CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

Committer:
mbed_official
Date:
Fri Nov 08 13:45:10 2013 +0000
Revision:
3:7a284390b0ce
Parent:
2:da51fb522205
Synchronized with git revision e69956aba2f68a2a26ac26b051f8d349deaa1ce8

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------------
mbed_official 3:7a284390b0ce 2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
mbed_official 3:7a284390b0ce 4 * $Date: 17. January 2013
mbed_official 3:7a284390b0ce 5 * $Revision: V1.4.1
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_correlate_f32.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: Correlation of floating-point sequences.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
mbed_official 3:7a284390b0ce 14 * Redistribution and use in source and binary forms, with or without
mbed_official 3:7a284390b0ce 15 * modification, are permitted provided that the following conditions
mbed_official 3:7a284390b0ce 16 * are met:
mbed_official 3:7a284390b0ce 17 * - Redistributions of source code must retain the above copyright
mbed_official 3:7a284390b0ce 18 * notice, this list of conditions and the following disclaimer.
mbed_official 3:7a284390b0ce 19 * - Redistributions in binary form must reproduce the above copyright
mbed_official 3:7a284390b0ce 20 * notice, this list of conditions and the following disclaimer in
mbed_official 3:7a284390b0ce 21 * the documentation and/or other materials provided with the
mbed_official 3:7a284390b0ce 22 * distribution.
mbed_official 3:7a284390b0ce 23 * - Neither the name of ARM LIMITED nor the names of its contributors
mbed_official 3:7a284390b0ce 24 * may be used to endorse or promote products derived from this
mbed_official 3:7a284390b0ce 25 * software without specific prior written permission.
mbed_official 3:7a284390b0ce 26 *
mbed_official 3:7a284390b0ce 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
mbed_official 3:7a284390b0ce 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
mbed_official 3:7a284390b0ce 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
mbed_official 3:7a284390b0ce 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
mbed_official 3:7a284390b0ce 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
mbed_official 3:7a284390b0ce 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
mbed_official 3:7a284390b0ce 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mbed_official 3:7a284390b0ce 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
mbed_official 3:7a284390b0ce 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
mbed_official 3:7a284390b0ce 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mbed_official 3:7a284390b0ce 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
mbed_official 3:7a284390b0ce 38 * POSSIBILITY OF SUCH DAMAGE.
emilmont 1:fdd22bb7aa52 39 * -------------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 40
emilmont 1:fdd22bb7aa52 41 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 42
emilmont 1:fdd22bb7aa52 43 /**
emilmont 1:fdd22bb7aa52 44 * @ingroup groupFilters
emilmont 1:fdd22bb7aa52 45 */
emilmont 1:fdd22bb7aa52 46
emilmont 1:fdd22bb7aa52 47 /**
emilmont 1:fdd22bb7aa52 48 * @defgroup Corr Correlation
emilmont 1:fdd22bb7aa52 49 *
emilmont 1:fdd22bb7aa52 50 * Correlation is a mathematical operation that is similar to convolution.
emilmont 1:fdd22bb7aa52 51 * As with convolution, correlation uses two signals to produce a third signal.
emilmont 1:fdd22bb7aa52 52 * The underlying algorithms in correlation and convolution are identical except that one of the inputs is flipped in convolution.
emilmont 1:fdd22bb7aa52 53 * Correlation is commonly used to measure the similarity between two signals.
emilmont 1:fdd22bb7aa52 54 * It has applications in pattern recognition, cryptanalysis, and searching.
emilmont 1:fdd22bb7aa52 55 * The CMSIS library provides correlation functions for Q7, Q15, Q31 and floating-point data types.
emilmont 1:fdd22bb7aa52 56 * Fast versions of the Q15 and Q31 functions are also provided.
emilmont 1:fdd22bb7aa52 57 *
emilmont 1:fdd22bb7aa52 58 * \par Algorithm
emilmont 1:fdd22bb7aa52 59 * Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
emilmont 1:fdd22bb7aa52 60 * The convolution of the two signals is denoted by
emilmont 1:fdd22bb7aa52 61 * <pre>
emilmont 1:fdd22bb7aa52 62 * c[n] = a[n] * b[n]
emilmont 1:fdd22bb7aa52 63 * </pre>
emilmont 1:fdd22bb7aa52 64 * In correlation, one of the signals is flipped in time
emilmont 1:fdd22bb7aa52 65 * <pre>
emilmont 1:fdd22bb7aa52 66 * c[n] = a[n] * b[-n]
emilmont 1:fdd22bb7aa52 67 * </pre>
emilmont 1:fdd22bb7aa52 68 *
emilmont 1:fdd22bb7aa52 69 * \par
emilmont 1:fdd22bb7aa52 70 * and this is mathematically defined as
emilmont 1:fdd22bb7aa52 71 * \image html CorrelateEquation.gif
emilmont 1:fdd22bb7aa52 72 * \par
emilmont 1:fdd22bb7aa52 73 * The <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
emilmont 1:fdd22bb7aa52 74 * The result <code>c[n]</code> is of length <code>2 * max(srcALen, srcBLen) - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., (2 * max(srcALen, srcBLen) - 2)</code>.
emilmont 1:fdd22bb7aa52 75 * The output result is written to <code>pDst</code> and the calling function must allocate <code>2 * max(srcALen, srcBLen) - 1</code> words for the result.
emilmont 1:fdd22bb7aa52 76 *
emilmont 1:fdd22bb7aa52 77 * <b>Note</b>
emilmont 1:fdd22bb7aa52 78 * \par
emilmont 1:fdd22bb7aa52 79 * The <code>pDst</code> should be initialized to all zeros before being used.
