CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

Committer:
mbed_official
Date:
Fri Nov 08 13:45:10 2013 +0000
Revision:
3:7a284390b0ce
Parent:
2:da51fb522205
Synchronized with git revision e69956aba2f68a2a26ac26b051f8d349deaa1ce8

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
mbed_official 3:7a284390b0ce 2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
mbed_official 3:7a284390b0ce 4 * $Date: 17. January 2013
mbed_official 3:7a284390b0ce 5 * $Revision: V1.4.1
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_correlate_q31.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: Correlation of Q31 sequences.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
mbed_official 3:7a284390b0ce 14 * Redistribution and use in source and binary forms, with or without
mbed_official 3:7a284390b0ce 15 * modification, are permitted provided that the following conditions
mbed_official 3:7a284390b0ce 16 * are met:
mbed_official 3:7a284390b0ce 17 * - Redistributions of source code must retain the above copyright
mbed_official 3:7a284390b0ce 18 * notice, this list of conditions and the following disclaimer.
mbed_official 3:7a284390b0ce 19 * - Redistributions in binary form must reproduce the above copyright
mbed_official 3:7a284390b0ce 20 * notice, this list of conditions and the following disclaimer in
mbed_official 3:7a284390b0ce 21 * the documentation and/or other materials provided with the
mbed_official 3:7a284390b0ce 22 * distribution.
mbed_official 3:7a284390b0ce 23 * - Neither the name of ARM LIMITED nor the names of its contributors
mbed_official 3:7a284390b0ce 24 * may be used to endorse or promote products derived from this
mbed_official 3:7a284390b0ce 25 * software without specific prior written permission.
mbed_official 3:7a284390b0ce 26 *
mbed_official 3:7a284390b0ce 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
mbed_official 3:7a284390b0ce 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
mbed_official 3:7a284390b0ce 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
mbed_official 3:7a284390b0ce 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
mbed_official 3:7a284390b0ce 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
mbed_official 3:7a284390b0ce 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
mbed_official 3:7a284390b0ce 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mbed_official 3:7a284390b0ce 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
mbed_official 3:7a284390b0ce 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
mbed_official 3:7a284390b0ce 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mbed_official 3:7a284390b0ce 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
mbed_official 3:7a284390b0ce 38 * POSSIBILITY OF SUCH DAMAGE.
emilmont 1:fdd22bb7aa52 39 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 40
emilmont 1:fdd22bb7aa52 41 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 42
emilmont 1:fdd22bb7aa52 43 /**
emilmont 1:fdd22bb7aa52 44 * @ingroup groupFilters
emilmont 1:fdd22bb7aa52 45 */
emilmont 1:fdd22bb7aa52 46
emilmont 1:fdd22bb7aa52 47 /**
emilmont 1:fdd22bb7aa52 48 * @addtogroup Corr
emilmont 1:fdd22bb7aa52 49 * @{
emilmont 1:fdd22bb7aa52 50 */
emilmont 1:fdd22bb7aa52 51
emilmont 1:fdd22bb7aa52 52 /**
emilmont 1:fdd22bb7aa52 53 * @brief Correlation of Q31 sequences.
emilmont 1:fdd22bb7aa52 54 * @param[in] *pSrcA points to the first input sequence.
emilmont 1:fdd22bb7aa52 55 * @param[in] srcALen length of the first input sequence.
emilmont 1:fdd22bb7aa52 56 * @param[in] *pSrcB points to the second input sequence.
emilmont 1:fdd22bb7aa52 57 * @param[in] srcBLen length of the second input sequence.
emilmont 1:fdd22bb7aa52 58 * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
emilmont 1:fdd22bb7aa52 59 * @return none.
emilmont 1:fdd22bb7aa52 60 *
emilmont 1:fdd22bb7aa52 61 * @details
emilmont 1:fdd22bb7aa52 62 * <b>Scaling and Overflow Behavior:</b>
emilmont 1:fdd22bb7aa52 63 *
emilmont 1:fdd22bb7aa52 64 * \par
emilmont 1:fdd22bb7aa52 65 * The function is implemented using an internal 64-bit accumulator.
emilmont 1:fdd22bb7aa52 66 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
emilmont 1:fdd22bb7aa52 67 * There is no saturation on intermediate additions.
emilmont 1:fdd22bb7aa52 68 * Thus, if the accumulator overflows it wraps around and distorts the result.
emilmont 1:fdd22bb7aa52 69 * The input signals should be scaled down to avoid intermediate overflows.
emilmont 1:fdd22bb7aa52 70 * Scale down one of the inputs by 1/min(srcALen, srcBLen)to avoid overflows since a
emilmont 1:fdd22bb7aa52 71 * maximum of min(srcALen, srcBLen) number of additions is carried internally.
