
emilmont 1:fdd22bb7aa52 551 {
emilmont 1:fdd22bb7aa52 552 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 553 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 554
emilmont 1:fdd22bb7aa52 555 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 556 k--;
emilmont 1:fdd22bb7aa52 557 }
emilmont 1:fdd22bb7aa52 558
emilmont 1:fdd22bb7aa52 559 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 560 *pOut = (q31_t) (sum >> 31);
emilmont 1:fdd22bb7aa52 561 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 562 pOut += inc;
emilmont 1:fdd22bb7aa52 563
emilmont 1:fdd22bb7aa52 564 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 565 px = ++pSrc1;
emilmont 1:fdd22bb7aa52 566 py = pIn2;
emilmont 1:fdd22bb7aa52 567
emilmont 1:fdd22bb7aa52 568 /* Decrement the MAC count */
emilmont 1:fdd22bb7aa52 569 count--;
emilmont 1:fdd22bb7aa52 570
emilmont 1:fdd22bb7aa52 571 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 572 blockSize3--;
emilmont 1:fdd22bb7aa52 573 }
emilmont 1:fdd22bb7aa52 574
emilmont 1:fdd22bb7aa52 575 #else
emilmont 1:fdd22bb7aa52 576
emilmont 1:fdd22bb7aa52 577 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 578
emilmont 1:fdd22bb7aa52 579 q31_t *pIn1 = pSrcA; /* inputA pointer */
emilmont 1:fdd22bb7aa52 580 q31_t *pIn2 = pSrcB + (srcBLen - 1u); /* inputB pointer */
emilmont 1:fdd22bb7aa52 581 q63_t sum; /* Accumulators */
emilmont 1:fdd22bb7aa52 582 uint32_t i = 0u, j; /* loop counters */
emilmont 1:fdd22bb7aa52 583 uint32_t inv = 0u; /* Reverse order flag */
emilmont 1:fdd22bb7aa52 584 uint32_t tot = 0u; /* Length */
emilmont 1:fdd22bb7aa52 585
emilmont 1:fdd22bb7aa52 586 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 587 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 588 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 589 /* But CORR(x, y) is reverse of CORR(y, x) */
emilmont 1:fdd22bb7aa52 590 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
emilmont 1:fdd22bb7aa52 591 /* and a varaible, inv is set to 1 */
emilmont 1:fdd22bb7aa52 592 /* If lengths are not equal then zero pad has to be done to make the two
emilmont 1:fdd22bb7aa52 593 * inputs of same length. But to improve the performance, we include zeroes
emilmont 1:fdd22bb7aa52 594 * in the output instead of zero padding either of the the inputs*/
emilmont 1:fdd22bb7aa52 595 /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
emilmont 1:fdd22bb7aa52 596 * starting of the output buffer */
emilmont 1:fdd22bb7aa52 597 /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
emilmont 1:fdd22bb7aa52 598 * ending of the output buffer */
emilmont 1:fdd22bb7aa52 599 /* Once the zero padding is done the remaining of the output is calcualted
emilmont 1:fdd22bb7aa52 600 * using correlation but with the shorter signal time shifted. */
emilmont 1:fdd22bb7aa52 601
emilmont 1:fdd22bb7aa52 602 /* Calculate the length of the remaining sequence */