emilmont 1:fdd22bb7aa52 80 *
emilmont 1:fdd22bb7aa52 81 * <b>Fixed-Point Behavior</b>
emilmont 1:fdd22bb7aa52 82 * \par
emilmont 1:fdd22bb7aa52 83 * Correlation requires summing up a large number of intermediate products.
emilmont 1:fdd22bb7aa52 84 * As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
emilmont 1:fdd22bb7aa52 85 * Refer to the function specific documentation below for further details of the particular algorithm used.
emilmont 1:fdd22bb7aa52 86 *
emilmont 1:fdd22bb7aa52 87 *
emilmont 1:fdd22bb7aa52 88 * <b>Fast Versions</b>
emilmont 1:fdd22bb7aa52 89 *
emilmont 1:fdd22bb7aa52 90 * \par
emilmont 1:fdd22bb7aa52 91 * Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of correlate and the design requires
emilmont 1:fdd22bb7aa52 92 * the input signals should be scaled down to avoid intermediate overflows.
emilmont 1:fdd22bb7aa52 93 *
emilmont 1:fdd22bb7aa52 94 *
emilmont 1:fdd22bb7aa52 95 * <b>Opt Versions</b>
emilmont 1:fdd22bb7aa52 96 *
emilmont 1:fdd22bb7aa52 97 * \par
emilmont 1:fdd22bb7aa52 98 * Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
emilmont 1:fdd22bb7aa52 99 * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions of correlate
emilmont 1:fdd22bb7aa52 100 */
emilmont 1:fdd22bb7aa52 101
emilmont 1:fdd22bb7aa52 102 /**
emilmont 1:fdd22bb7aa52 103 * @addtogroup Corr
emilmont 1:fdd22bb7aa52 104 * @{
emilmont 1:fdd22bb7aa52 105 */
emilmont 1:fdd22bb7aa52 106 /**
emilmont 1:fdd22bb7aa52 107 * @brief Correlation of floating-point sequences.
emilmont 1:fdd22bb7aa52 108 * @param[in] *pSrcA points to the first input sequence.
emilmont 1:fdd22bb7aa52 109 * @param[in] srcALen length of the first input sequence.
emilmont 1:fdd22bb7aa52 110 * @param[in] *pSrcB points to the second input sequence.
emilmont 1:fdd22bb7aa52 111 * @param[in] srcBLen length of the second input sequence.
emilmont 1:fdd22bb7aa52 112 * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
emilmont 1:fdd22bb7aa52 113 * @return none.
emilmont 1:fdd22bb7aa52 114 */
emilmont 1:fdd22bb7aa52 115
emilmont 1:fdd22bb7aa52 116 void arm_correlate_f32(
emilmont 1:fdd22bb7aa52 117 float32_t * pSrcA,
emilmont 1:fdd22bb7aa52 118 uint32_t srcALen,
emilmont 1:fdd22bb7aa52 119 float32_t * pSrcB,
emilmont 1:fdd22bb7aa52 120 uint32_t srcBLen,
emilmont 1:fdd22bb7aa52 121 float32_t * pDst)
emilmont 1:fdd22bb7aa52 122 {
emilmont 1:fdd22bb7aa52 123
emilmont 1:fdd22bb7aa52 124
mbed_official 3:7a284390b0ce 125 #ifndef ARM_MATH_CM0_FAMILY
emilmont 1:fdd22bb7aa52 126
emilmont 1:fdd22bb7aa52 127 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 128
emilmont 1:fdd22bb7aa52 129 float32_t *pIn1; /* inputA pointer */
emilmont 1:fdd22bb7aa52 130 float32_t *pIn2; /* inputB pointer */
emilmont 1:fdd22bb7aa52 131 float32_t *pOut = pDst; /* output pointer */
emilmont 1:fdd22bb7aa52 132 float32_t *px; /* Intermediate inputA pointer */
emilmont 1:fdd22bb7aa52 133 float32_t *py; /* Intermediate inputB pointer */
emilmont 1:fdd22bb7aa52 134 float32_t *pSrc1; /* Intermediate pointers */
emilmont 1:fdd22bb7aa52 135 float32_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
emilmont 1:fdd22bb7aa52 136 float32_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */
emilmont 1:fdd22bb7aa52 137 uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counters */
emilmont 1:fdd22bb7aa52 138 int32_t inc = 1; /* Destination address modifier */
emilmont 1:fdd22bb7aa52 139
emilmont 1:fdd22bb7aa52 140
emilmont 1:fdd22bb7aa52 141 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 142 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 143 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 144 /* But CORR(x, y) is reverse of CORR(y, x) */
emilmont 1:fdd22bb7aa52 145 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
emilmont 1:fdd22bb7aa52 146 /* and the destination pointer modifier, inc is set to -1 */
emilmont 1:fdd22bb7aa52 147 /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
emilmont 1:fdd22bb7aa52 148 /* But to improve the performance,
emilmont 1:fdd22bb7aa52 149 * we include zeroes in the output instead of zero padding either of the the inputs*/
emilmont 1:fdd22bb7aa52 150 /* If srcALen > srcBLen,
emilmont 1:fdd22bb7aa52 151 * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
emilmont 1:fdd22bb7aa52 152 /* If srcALen < srcBLen,
emilmont 1:fdd22bb7aa52 153 * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
emilmont 1:fdd22bb7aa52 154 if(srcALen >= srcBLen)
emilmont 1:fdd22bb7aa52 155 {
emilmont 1:fdd22bb7aa52 156 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 157 pIn1 = pSrcA;
emilmont 1:fdd22bb7aa52 158
emilmont 1:fdd22bb7aa52 159 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 160 pIn2 = pSrcB;
emilmont 1:fdd22bb7aa52 161
emilmont 1:fdd22bb7aa52 162 /* Number of output samples is calculated */
emilmont 1:fdd22bb7aa52 163 outBlockSize = (2u * srcALen) - 1u;
emilmont 1:fdd22bb7aa52 164
emilmont 1:fdd22bb7aa52 165 /* When srcALen > srcBLen, zero padding has to be done to srcB
emilmont 1:fdd22bb7aa52 166 * to make their lengths equal.