emilmont 1:fdd22bb7aa52 72 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
emilmont 1:fdd22bb7aa52 73 *
emilmont 1:fdd22bb7aa52 74 * \par
emilmont 1:fdd22bb7aa52 75 * See <code>arm_correlate_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
emilmont 1:fdd22bb7aa52 76 */
emilmont 1:fdd22bb7aa52 77
emilmont 1:fdd22bb7aa52 78 void arm_correlate_q31(
emilmont 1:fdd22bb7aa52 79 q31_t * pSrcA,
emilmont 1:fdd22bb7aa52 80 uint32_t srcALen,
emilmont 1:fdd22bb7aa52 81 q31_t * pSrcB,
emilmont 1:fdd22bb7aa52 82 uint32_t srcBLen,
emilmont 1:fdd22bb7aa52 83 q31_t * pDst)
emilmont 1:fdd22bb7aa52 84 {
emilmont 1:fdd22bb7aa52 85
mbed_official 3:7a284390b0ce 86 #ifndef ARM_MATH_CM0_FAMILY
emilmont 1:fdd22bb7aa52 87
emilmont 1:fdd22bb7aa52 88 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 89
emilmont 1:fdd22bb7aa52 90 q31_t *pIn1; /* inputA pointer */
emilmont 1:fdd22bb7aa52 91 q31_t *pIn2; /* inputB pointer */
emilmont 1:fdd22bb7aa52 92 q31_t *pOut = pDst; /* output pointer */
emilmont 1:fdd22bb7aa52 93 q31_t *px; /* Intermediate inputA pointer */
emilmont 1:fdd22bb7aa52 94 q31_t *py; /* Intermediate inputB pointer */
emilmont 1:fdd22bb7aa52 95 q31_t *pSrc1; /* Intermediate pointers */
emilmont 1:fdd22bb7aa52 96 q63_t sum, acc0, acc1, acc2; /* Accumulators */
emilmont 1:fdd22bb7aa52 97 q31_t x0, x1, x2, c0; /* temporary variables for holding input and coefficient values */
emilmont 1:fdd22bb7aa52 98 uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
emilmont 1:fdd22bb7aa52 99 int32_t inc = 1; /* Destination address modifier */
emilmont 1:fdd22bb7aa52 100
emilmont 1:fdd22bb7aa52 101
emilmont 1:fdd22bb7aa52 102 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 103 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 104 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 105 /* But CORR(x, y) is reverse of CORR(y, x) */
emilmont 1:fdd22bb7aa52 106 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
emilmont 1:fdd22bb7aa52 107 /* and the destination pointer modifier, inc is set to -1 */
emilmont 1:fdd22bb7aa52 108 /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
emilmont 1:fdd22bb7aa52 109 /* But to improve the performance,
emilmont 1:fdd22bb7aa52 110 * we include zeroes in the output instead of zero padding either of the the inputs*/
emilmont 1:fdd22bb7aa52 111 /* If srcALen > srcBLen,
emilmont 1:fdd22bb7aa52 112 * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
emilmont 1:fdd22bb7aa52 113 /* If srcALen < srcBLen,
emilmont 1:fdd22bb7aa52 114 * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
emilmont 1:fdd22bb7aa52 115 if(srcALen >= srcBLen)
emilmont 1:fdd22bb7aa52 116 {
emilmont 1:fdd22bb7aa52 117 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 118 pIn1 = (pSrcA);
emilmont 1:fdd22bb7aa52 119
emilmont 1:fdd22bb7aa52 120 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 121 pIn2 = (pSrcB);
emilmont 1:fdd22bb7aa52 122
emilmont 1:fdd22bb7aa52 123 /* Number of output samples is calculated */
emilmont 1:fdd22bb7aa52 124 outBlockSize = (2u * srcALen) - 1u;
emilmont 1:fdd22bb7aa52 125
emilmont 1:fdd22bb7aa52 126 /* When srcALen > srcBLen, zero padding is done to srcB
emilmont 1:fdd22bb7aa52 127 * to make their lengths equal.
emilmont 1:fdd22bb7aa52 128 * Instead, (outBlockSize - (srcALen + srcBLen - 1))
emilmont 1:fdd22bb7aa52 129 * number of output samples are made zero */
emilmont 1:fdd22bb7aa52 130 j = outBlockSize - (srcALen + (srcBLen - 1u));
emilmont 1:fdd22bb7aa52 131
emilmont 1:fdd22bb7aa52 132 /* Updating the pointer position to non zero value */
emilmont 1:fdd22bb7aa52 133 pOut += j;
emilmont 1:fdd22bb7aa52 134
emilmont 1:fdd22bb7aa52 135 }
emilmont 1:fdd22bb7aa52 136 else
emilmont 1:fdd22bb7aa52 137 {
emilmont 1:fdd22bb7aa52 138 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 139 pIn1 = (pSrcB);
emilmont 1:fdd22bb7aa52 140
emilmont 1:fdd22bb7aa52 141 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 142 pIn2 = (pSrcA);
emilmont 1:fdd22bb7aa52 143
emilmont 1:fdd22bb7aa52 144 /* srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 145 j = srcBLen;
emilmont 1:fdd22bb7aa52 146 srcBLen = srcALen;
emilmont 1:fdd22bb7aa52 147 srcALen = j;
emilmont 1:fdd22bb7aa52 148
emilmont 1:fdd22bb7aa52 149 /* CORR(x, y) = Reverse order(CORR(y, x)) */
emilmont 1:fdd22bb7aa52 150 /* Hence set the destination pointer to point to the last output sample */
emilmont 1:fdd22bb7aa52 151 pOut = pDst + ((srcALen + srcBLen) - 2u);
emilmont 1:fdd22bb7aa52 152
emilmont 1:fdd22bb7aa52 153 /* Destination address modifier is set to -1 */
emilmont 1:fdd22bb7aa52 154 inc = -1;
emilmont 1:fdd22bb7aa52 155
emilmont 1:fdd22bb7aa52 156 }
emilmont 1:fdd22bb7aa52 157
emilmont 1:fdd22bb7aa52 158 /* The function is internally
emilmont 1:fdd22bb7aa52 159 * divided into three parts according to the number of multiplications that has to be
emilmont 1:fdd22bb7aa52 160 * taken place between inputA samples and inputB samples. In the first part of the
emilmont 1:fdd22bb7aa52 161 * algorithm, the multiplications increase by one for every iteration.