emilmont 1:fdd22bb7aa52 603 tot = ((srcALen + srcBLen) - 2u);
emilmont 1:fdd22bb7aa52 604
emilmont 1:fdd22bb7aa52 605 if(srcALen > srcBLen)
emilmont 1:fdd22bb7aa52 606 {
emilmont 1:fdd22bb7aa52 607 /* Calculating the number of zeros to be padded to the output */
emilmont 1:fdd22bb7aa52 608 j = srcALen - srcBLen;
emilmont 1:fdd22bb7aa52 609
emilmont 1:fdd22bb7aa52 610 /* Initialise the pointer after zero padding */
emilmont 1:fdd22bb7aa52 611 pDst += j;
emilmont 1:fdd22bb7aa52 612 }
emilmont 1:fdd22bb7aa52 613
emilmont 1:fdd22bb7aa52 614 else if(srcALen < srcBLen)
emilmont 1:fdd22bb7aa52 615 {
emilmont 1:fdd22bb7aa52 616 /* Initialization to inputB pointer */
emilmont 1:fdd22bb7aa52 617 pIn1 = pSrcB;
emilmont 1:fdd22bb7aa52 618
emilmont 1:fdd22bb7aa52 619 /* Initialization to the end of inputA pointer */
emilmont 1:fdd22bb7aa52 620 pIn2 = pSrcA + (srcALen - 1u);
emilmont 1:fdd22bb7aa52 621
emilmont 1:fdd22bb7aa52 622 /* Initialisation of the pointer after zero padding */
emilmont 1:fdd22bb7aa52 623 pDst = pDst + tot;
emilmont 1:fdd22bb7aa52 624
emilmont 1:fdd22bb7aa52 625 /* Swapping the lengths */
emilmont 1:fdd22bb7aa52 626 j = srcALen;
emilmont 1:fdd22bb7aa52 627 srcALen = srcBLen;
emilmont 1:fdd22bb7aa52 628 srcBLen = j;
emilmont 1:fdd22bb7aa52 629
emilmont 1:fdd22bb7aa52 630 /* Setting the reverse flag */
emilmont 1:fdd22bb7aa52 631 inv = 1;
emilmont 1:fdd22bb7aa52 632
emilmont 1:fdd22bb7aa52 633 }
emilmont 1:fdd22bb7aa52 634
emilmont 1:fdd22bb7aa52 635 /* Loop to calculate correlation for output length number of times */
emilmont 1:fdd22bb7aa52 636 for (i = 0u; i <= tot; i++)
emilmont 1:fdd22bb7aa52 637 {
emilmont 1:fdd22bb7aa52 638 /* Initialize sum with zero to carry on MAC operations */
emilmont 1:fdd22bb7aa52 639 sum = 0;
emilmont 1:fdd22bb7aa52 640
emilmont 1:fdd22bb7aa52 641 /* Loop to perform MAC operations according to correlation equation */
emilmont 1:fdd22bb7aa52 642 for (j = 0u; j <= i; j++)
emilmont 1:fdd22bb7aa52 643 {
emilmont 1:fdd22bb7aa52 644 /* Check the array limitations */
emilmont 1:fdd22bb7aa52 645 if((((i - j) < srcBLen) && (j < srcALen)))
emilmont 1:fdd22bb7aa52 646 {
emilmont 1:fdd22bb7aa52 647 /* z[i] += x[i-j] * y[j] */
emilmont 1:fdd22bb7aa52 648 sum += ((q63_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
emilmont 1:fdd22bb7aa52 649 }
emilmont 1:fdd22bb7aa52 650 }
emilmont 1:fdd22bb7aa52 651 /* Store the output in the destination buffer */
emilmont 1:fdd22bb7aa52 652 if(inv == 1)
emilmont 1:fdd22bb7aa52 653 *pDst-- = (q31_t) (sum >> 31u);
emilmont 1:fdd22bb7aa52 654 else
emilmont 1:fdd22bb7aa52 655 *pDst++ = (q31_t) (sum >> 31u);
emilmont 1:fdd22bb7aa52 656 }
emilmont 1:fdd22bb7aa52 657
emilmont 1:fdd22bb7aa52 658 #endif /* #ifndef ARM_MATH_CM0 */
emilmont 1:fdd22bb7aa52 659
emilmont 1:fdd22bb7aa52 660 }
emilmont 1:fdd22bb7aa52 661
emilmont 1:fdd22bb7aa52 662 /**
emilmont 1:fdd22bb7aa52 663 * @} end of Corr group
emilmont 1:fdd22bb7aa52 664 */