emilmont 1:fdd22bb7aa52 167 * Instead, (outBlockSize - (srcALen + srcBLen - 1))
emilmont 1:fdd22bb7aa52 168 * number of output samples are made zero */
emilmont 1:fdd22bb7aa52 169 j = outBlockSize - (srcALen + (srcBLen - 1u));
emilmont 1:fdd22bb7aa52 170
emilmont 1:fdd22bb7aa52 171 /* Updating the pointer position to non zero value */
emilmont 1:fdd22bb7aa52 172 pOut += j;
emilmont 1:fdd22bb7aa52 173
emilmont 1:fdd22bb7aa52 174 //while(j > 0u)
emilmont 1:fdd22bb7aa52 175 //{
emilmont 1:fdd22bb7aa52 176 // /* Zero is stored in the destination buffer */
emilmont 1:fdd22bb7aa52 177 // *pOut++ = 0.0f;
emilmont 1:fdd22bb7aa52 178
emilmont 1:fdd22bb7aa52 179 // /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 180 // j--;
emilmont 1:fdd22bb7aa52 181 //}
emilmont 1:fdd22bb7aa52 182
emilmont 1:fdd22bb7aa52 183 }
emilmont 1:fdd22bb7aa52 184 else
emilmont 1:fdd22bb7aa52 185 {
emilmont 1:fdd22bb7aa52 186 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 187 pIn1 = pSrcB;
emilmont 1:fdd22bb7aa52 188
emilmont 1:fdd22bb7aa52 189 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 190 pIn2 = pSrcA;
emilmont 1:fdd22bb7aa52 191
emilmont 1:fdd22bb7aa52 192 /* srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 193 j = srcBLen;
emilmont 1:fdd22bb7aa52 194 srcBLen = srcALen;
emilmont 1:fdd22bb7aa52 195 srcALen = j;
emilmont 1:fdd22bb7aa52 196
emilmont 1:fdd22bb7aa52 197 /* CORR(x, y) = Reverse order(CORR(y, x)) */
emilmont 1:fdd22bb7aa52 198 /* Hence set the destination pointer to point to the last output sample */
emilmont 1:fdd22bb7aa52 199 pOut = pDst + ((srcALen + srcBLen) - 2u);
emilmont 1:fdd22bb7aa52 200
emilmont 1:fdd22bb7aa52 201 /* Destination address modifier is set to -1 */
emilmont 1:fdd22bb7aa52 202 inc = -1;
emilmont 1:fdd22bb7aa52 203
emilmont 1:fdd22bb7aa52 204 }
emilmont 1:fdd22bb7aa52 205
emilmont 1:fdd22bb7aa52 206 /* The function is internally
emilmont 1:fdd22bb7aa52 207 * divided into three parts according to the number of multiplications that has to be
emilmont 1:fdd22bb7aa52 208 * taken place between inputA samples and inputB samples. In the first part of the
emilmont 1:fdd22bb7aa52 209 * algorithm, the multiplications increase by one for every iteration.
emilmont 1:fdd22bb7aa52 210 * In the second part of the algorithm, srcBLen number of multiplications are done.
emilmont 1:fdd22bb7aa52 211 * In the third part of the algorithm, the multiplications decrease by one
emilmont 1:fdd22bb7aa52 212 * for every iteration.*/
emilmont 1:fdd22bb7aa52 213 /* The algorithm is implemented in three stages.
emilmont 1:fdd22bb7aa52 214 * The loop counters of each stage is initiated here. */
emilmont 1:fdd22bb7aa52 215 blockSize1 = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 216 blockSize2 = srcALen - (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 217 blockSize3 = blockSize1;
emilmont 1:fdd22bb7aa52 218
emilmont 1:fdd22bb7aa52 219 /* --------------------------
emilmont 1:fdd22bb7aa52 220 * Initializations of stage1
emilmont 1:fdd22bb7aa52 221 * -------------------------*/
emilmont 1:fdd22bb7aa52 222
emilmont 1:fdd22bb7aa52 223 /* sum = x[0] * y[srcBlen - 1]
emilmont 1:fdd22bb7aa52 224 * sum = x[0] * y[srcBlen-2] + x[1] * y[srcBlen - 1]
emilmont 1:fdd22bb7aa52 225 * ....