emilmont 1:fdd22bb7aa52 162 * In the second part of the algorithm, srcBLen number of multiplications are done.
emilmont 1:fdd22bb7aa52 163 * In the third part of the algorithm, the multiplications decrease by one
emilmont 1:fdd22bb7aa52 164 * for every iteration.*/
emilmont 1:fdd22bb7aa52 165 /* The algorithm is implemented in three stages.
emilmont 1:fdd22bb7aa52 166 * The loop counters of each stage is initiated here. */
emilmont 1:fdd22bb7aa52 167 blockSize1 = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 168 blockSize2 = srcALen - (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 169 blockSize3 = blockSize1;
emilmont 1:fdd22bb7aa52 170
emilmont 1:fdd22bb7aa52 171 /* --------------------------
emilmont 1:fdd22bb7aa52 172 * Initializations of stage1
emilmont 1:fdd22bb7aa52 173 * -------------------------*/
emilmont 1:fdd22bb7aa52 174
emilmont 1:fdd22bb7aa52 175 /* sum = x[0] * y[srcBlen - 1]
emilmont 1:fdd22bb7aa52 176 * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
emilmont 1:fdd22bb7aa52 177 * ....
emilmont 1:fdd22bb7aa52 178 * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
emilmont 1:fdd22bb7aa52 179 */
emilmont 1:fdd22bb7aa52 180
emilmont 1:fdd22bb7aa52 181 /* In this stage the MAC operations are increased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 182 The count variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 183 count = 1u;
emilmont 1:fdd22bb7aa52 184
emilmont 1:fdd22bb7aa52 185 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 186 px = pIn1;
emilmont 1:fdd22bb7aa52 187
emilmont 1:fdd22bb7aa52 188 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 189 pSrc1 = pIn2 + (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 190 py = pSrc1;
emilmont 1:fdd22bb7aa52 191
emilmont 1:fdd22bb7aa52 192 /* ------------------------
emilmont 1:fdd22bb7aa52 193 * Stage1 process
emilmont 1:fdd22bb7aa52 194 * ----------------------*/
emilmont 1:fdd22bb7aa52 195
emilmont 1:fdd22bb7aa52 196 /* The first stage starts here */
emilmont 1:fdd22bb7aa52 197 while(blockSize1 > 0u)
emilmont 1:fdd22bb7aa52 198 {
emilmont 1:fdd22bb7aa52 199 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 200 sum = 0;
emilmont 1:fdd22bb7aa52 201
emilmont 1:fdd22bb7aa52 202 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 203 k = count >> 2;
emilmont 1:fdd22bb7aa52 204
emilmont 1:fdd22bb7aa52 205 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 206 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 207 while(k > 0u)
emilmont 1:fdd22bb7aa52 208 {
emilmont 1:fdd22bb7aa52 209 /* x[0] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 210 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 211 /* x[1] * y[srcBLen - 3] */
emilmont 1:fdd22bb7aa52 212 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 213 /* x[2] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 214 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 215 /* x[3] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 216 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 217
emilmont 1:fdd22bb7aa52 218 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 219 k--;
emilmont 1:fdd22bb7aa52 220 }
emilmont 1:fdd22bb7aa52 221
emilmont 1:fdd22bb7aa52 222 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 223 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 224 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 225
emilmont 1:fdd22bb7aa52 226 while(k > 0u)
emilmont 1:fdd22bb7aa52 227 {
emilmont 1:fdd22bb7aa52 228 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 229 /* x[0] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 230 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 231
emilmont 1:fdd22bb7aa52 232 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 233 k--;
emilmont 1:fdd22bb7aa52 234 }
emilmont 1:fdd22bb7aa52 235
emilmont 1:fdd22bb7aa52 236 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 237 *pOut = (q31_t) (sum >> 31);
emilmont 1:fdd22bb7aa52 238 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 239 pOut += inc;
emilmont 1:fdd22bb7aa52 240
emilmont 1:fdd22bb7aa52 241 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 242 py = pSrc1 - count;
emilmont 1:fdd22bb7aa52 243 px = pIn1;
emilmont 1:fdd22bb7aa52 244
emilmont 1:fdd22bb7aa52 245 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 246 count++;
emilmont 1:fdd22bb7aa52 247
emilmont 1:fdd22bb7aa52 248 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 249 blockSize1--;
emilmont 1:fdd22bb7aa52 250 }
emilmont 1:fdd22bb7aa52 251
emilmont 1:fdd22bb7aa52 252 /* --------------------------
emilmont 1:fdd22bb7aa52 253 * Initializations of stage2
emilmont 1:fdd22bb7aa52 254 * ------------------------*/
emilmont 1:fdd22bb7aa52 255
emilmont 1:fdd22bb7aa52 256 /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 257 * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 258 * ....