emilmont 1:fdd22bb7aa52 226 * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
emilmont 1:fdd22bb7aa52 227 */
emilmont 1:fdd22bb7aa52 228
emilmont 1:fdd22bb7aa52 229 /* In this stage the MAC operations are increased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 230 The count variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 231 count = 1u;
emilmont 1:fdd22bb7aa52 232
emilmont 1:fdd22bb7aa52 233 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 234 px = pIn1;
emilmont 1:fdd22bb7aa52 235
emilmont 1:fdd22bb7aa52 236 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 237 pSrc1 = pIn2 + (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 238 py = pSrc1;
emilmont 1:fdd22bb7aa52 239
emilmont 1:fdd22bb7aa52 240 /* ------------------------
emilmont 1:fdd22bb7aa52 241 * Stage1 process
emilmont 1:fdd22bb7aa52 242 * ----------------------*/
emilmont 1:fdd22bb7aa52 243
emilmont 1:fdd22bb7aa52 244 /* The first stage starts here */
emilmont 1:fdd22bb7aa52 245 while(blockSize1 > 0u)
emilmont 1:fdd22bb7aa52 246 {
emilmont 1:fdd22bb7aa52 247 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 248 sum = 0.0f;
emilmont 1:fdd22bb7aa52 249
emilmont 1:fdd22bb7aa52 250 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 251 k = count >> 2u;
emilmont 1:fdd22bb7aa52 252
emilmont 1:fdd22bb7aa52 253 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 254 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 255 while(k > 0u)
emilmont 1:fdd22bb7aa52 256 {
emilmont 1:fdd22bb7aa52 257 /* x[0] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 258 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 259 /* x[1] * y[srcBLen - 3] */
emilmont 1:fdd22bb7aa52 260 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 261 /* x[2] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 262 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 263 /* x[3] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 264 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 265
emilmont 1:fdd22bb7aa52 266 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 267 k--;
emilmont 1:fdd22bb7aa52 268 }
emilmont 1:fdd22bb7aa52 269
emilmont 1:fdd22bb7aa52 270 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 271 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 272 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 273
emilmont 1:fdd22bb7aa52 274 while(k > 0u)
emilmont 1:fdd22bb7aa52 275 {
emilmont 1:fdd22bb7aa52 276 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 277 /* x[0] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 278 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 279
emilmont 1:fdd22bb7aa52 280 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 281 k--;
emilmont 1:fdd22bb7aa52 282 }
emilmont 1:fdd22bb7aa52 283
emilmont 1:fdd22bb7aa52 284 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 285 *pOut = sum;
emilmont 1:fdd22bb7aa52 286 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 287 pOut += inc;
emilmont 1:fdd22bb7aa52 288
emilmont 1:fdd22bb7aa52 289 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 290 py = pSrc1 - count;
emilmont 1:fdd22bb7aa52 291 px = pIn1;
emilmont 1:fdd22bb7aa52 292
emilmont 1:fdd22bb7aa52 293 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 294 count++;
emilmont 1:fdd22bb7aa52 295
emilmont 1:fdd22bb7aa52 296 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 297 blockSize1--;
emilmont 1:fdd22bb7aa52 298 }
emilmont 1:fdd22bb7aa52 299
emilmont 1:fdd22bb7aa52 300 /* --------------------------
emilmont 1:fdd22bb7aa52 301 * Initializations of stage2
emilmont 1:fdd22bb7aa52 302 * ------------------------*/
emilmont 1:fdd22bb7aa52 303
emilmont 1:fdd22bb7aa52 304 /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 305 * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 306 * ....
emilmont 1:fdd22bb7aa52 307 * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 308 */
emilmont 1:fdd22bb7aa52 309
emilmont 1:fdd22bb7aa52 310 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 311 px = pIn1;
emilmont 1:fdd22bb7aa52 312
emilmont 1:fdd22bb7aa52 313 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 314 py = pIn2;
emilmont 1:fdd22bb7aa52 315
emilmont 1:fdd22bb7aa52 316 /* count is index by which the pointer pIn1 to be incremented */
emilmont 1:fdd22bb7aa52 317 count = 0u;
emilmont 1:fdd22bb7aa52 318
emilmont 1:fdd22bb7aa52 319 /* -------------------
emilmont 1:fdd22bb7aa52 320 * Stage2 process
emilmont 1:fdd22bb7aa52 321 * ------------------*/
emilmont 1:fdd22bb7aa52 322
emilmont 1:fdd22bb7aa52 323 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
emilmont 1:fdd22bb7aa52 324 * So, to loop unroll over blockSize2,
emilmont 1:fdd22bb7aa52 325 * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */
emilmont 1:fdd22bb7aa52 326 if(srcBLen >= 4u)
emilmont 1:fdd22bb7aa52 327 {
emilmont 1:fdd22bb7aa52 328 /* Loop unroll over blockSize2, by 4 */
emilmont 1:fdd22bb7aa52 329 blkCnt = blockSize2 >> 2u;
emilmont 1:fdd22bb7aa52 330
emilmont 1:fdd22bb7aa52 331 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 332 {
emilmont 1:fdd22bb7aa52 333 /* Set all accumulators to zero */
emilmont 1:fdd22bb7aa52 334 acc0 = 0.0f;
emilmont 1:fdd22bb7aa52 335 acc1 = 0.0f;
emilmont 1:fdd22bb7aa52 336 acc2 = 0.0f;
emilmont 1:fdd22bb7aa52 337 acc3 = 0.0f;
emilmont 1:fdd22bb7aa52 338
emilmont 1:fdd22bb7aa52 339 /* read x[0], x[1], x[2] samples */
emilmont 1:fdd22bb7aa52 340 x0 = *(px++);
emilmont 1:fdd22bb7aa52 341 x1 = *(px++);
emilmont 1:fdd22bb7aa52 342 x2 = *(px++);
emilmont 1:fdd22bb7aa52 343
emilmont 1:fdd22bb7aa52 344 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 345 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 346
emilmont 1:fdd22bb7aa52 347 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 348 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 349 do
emilmont 1:fdd22bb7aa52 350 {
emilmont 1:fdd22bb7aa52 351 /* Read y[0] sample */
emilmont 1:fdd22bb7aa52 352 c0 = *(py++);
emilmont 1:fdd22bb7aa52 353
emilmont 1:fdd22bb7aa52 354 /* Read x[3] sample */
emilmont 1:fdd22bb7aa52 355 x3 = *(px++);
emilmont 1:fdd22bb7aa52 356
emilmont 1:fdd22bb7aa52 357 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 358 /* acc0 += x[0] * y[0] */
emilmont 1:fdd22bb7aa52 359 acc0 += x0 * c0;
emilmont 1:fdd22bb7aa52 360 /* acc1 += x[1] * y[0] */
emilmont 1:fdd22bb7aa52 361 acc1 += x1 * c0;
emilmont 1:fdd22bb7aa52 362 /* acc2 += x[2] * y[0] */
emilmont 1:fdd22bb7aa52 363 acc2 += x2 * c0;
emilmont 1:fdd22bb7aa52 364 /* acc3 += x[3] * y[0] */
emilmont 1:fdd22bb7aa52 365 acc3 += x3 * c0;
emilmont 1:fdd22bb7aa52 366
emilmont 1:fdd22bb7aa52 367 /* Read y[1] sample */
emilmont 1:fdd22bb7aa52 368 c0 = *(py++);
emilmont 1:fdd22bb7aa52 369
emilmont 1:fdd22bb7aa52 370 /* Read x[4] sample */
emilmont 1:fdd22bb7aa52 371 x0 = *(px++);
emilmont 1:fdd22bb7aa52 372
emilmont 1:fdd22bb7aa52 373 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 374 /* acc0 += x[1] * y[1] */
emilmont 1:fdd22bb7aa52 375 acc0 += x1 * c0;
emilmont 1:fdd22bb7aa52 376 /* acc1 += x[2] * y[1] */
emilmont 1:fdd22bb7aa52 377 acc1 += x2 * c0;
emilmont 1:fdd22bb7aa52 378 /* acc2 += x[3] * y[1] */
emilmont 1:fdd22bb7aa52 379 acc2 += x3 * c0;
emilmont 1:fdd22bb7aa52 380 /* acc3 += x[4] * y[1] */
emilmont 1:fdd22bb7aa52 381 acc3 += x0 * c0;
emilmont 1:fdd22bb7aa52 382
emilmont 1:fdd22bb7aa52 383 /* Read y[2] sample */
emilmont 1:fdd22bb7aa52 384 c0 = *(py++);
emilmont 1:fdd22bb7aa52 385
emilmont 1:fdd22bb7aa52 386 /* Read x[5] sample */
emilmont 1:fdd22bb7aa52 387 x1 = *(px++);
emilmont 1:fdd22bb7aa52 388
emilmont 1:fdd22bb7aa52 389 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 390 /* acc0 += x[2] * y[2] */
emilmont 1:fdd22bb7aa52 391 acc0 += x2 * c0;
emilmont 1:fdd22bb7aa52 392 /* acc1 += x[3] * y[2] */
emilmont 1:fdd22bb7aa52 393 acc1 += x3 * c0;
emilmont 1:fdd22bb7aa52 394 /* acc2 += x[4] * y[2] */
emilmont 1:fdd22bb7aa52 395 acc2 += x0 * c0;
emilmont 1:fdd22bb7aa52 396 /* acc3 += x[5] * y[2] */
emilmont 1:fdd22bb7aa52 397 acc3 += x1 * c0;
emilmont 1:fdd22bb7aa52 398
emilmont 1:fdd22bb7aa52 399 /* Read y[3] sample */
emilmont 1:fdd22bb7aa52 400 c0 = *(py++);
emilmont 1:fdd22bb7aa52 401
emilmont 1:fdd22bb7aa52 402 /* Read x[6] sample */
emilmont 1:fdd22bb7aa52 403 x2 = *(px++);
emilmont 1:fdd22bb7aa52 404
emilmont 1:fdd22bb7aa52 405 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 406 /* acc0 += x[3] * y[3] */
emilmont 1:fdd22bb7aa52 407 acc0 += x3 * c0;
emilmont 1:fdd22bb7aa52 408 /* acc1 += x[4] * y[3] */
emilmont 1:fdd22bb7aa52 409 acc1 += x0 * c0;
emilmont 1:fdd22bb7aa52 410 /* acc2 += x[5] * y[3] */
emilmont 1:fdd22bb7aa52 411 acc2 += x1 * c0;
emilmont 1:fdd22bb7aa52 412 /* acc3 += x[6] * y[3] */
emilmont 1:fdd22bb7aa52 413 acc3 += x2 * c0;
emilmont 1:fdd22bb7aa52 414
emilmont 1:fdd22bb7aa52 415
emilmont 1:fdd22bb7aa52 416 } while(--k);
emilmont 1:fdd22bb7aa52 417
emilmont 1:fdd22bb7aa52 418 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 419 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 420 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 421
emilmont 1:fdd22bb7aa52 422 while(k > 0u)
emilmont 1:fdd22bb7aa52 423 {
emilmont 1:fdd22bb7aa52 424 /* Read y[4] sample */
emilmont 1:fdd22bb7aa52 425 c0 = *(py++);
emilmont 1:fdd22bb7aa52 426
emilmont 1:fdd22bb7aa52 427 /* Read x[7] sample */
emilmont 1:fdd22bb7aa52 428 x3 = *(px++);
emilmont 1:fdd22bb7aa52 429
emilmont 1:fdd22bb7aa52 430 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 431 /* acc0 += x[4] * y[4] */
emilmont 1:fdd22bb7aa52 432 acc0 += x0 * c0;
emilmont 1:fdd22bb7aa52 433 /* acc1 += x[5] * y[4] */
emilmont 1:fdd22bb7aa52 434 acc1 += x1 * c0;
emilmont 1:fdd22bb7aa52 435 /* acc2 += x[6] * y[4] */
emilmont 1:fdd22bb7aa52 436 acc2 += x2 * c0;
emilmont 1:fdd22bb7aa52 437 /* acc3 += x[7] * y[4] */
emilmont 1:fdd22bb7aa52 438 acc3 += x3 * c0;
emilmont 1:fdd22bb7aa52 439
emilmont 1:fdd22bb7aa52 440 /* Reuse the present samples for the next MAC */
emilmont 1:fdd22bb7aa52 441 x0 = x1;
emilmont 1:fdd22bb7aa52 442 x1 = x2;
emilmont 1:fdd22bb7aa52 443 x2 = x3;
emilmont 1:fdd22bb7aa52 444
emilmont 1:fdd22bb7aa52 445 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 446 k--;
emilmont 1:fdd22bb7aa52 447 }
emilmont 1:fdd22bb7aa52 448
emilmont 1:fdd22bb7aa52 449 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 450 *pOut = acc0;
emilmont 1:fdd22bb7aa52 451 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 452 pOut += inc;
emilmont 1:fdd22bb7aa52 453
emilmont 1:fdd22bb7aa52 454 *pOut = acc1;
emilmont 1:fdd22bb7aa52 455 pOut += inc;
emilmont 1:fdd22bb7aa52 456