emilmont 1:fdd22bb7aa52 259 * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 260 */
emilmont 1:fdd22bb7aa52 261
emilmont 1:fdd22bb7aa52 262 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 263 px = pIn1;
emilmont 1:fdd22bb7aa52 264
emilmont 1:fdd22bb7aa52 265 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 266 py = pIn2;
emilmont 1:fdd22bb7aa52 267
emilmont 1:fdd22bb7aa52 268 /* count is index by which the pointer pIn1 to be incremented */
emilmont 1:fdd22bb7aa52 269 count = 0u;
emilmont 1:fdd22bb7aa52 270
emilmont 1:fdd22bb7aa52 271 /* -------------------
emilmont 1:fdd22bb7aa52 272 * Stage2 process
emilmont 1:fdd22bb7aa52 273 * ------------------*/
emilmont 1:fdd22bb7aa52 274
emilmont 1:fdd22bb7aa52 275 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
emilmont 1:fdd22bb7aa52 276 * So, to loop unroll over blockSize2,
emilmont 1:fdd22bb7aa52 277 * srcBLen should be greater than or equal to 4 */
emilmont 1:fdd22bb7aa52 278 if(srcBLen >= 4u)
emilmont 1:fdd22bb7aa52 279 {
emilmont 1:fdd22bb7aa52 280 /* Loop unroll by 3 */
emilmont 1:fdd22bb7aa52 281 blkCnt = blockSize2 / 3;
emilmont 1:fdd22bb7aa52 282
emilmont 1:fdd22bb7aa52 283 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 284 {
emilmont 1:fdd22bb7aa52 285 /* Set all accumulators to zero */
emilmont 1:fdd22bb7aa52 286 acc0 = 0;
emilmont 1:fdd22bb7aa52 287 acc1 = 0;
emilmont 1:fdd22bb7aa52 288 acc2 = 0;
emilmont 1:fdd22bb7aa52 289
emilmont 1:fdd22bb7aa52 290 /* read x[0], x[1] samples */
emilmont 1:fdd22bb7aa52 291 x0 = *(px++);
emilmont 1:fdd22bb7aa52 292 x1 = *(px++);
emilmont 1:fdd22bb7aa52 293
emilmont 1:fdd22bb7aa52 294 /* Apply loop unrolling and compute 3 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 295 k = srcBLen / 3;
emilmont 1:fdd22bb7aa52 296
emilmont 1:fdd22bb7aa52 297 /* First part of the processing with loop unrolling. Compute 3 MACs at a time.
emilmont 1:fdd22bb7aa52 298 ** a second loop below computes MACs for the remaining 1 to 2 samples. */
emilmont 1:fdd22bb7aa52 299 do
emilmont 1:fdd22bb7aa52 300 {
emilmont 1:fdd22bb7aa52 301 /* Read y[0] sample */
emilmont 1:fdd22bb7aa52 302 c0 = *(py);
emilmont 1:fdd22bb7aa52 303
emilmont 1:fdd22bb7aa52 304 /* Read x[2] sample */
emilmont 1:fdd22bb7aa52 305 x2 = *(px);
emilmont 1:fdd22bb7aa52 306
emilmont 1:fdd22bb7aa52 307 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 308 /* acc0 += x[0] * y[0] */
emilmont 1:fdd22bb7aa52 309 acc0 += ((q63_t) x0 * c0);
emilmont 1:fdd22bb7aa52 310 /* acc1 += x[1] * y[0] */
emilmont 1:fdd22bb7aa52 311 acc1 += ((q63_t) x1 * c0);
emilmont 1:fdd22bb7aa52 312 /* acc2 += x[2] * y[0] */
emilmont 1:fdd22bb7aa52 313 acc2 += ((q63_t) x2 * c0);
emilmont 1:fdd22bb7aa52 314
emilmont 1:fdd22bb7aa52 315 /* Read y[1] sample */
emilmont 1:fdd22bb7aa52 316 c0 = *(py + 1u);
emilmont 1:fdd22bb7aa52 317
emilmont 1:fdd22bb7aa52 318 /* Read x[3] sample */
emilmont 1:fdd22bb7aa52 319 x0 = *(px + 1u);
emilmont 1:fdd22bb7aa52 320
emilmont 1:fdd22bb7aa52 321 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 322 /* acc0 += x[1] * y[1] */
emilmont 1:fdd22bb7aa52 323 acc0 += ((q63_t) x1 * c0);
emilmont 1:fdd22bb7aa52 324 /* acc1 += x[2] * y[1] */
emilmont 1:fdd22bb7aa52 325 acc1 += ((q63_t) x2 * c0);
emilmont 1:fdd22bb7aa52 326 /* acc2 += x[3] * y[1] */
emilmont 1:fdd22bb7aa52 327 acc2 += ((q63_t) x0 * c0);
emilmont 1:fdd22bb7aa52 328
emilmont 1:fdd22bb7aa52 329 /* Read y[2] sample */
emilmont 1:fdd22bb7aa52 330 c0 = *(py + 2u);
emilmont 1:fdd22bb7aa52 331
emilmont 1:fdd22bb7aa52 332 /* Read x[4] sample */
emilmont 1:fdd22bb7aa52 333 x1 = *(px + 2u);
emilmont 1:fdd22bb7aa52 334
emilmont 1:fdd22bb7aa52 335 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 336 /* acc0 += x[2] * y[2] */
emilmont 1:fdd22bb7aa52 337 acc0 += ((q63_t) x2 * c0);
emilmont 1:fdd22bb7aa52 338 /* acc1 += x[3] * y[2] */
emilmont 1:fdd22bb7aa52 339 acc1 += ((q63_t) x0 * c0);
emilmont 1:fdd22bb7aa52 340 /* acc2 += x[4] * y[2] */
emilmont 1:fdd22bb7aa52 341 acc2 += ((q63_t) x1 * c0);
emilmont 1:fdd22bb7aa52 342
emilmont 1:fdd22bb7aa52 343 /* update scratch pointers */
emilmont 1:fdd22bb7aa52 344 px += 3u;
emilmont 1:fdd22bb7aa52 345 py += 3u;
emilmont 1:fdd22bb7aa52 346
emilmont 1:fdd22bb7aa52 347 } while(--k);
emilmont 1:fdd22bb7aa52 348
emilmont 1:fdd22bb7aa52 349 /* If the srcBLen is not a multiple of 3, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 350 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 351 k = srcBLen - (3 * (srcBLen / 3));
emilmont 1:fdd22bb7aa52 352
emilmont 1:fdd22bb7aa52 353 while(k > 0u)
emilmont 1:fdd22bb7aa52 354 {
emilmont 1:fdd22bb7aa52 355 /* Read y[4] sample */
emilmont 1:fdd22bb7aa52 356 c0 = *(py++);
emilmont 1:fdd22bb7aa52 357
emilmont 1:fdd22bb7aa52 358 /* Read x[7] sample */
emilmont 1:fdd22bb7aa52 359 x2 = *(px++);
emilmont 1:fdd22bb7aa52 360
emilmont 1:fdd22bb7aa52 361 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 362 /* acc0 += x[4] * y[4] */
emilmont 1:fdd22bb7aa52 363 acc0 += ((q63_t) x0 * c0);
emilmont 1:fdd22bb7aa52 364 /* acc1 += x[5] * y[4] */
emilmont 1:fdd22bb7aa52 365 acc1 += ((q63_t) x1 * c0);
emilmont 1:fdd22bb7aa52 366 /* acc2 += x[6] * y[4] */
emilmont 1:fdd22bb7aa52 367 acc2 += ((q63_t) x2 * c0);
emilmont 1:fdd22bb7aa52 368
emilmont 1:fdd22bb7aa52 369 /* Reuse the present samples for the next MAC */
emilmont 1:fdd22bb7aa52 370 x0 = x1;
emilmont 1:fdd22bb7aa52 371 x1 = x2;
emilmont 1:fdd22bb7aa52 372
emilmont 1:fdd22bb7aa52 373 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 374 k--;
emilmont 1:fdd22bb7aa52 375 }
emilmont 1:fdd22bb7aa52 376
emilmont 1:fdd22bb7aa52 377 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 378 *pOut = (q31_t) (acc0 >> 31);
emilmont 1:fdd22bb7aa52 379 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 380 pOut += inc;
emilmont 1:fdd22bb7aa52 381
emilmont 1:fdd22bb7aa52 382 *pOut = (q31_t) (acc1 >> 31);
emilmont 1:fdd22bb7aa52 383 pOut += inc;
emilmont 1:fdd22bb7aa52 384
emilmont 1:fdd22bb7aa52 385 *pOut = (q31_t) (acc2 >> 31);
emilmont 1:fdd22bb7aa52 386 pOut += inc;
emilmont 1:fdd22bb7aa52 387
emilmont 1:fdd22bb7aa52 388 /* Increment the pointer pIn1 index, count by 3 */
emilmont 1:fdd22bb7aa52 389 count += 3u;
emilmont 1:fdd22bb7aa52 390
emilmont 1:fdd22bb7aa52 391 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 392 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 393 py = pIn2;
emilmont 1:fdd22bb7aa52 394
emilmont 1:fdd22bb7aa52 395
emilmont 1:fdd22bb7aa52 396 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 397 blkCnt--;
emilmont 1:fdd22bb7aa52 398 }
emilmont 1:fdd22bb7aa52 399
emilmont 1:fdd22bb7aa52 400 /* If the blockSize2 is not a multiple of 3, compute any remaining output samples here.