emilmont 1:fdd22bb7aa52 457 *pOut = acc2;
emilmont 1:fdd22bb7aa52 458 pOut += inc;
emilmont 1:fdd22bb7aa52 459
emilmont 1:fdd22bb7aa52 460 *pOut = acc3;
emilmont 1:fdd22bb7aa52 461 pOut += inc;
emilmont 1:fdd22bb7aa52 462
emilmont 1:fdd22bb7aa52 463 /* Increment the pointer pIn1 index, count by 4 */
emilmont 1:fdd22bb7aa52 464 count += 4u;
emilmont 1:fdd22bb7aa52 465
emilmont 1:fdd22bb7aa52 466 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 467 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 468 py = pIn2;
emilmont 1:fdd22bb7aa52 469
emilmont 1:fdd22bb7aa52 470 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 471 blkCnt--;
emilmont 1:fdd22bb7aa52 472 }
emilmont 1:fdd22bb7aa52 473
emilmont 1:fdd22bb7aa52 474 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
emilmont 1:fdd22bb7aa52 475 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 476 blkCnt = blockSize2 % 0x4u;
emilmont 1:fdd22bb7aa52 477
emilmont 1:fdd22bb7aa52 478 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 479 {
emilmont 1:fdd22bb7aa52 480 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 481 sum = 0.0f;
emilmont 1:fdd22bb7aa52 482
emilmont 1:fdd22bb7aa52 483 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 484 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 485
emilmont 1:fdd22bb7aa52 486 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 487 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 488 while(k > 0u)
emilmont 1:fdd22bb7aa52 489 {
emilmont 1:fdd22bb7aa52 490 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 491 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 492 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 493 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 494 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 495
emilmont 1:fdd22bb7aa52 496 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 497 k--;
emilmont 1:fdd22bb7aa52 498 }
emilmont 1:fdd22bb7aa52 499
emilmont 1:fdd22bb7aa52 500 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 501 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 502 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 503
emilmont 1:fdd22bb7aa52 504 while(k > 0u)
emilmont 1:fdd22bb7aa52 505 {
emilmont 1:fdd22bb7aa52 506 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 507 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 508
emilmont 1:fdd22bb7aa52 509 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 510 k--;
emilmont 1:fdd22bb7aa52 511 }
emilmont 1:fdd22bb7aa52 512
emilmont 1:fdd22bb7aa52 513 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 514 *pOut = sum;
emilmont 1:fdd22bb7aa52 515 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 516 pOut += inc;
emilmont 1:fdd22bb7aa52 517
emilmont 1:fdd22bb7aa52 518 /* Increment the pointer pIn1 index, count by 1 */
emilmont 1:fdd22bb7aa52 519 count++;
emilmont 1:fdd22bb7aa52 520
emilmont 1:fdd22bb7aa52 521 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 522 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 523 py = pIn2;
emilmont 1:fdd22bb7aa52 524
emilmont 1:fdd22bb7aa52 525 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 526 blkCnt--;
emilmont 1:fdd22bb7aa52 527 }
emilmont 1:fdd22bb7aa52 528 }
emilmont 1:fdd22bb7aa52 529 else
emilmont 1:fdd22bb7aa52 530 {
emilmont 1:fdd22bb7aa52 531 /* If the srcBLen is not a multiple of 4,
emilmont 1:fdd22bb7aa52 532 * the blockSize2 loop cannot be unrolled by 4 */
emilmont 1:fdd22bb7aa52 533 blkCnt = blockSize2;
emilmont 1:fdd22bb7aa52 534
emilmont 1:fdd22bb7aa52 535 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 536 {
emilmont 1:fdd22bb7aa52 537 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 538 sum = 0.0f;
emilmont 1:fdd22bb7aa52 539
emilmont 1:fdd22bb7aa52 540 /* Loop over srcBLen */
emilmont 1:fdd22bb7aa52 541 k = srcBLen;
emilmont 1:fdd22bb7aa52 542
emilmont 1:fdd22bb7aa52 543 while(k > 0u)
emilmont 1:fdd22bb7aa52 544 {
emilmont 1:fdd22bb7aa52 545 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 546 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 547
emilmont 1:fdd22bb7aa52 548 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 549 k--;
emilmont 1:fdd22bb7aa52 550 }
emilmont 1:fdd22bb7aa52 551
emilmont 1:fdd22bb7aa52 552 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 553 *pOut = sum;
emilmont 1:fdd22bb7aa52 554 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 555 pOut += inc;
emilmont 1:fdd22bb7aa52 556
emilmont 1:fdd22bb7aa52 557 /* Increment the pointer pIn1 index, count by 1 */
emilmont 1:fdd22bb7aa52 558 count++;
emilmont 1:fdd22bb7aa52 559
emilmont 1:fdd22bb7aa52 560 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 561 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 562 py = pIn2;
emilmont 1:fdd22bb7aa52 563
emilmont 1:fdd22bb7aa52 564 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 565 blkCnt--;
emilmont 1:fdd22bb7aa52 566 }
emilmont 1:fdd22bb7aa52 567 }
emilmont 1:fdd22bb7aa52 568
emilmont 1:fdd22bb7aa52 569 /* --------------------------
emilmont 1:fdd22bb7aa52 570 * Initializations of stage3
emilmont 1:fdd22bb7aa52 571 * -------------------------*/
emilmont 1:fdd22bb7aa52 572
emilmont 1:fdd22bb7aa52 573 /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 574 * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 575 * ....