emilmont 1:fdd22bb7aa52 401 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 402 blkCnt = blockSize2 - 3 * (blockSize2 / 3);
emilmont 1:fdd22bb7aa52 403
emilmont 1:fdd22bb7aa52 404 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 405 {
emilmont 1:fdd22bb7aa52 406 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 407 sum = 0;
emilmont 1:fdd22bb7aa52 408
emilmont 1:fdd22bb7aa52 409 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 410 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 411
emilmont 1:fdd22bb7aa52 412 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 413 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 414 while(k > 0u)
emilmont 1:fdd22bb7aa52 415 {
emilmont 1:fdd22bb7aa52 416 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 417 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 418 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 419 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 420 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 421
emilmont 1:fdd22bb7aa52 422 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 423 k--;
emilmont 1:fdd22bb7aa52 424 }
emilmont 1:fdd22bb7aa52 425
emilmont 1:fdd22bb7aa52 426 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 427 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 428 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 429
emilmont 1:fdd22bb7aa52 430 while(k > 0u)
emilmont 1:fdd22bb7aa52 431 {
emilmont 1:fdd22bb7aa52 432 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 433 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 434
emilmont 1:fdd22bb7aa52 435 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 436 k--;
emilmont 1:fdd22bb7aa52 437 }
emilmont 1:fdd22bb7aa52 438
emilmont 1:fdd22bb7aa52 439 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 440 *pOut = (q31_t) (sum >> 31);
emilmont 1:fdd22bb7aa52 441 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 442 pOut += inc;
emilmont 1:fdd22bb7aa52 443
emilmont 1:fdd22bb7aa52 444 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 445 count++;
emilmont 1:fdd22bb7aa52 446
emilmont 1:fdd22bb7aa52 447 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 448 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 449 py = pIn2;
emilmont 1:fdd22bb7aa52 450
emilmont 1:fdd22bb7aa52 451 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 452 blkCnt--;
emilmont 1:fdd22bb7aa52 453 }
emilmont 1:fdd22bb7aa52 454 }
emilmont 1:fdd22bb7aa52 455 else
emilmont 1:fdd22bb7aa52 456 {
emilmont 1:fdd22bb7aa52 457 /* If the srcBLen is not a multiple of 4,
emilmont 1:fdd22bb7aa52 458 * the blockSize2 loop cannot be unrolled by 4 */
emilmont 1:fdd22bb7aa52 459 blkCnt = blockSize2;
emilmont 1:fdd22bb7aa52 460
emilmont 1:fdd22bb7aa52 461 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 462 {
emilmont 1:fdd22bb7aa52 463 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 464 sum = 0;
emilmont 1:fdd22bb7aa52 465
emilmont 1:fdd22bb7aa52 466 /* Loop over srcBLen */
emilmont 1:fdd22bb7aa52 467 k = srcBLen;
emilmont 1:fdd22bb7aa52 468
emilmont 1:fdd22bb7aa52 469 while(k > 0u)
emilmont 1:fdd22bb7aa52 470 {
emilmont 1:fdd22bb7aa52 471 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 472 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 473
emilmont 1:fdd22bb7aa52 474 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 475 k--;
emilmont 1:fdd22bb7aa52 476 }
emilmont 1:fdd22bb7aa52 477
emilmont 1:fdd22bb7aa52 478 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 479 *pOut = (q31_t) (sum >> 31);
emilmont 1:fdd22bb7aa52 480 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 481 pOut += inc;
emilmont 1:fdd22bb7aa52 482
emilmont 1:fdd22bb7aa52 483 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 484 count++;
emilmont 1:fdd22bb7aa52 485
emilmont 1:fdd22bb7aa52 486 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 487 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 488 py = pIn2;
emilmont 1:fdd22bb7aa52 489
emilmont 1:fdd22bb7aa52 490 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 491 blkCnt--;
emilmont 1:fdd22bb7aa52 492 }
emilmont 1:fdd22bb7aa52 493 }
emilmont 1:fdd22bb7aa52 494
emilmont 1:fdd22bb7aa52 495 /* --------------------------
emilmont 1:fdd22bb7aa52 496 * Initializations of stage3
emilmont 1:fdd22bb7aa52 497 * -------------------------*/
emilmont 1:fdd22bb7aa52 498
emilmont 1:fdd22bb7aa52 499 /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 500 * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 501 * ....