emilmont 1:fdd22bb7aa52 576 * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
emilmont 1:fdd22bb7aa52 577 * sum += x[srcALen-1] * y[0]
emilmont 1:fdd22bb7aa52 578 */
emilmont 1:fdd22bb7aa52 579
emilmont 1:fdd22bb7aa52 580 /* In this stage the MAC operations are decreased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 581 The count variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 582 count = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 583
emilmont 1:fdd22bb7aa52 584 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 585 pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
emilmont 1:fdd22bb7aa52 586 px = pSrc1;
emilmont 1:fdd22bb7aa52 587
emilmont 1:fdd22bb7aa52 588 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 589 py = pIn2;
emilmont 1:fdd22bb7aa52 590
emilmont 1:fdd22bb7aa52 591 /* -------------------
emilmont 1:fdd22bb7aa52 592 * Stage3 process
emilmont 1:fdd22bb7aa52 593 * ------------------*/
emilmont 1:fdd22bb7aa52 594
emilmont 1:fdd22bb7aa52 595 while(blockSize3 > 0u)
emilmont 1:fdd22bb7aa52 596 {
emilmont 1:fdd22bb7aa52 597 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 598 sum = 0.0f;
emilmont 1:fdd22bb7aa52 599
emilmont 1:fdd22bb7aa52 600 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 601 k = count >> 2u;
emilmont 1:fdd22bb7aa52 602
emilmont 1:fdd22bb7aa52 603 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 604 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 605 while(k > 0u)
emilmont 1:fdd22bb7aa52 606 {
emilmont 1:fdd22bb7aa52 607 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 608 /* sum += x[srcALen - srcBLen + 4] * y[3] */
emilmont 1:fdd22bb7aa52 609 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 610 /* sum += x[srcALen - srcBLen + 3] * y[2] */
emilmont 1:fdd22bb7aa52 611 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 612 /* sum += x[srcALen - srcBLen + 2] * y[1] */
emilmont 1:fdd22bb7aa52 613 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 614 /* sum += x[srcALen - srcBLen + 1] * y[0] */
emilmont 1:fdd22bb7aa52 615 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 616
emilmont 1:fdd22bb7aa52 617 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 618 k--;
emilmont 1:fdd22bb7aa52 619 }
emilmont 1:fdd22bb7aa52 620
emilmont 1:fdd22bb7aa52 621 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 622 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 623 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 624
emilmont 1:fdd22bb7aa52 625 while(k > 0u)
emilmont 1:fdd22bb7aa52 626 {
emilmont 1:fdd22bb7aa52 627 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 628 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 629
emilmont 1:fdd22bb7aa52 630 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 631 k--;
emilmont 1:fdd22bb7aa52 632 }
emilmont 1:fdd22bb7aa52 633
emilmont 1:fdd22bb7aa52 634 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 635 *pOut = sum;
emilmont 1:fdd22bb7aa52 636 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 637 pOut += inc;
emilmont 1:fdd22bb7aa52 638
emilmont 1:fdd22bb7aa52 639 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 640 px = ++pSrc1;
emilmont 1:fdd22bb7aa52 641 py = pIn2;
emilmont 1:fdd22bb7aa52 642
emilmont 1:fdd22bb7aa52 643 /* Decrement the MAC count */
emilmont 1:fdd22bb7aa52 644 count--;
emilmont 1:fdd22bb7aa52 645
emilmont 1:fdd22bb7aa52 646 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 647 blockSize3--;
emilmont 1:fdd22bb7aa52 648 }
emilmont 1:fdd22bb7aa52 649
emilmont 1:fdd22bb7aa52 650 #else
emilmont 1:fdd22bb7aa52 651
emilmont 1:fdd22bb7aa52 652 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 653
emilmont 1:fdd22bb7aa52 654 float32_t *pIn1 = pSrcA; /* inputA pointer */
emilmont 1:fdd22bb7aa52 655 float32_t *pIn2 = pSrcB + (srcBLen - 1u); /* inputB pointer */
emilmont 1:fdd22bb7aa52 656 float32_t sum; /* Accumulator */
emilmont 1:fdd22bb7aa52 657 uint32_t i = 0u, j; /* loop counters */
emilmont 1:fdd22bb7aa52 658 uint32_t inv = 0u; /* Reverse order flag */
emilmont 1:fdd22bb7aa52 659 uint32_t tot = 0u; /* Length */
emilmont 1:fdd22bb7aa52 660