emilmont 1:fdd22bb7aa52 502 * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
emilmont 1:fdd22bb7aa52 503 * sum += x[srcALen-1] * y[0]
emilmont 1:fdd22bb7aa52 504 */
emilmont 1:fdd22bb7aa52 505
emilmont 1:fdd22bb7aa52 506 /* In this stage the MAC operations are decreased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 507 The count variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 508 count = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 509
emilmont 1:fdd22bb7aa52 510 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 511 pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
emilmont 1:fdd22bb7aa52 512 px = pSrc1;
emilmont 1:fdd22bb7aa52 513
emilmont 1:fdd22bb7aa52 514 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 515 py = pIn2;
emilmont 1:fdd22bb7aa52 516
emilmont 1:fdd22bb7aa52 517 /* -------------------
emilmont 1:fdd22bb7aa52 518 * Stage3 process
emilmont 1:fdd22bb7aa52 519 * ------------------*/
emilmont 1:fdd22bb7aa52 520
emilmont 1:fdd22bb7aa52 521 while(blockSize3 > 0u)
emilmont 1:fdd22bb7aa52 522 {
emilmont 1:fdd22bb7aa52 523 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 524 sum = 0;
emilmont 1:fdd22bb7aa52 525
emilmont 1:fdd22bb7aa52 526 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 527 k = count >> 2u;
emilmont 1:fdd22bb7aa52 528
emilmont 1:fdd22bb7aa52 529 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 530 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 531 while(k > 0u)
emilmont 1:fdd22bb7aa52 532 {
emilmont 1:fdd22bb7aa52 533 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 534 /* sum += x[srcALen - srcBLen + 4] * y[3] */
emilmont 1:fdd22bb7aa52 535 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 536 /* sum += x[srcALen - srcBLen + 3] * y[2] */
emilmont 1:fdd22bb7aa52 537 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 538 /* sum += x[srcALen - srcBLen + 2] * y[1] */
emilmont 1:fdd22bb7aa52 539 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 540 /* sum += x[srcALen - srcBLen + 1] * y[0] */
emilmont 1:fdd22bb7aa52 541 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 542
emilmont 1:fdd22bb7aa52 543 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 544 k--;
emilmont 1:fdd22bb7aa52 545 }
emilmont 1:fdd22bb7aa52 546
emilmont 1:fdd22bb7aa52 547 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 548 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 549 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 550
emilmont 1:fdd22bb7aa52 551 while(k > 0u)
emilmont 1:fdd22bb7aa52 552 {
emilmont 1:fdd22bb7aa52 553 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 554 sum += (q63_t) * px++ * (*py++);
emilmont 1:fdd22bb7aa52 555
emilmont 1:fdd22bb7aa52 556 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 557 k--;
emilmont 1:fdd22bb7aa52 558 }
emilmont 1:fdd22bb7aa52 559
emilmont 1:fdd22bb7aa52 560 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 561 *pOut = (q31_t) (sum >> 31);
emilmont 1:fdd22bb7aa52 562 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 563 pOut += inc;
emilmont 1:fdd22bb7aa52 564
emilmont 1:fdd22bb7aa52 565 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 566 px = ++pSrc1;
emilmont 1:fdd22bb7aa52 567 py = pIn2;
emilmont 1:fdd22bb7aa52 568
emilmont 1:fdd22bb7aa52 569 /* Decrement the MAC count */
emilmont 1:fdd22bb7aa52 570 count--;
emilmont 1:fdd22bb7aa52 571
emilmont 1:fdd22bb7aa52 572 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 573 blockSize3--;
emilmont 1:fdd22bb7aa52 574 }
emilmont 1:fdd22bb7aa52 575
emilmont 1:fdd22bb7aa52 576 #else
emilmont 1:fdd22bb7aa52 577
emilmont 1:fdd22bb7aa52 578 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 579
emilmont 1:fdd22bb7aa52 580 q31_t *pIn1 = pSrcA; /* inputA pointer */
emilmont 1:fdd22bb7aa52 581 q31_t *pIn2 = pSrcB + (srcBLen - 1u); /* inputB pointer */
emilmont 1:fdd22bb7aa52 582 q63_t sum; /* Accumulators */
emilmont 1:fdd22bb7aa52 583 uint32_t i = 0u, j; /* loop counters */
emilmont 1:fdd22bb7aa52 584 uint32_t inv = 0u; /* Reverse order flag */
emilmont 1:fdd22bb7aa52 585 uint32_t tot = 0u; /* Length */
emilmont 1:fdd22bb7aa52 586