emilmont 1:fdd22bb7aa52 661 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 662 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 663 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 664 /* But CORR(x, y) is reverse of CORR(y, x) */
emilmont 1:fdd22bb7aa52 665 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
emilmont 1:fdd22bb7aa52 666 /* and a varaible, inv is set to 1 */
emilmont 1:fdd22bb7aa52 667 /* If lengths are not equal then zero pad has to be done to make the two
emilmont 1:fdd22bb7aa52 668 * inputs of same length. But to improve the performance, we include zeroes
emilmont 1:fdd22bb7aa52 669 * in the output instead of zero padding either of the the inputs*/
emilmont 1:fdd22bb7aa52 670 /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
emilmont 1:fdd22bb7aa52 671 * starting of the output buffer */
emilmont 1:fdd22bb7aa52 672 /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
emilmont 1:fdd22bb7aa52 673 * ending of the output buffer */
emilmont 1:fdd22bb7aa52 674 /* Once the zero padding is done the remaining of the output is calcualted
emilmont 1:fdd22bb7aa52 675 * using convolution but with the shorter signal time shifted. */
emilmont 1:fdd22bb7aa52 676
emilmont 1:fdd22bb7aa52 677 /* Calculate the length of the remaining sequence */
emilmont 1:fdd22bb7aa52 678 tot = ((srcALen + srcBLen) - 2u);
emilmont 1:fdd22bb7aa52 679
emilmont 1:fdd22bb7aa52 680 if(srcALen > srcBLen)
emilmont 1:fdd22bb7aa52 681 {
emilmont 1:fdd22bb7aa52 682 /* Calculating the number of zeros to be padded to the output */
emilmont 1:fdd22bb7aa52 683 j = srcALen - srcBLen;
emilmont 1:fdd22bb7aa52 684
emilmont 1:fdd22bb7aa52 685 /* Initialise the pointer after zero padding */
emilmont 1:fdd22bb7aa52 686 pDst += j;
emilmont 1:fdd22bb7aa52 687 }
emilmont 1:fdd22bb7aa52 688
emilmont 1:fdd22bb7aa52 689 else if(srcALen < srcBLen)
emilmont 1:fdd22bb7aa52 690 {
emilmont 1:fdd22bb7aa52 691 /* Initialization to inputB pointer */
emilmont 1:fdd22bb7aa52 692 pIn1 = pSrcB;
emilmont 1:fdd22bb7aa52 693
emilmont 1:fdd22bb7aa52 694 /* Initialization to the end of inputA pointer */
emilmont 1:fdd22bb7aa52 695 pIn2 = pSrcA + (srcALen - 1u);
emilmont 1:fdd22bb7aa52 696
emilmont 1:fdd22bb7aa52 697 /* Initialisation of the pointer after zero padding */
emilmont 1:fdd22bb7aa52 698 pDst = pDst + tot;
emilmont 1:fdd22bb7aa52 699
emilmont 1:fdd22bb7aa52 700 /* Swapping the lengths */
emilmont 1:fdd22bb7aa52 701 j = srcALen;
emilmont 1:fdd22bb7aa52 702 srcALen = srcBLen;
emilmont 1:fdd22bb7aa52 703 srcBLen = j;
emilmont 1:fdd22bb7aa52 704
emilmont 1:fdd22bb7aa52 705 /* Setting the reverse flag */
emilmont 1:fdd22bb7aa52 706 inv = 1;
emilmont 1:fdd22bb7aa52 707
emilmont 1:fdd22bb7aa52 708 }
emilmont 1:fdd22bb7aa52 709
emilmont 1:fdd22bb7aa52 710 /* Loop to calculate convolution for output length number of times */
emilmont 1:fdd22bb7aa52 711 for (i = 0u; i <= tot; i++)
emilmont 1:fdd22bb7aa52 712 {
emilmont 1:fdd22bb7aa52 713 /* Initialize sum with zero to carry on MAC operations */
emilmont 1:fdd22bb7aa52 714 sum = 0.0f;
emilmont 1:fdd22bb7aa52 715
emilmont 1:fdd22bb7aa52 716 /* Loop to perform MAC operations according to convolution equation */
emilmont 1:fdd22bb7aa52 717 for (j = 0u; j <= i; j++)
emilmont 1:fdd22bb7aa52 718 {
emilmont 1:fdd22bb7aa52 719 /* Check the array limitations */
emilmont 1:fdd22bb7aa52 720 if((((i - j) < srcBLen) && (j < srcALen)))
emilmont 1:fdd22bb7aa52 721 {
emilmont 1:fdd22bb7aa52 722 /* z[i] += x[i-j] * y[j] */
emilmont 1:fdd22bb7aa52 723 sum += pIn1[j] * pIn2[-((int32_t) i - j)];
emilmont 1:fdd22bb7aa52 724 }
emilmont 1:fdd22bb7aa52 725 }
emilmont 1:fdd22bb7aa52 726 /* Store the output in the destination buffer */
emilmont 1:fdd22bb7aa52 727 if(inv == 1)
emilmont 1:fdd22bb7aa52 728 *pDst-- = sum;
emilmont 1:fdd22bb7aa52 729 else
emilmont 1:fdd22bb7aa52 730 *pDst++ = sum;
emilmont 1:fdd22bb7aa52 731 }
emilmont 1:fdd22bb7aa52 732
mbed_official 3:7a284390b0ce 733 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emilmont 1:fdd22bb7aa52 734
emilmont 1:fdd22bb7aa52 735 }
emilmont 1:fdd22bb7aa52 736
emilmont 1:fdd22bb7aa52 737 /**
emilmont 1:fdd22bb7aa52 738 * @} end of Corr group
emilmont 1:fdd22bb7aa52 739 */