emilmont 1:fdd22bb7aa52 587 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 588 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 589 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 590 /* But CORR(x, y) is reverse of CORR(y, x) */
emilmont 1:fdd22bb7aa52 591 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
emilmont 1:fdd22bb7aa52 592 /* and a varaible, inv is set to 1 */
emilmont 1:fdd22bb7aa52 593 /* If lengths are not equal then zero pad has to be done to make the two
emilmont 1:fdd22bb7aa52 594 * inputs of same length. But to improve the performance, we include zeroes
emilmont 1:fdd22bb7aa52 595 * in the output instead of zero padding either of the the inputs*/
emilmont 1:fdd22bb7aa52 596 /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
emilmont 1:fdd22bb7aa52 597 * starting of the output buffer */
emilmont 1:fdd22bb7aa52 598 /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
emilmont 1:fdd22bb7aa52 599 * ending of the output buffer */
emilmont 1:fdd22bb7aa52 600 /* Once the zero padding is done the remaining of the output is calcualted
emilmont 1:fdd22bb7aa52 601 * using correlation but with the shorter signal time shifted. */
emilmont 1:fdd22bb7aa52 602
emilmont 1:fdd22bb7aa52 603 /* Calculate the length of the remaining sequence */
emilmont 1:fdd22bb7aa52 604 tot = ((srcALen + srcBLen) - 2u);
emilmont 1:fdd22bb7aa52 605
emilmont 1:fdd22bb7aa52 606 if(srcALen > srcBLen)
emilmont 1:fdd22bb7aa52 607 {
emilmont 1:fdd22bb7aa52 608 /* Calculating the number of zeros to be padded to the output */
emilmont 1:fdd22bb7aa52 609 j = srcALen - srcBLen;
emilmont 1:fdd22bb7aa52 610
emilmont 1:fdd22bb7aa52 611 /* Initialise the pointer after zero padding */
emilmont 1:fdd22bb7aa52 612 pDst += j;
emilmont 1:fdd22bb7aa52 613 }
emilmont 1:fdd22bb7aa52 614
emilmont 1:fdd22bb7aa52 615 else if(srcALen < srcBLen)
emilmont 1:fdd22bb7aa52 616 {
emilmont 1:fdd22bb7aa52 617 /* Initialization to inputB pointer */
emilmont 1:fdd22bb7aa52 618 pIn1 = pSrcB;
emilmont 1:fdd22bb7aa52 619
emilmont 1:fdd22bb7aa52 620 /* Initialization to the end of inputA pointer */
emilmont 1:fdd22bb7aa52 621 pIn2 = pSrcA + (srcALen - 1u);
emilmont 1:fdd22bb7aa52 622
emilmont 1:fdd22bb7aa52 623 /* Initialisation of the pointer after zero padding */
emilmont 1:fdd22bb7aa52 624 pDst = pDst + tot;
emilmont 1:fdd22bb7aa52 625
emilmont 1:fdd22bb7aa52 626 /* Swapping the lengths */
emilmont 1:fdd22bb7aa52 627 j = srcALen;
emilmont 1:fdd22bb7aa52 628 srcALen = srcBLen;
emilmont 1:fdd22bb7aa52 629 srcBLen = j;
emilmont 1:fdd22bb7aa52 630
emilmont 1:fdd22bb7aa52 631 /* Setting the reverse flag */
emilmont 1:fdd22bb7aa52 632 inv = 1;
emilmont 1:fdd22bb7aa52 633
emilmont 1:fdd22bb7aa52 634 }
emilmont 1:fdd22bb7aa52 635
emilmont 1:fdd22bb7aa52 636 /* Loop to calculate correlation for output length number of times */
emilmont 1:fdd22bb7aa52 637 for (i = 0u; i <= tot; i++)
emilmont 1:fdd22bb7aa52 638 {
emilmont 1:fdd22bb7aa52 639 /* Initialize sum with zero to carry on MAC operations */
emilmont 1:fdd22bb7aa52 640 sum = 0;
emilmont 1:fdd22bb7aa52 641
emilmont 1:fdd22bb7aa52 642 /* Loop to perform MAC operations according to correlation equation */
emilmont 1:fdd22bb7aa52 643 for (j = 0u; j <= i; j++)
emilmont 1:fdd22bb7aa52 644 {
emilmont 1:fdd22bb7aa52 645 /* Check the array limitations */
emilmont 1:fdd22bb7aa52 646 if((((i - j) < srcBLen) && (j < srcALen)))
emilmont 1:fdd22bb7aa52 647 {
emilmont 1:fdd22bb7aa52 648 /* z[i] += x[i-j] * y[j] */
emilmont 1:fdd22bb7aa52 649 sum += ((q63_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
emilmont 1:fdd22bb7aa52 650 }
emilmont 1:fdd22bb7aa52 651 }
emilmont 1:fdd22bb7aa52 652 /* Store the output in the destination buffer */
emilmont 1:fdd22bb7aa52 653 if(inv == 1)
emilmont 1:fdd22bb7aa52 654 *pDst-- = (q31_t) (sum >> 31u);
emilmont 1:fdd22bb7aa52 655 else
emilmont 1:fdd22bb7aa52 656 *pDst++ = (q31_t) (sum >> 31u);
emilmont 1:fdd22bb7aa52 657 }
emilmont 1:fdd22bb7aa52 658
mbed_official 3:7a284390b0ce 659 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emilmont 1:fdd22bb7aa52 660
emilmont 1:fdd22bb7aa52 661 }
emilmont 1:fdd22bb7aa52 662
emilmont 1:fdd22bb7aa52 663 /**
emilmont 1:fdd22bb7aa52 664 * @} end of Corr group
emilmont 1:fdd22bb7aa52 665 */