CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

Committer:
emilmont
Date:
Wed Nov 28 12:30:09 2012 +0000
Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
DSP library code

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------------
emilmont 1:fdd22bb7aa52 2 * Copyright (C) 2010 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
emilmont 1:fdd22bb7aa52 4 * $Date: 15. February 2012
emilmont 1:fdd22bb7aa52 5 * $Revision: V1.1.0
emilmont 1:fdd22bb7aa52 6 *
emilmont 1:fdd22bb7aa52 7 * Project: CMSIS DSP Library
emilmont 1:fdd22bb7aa52 8 * Title: arm_correlate_f32.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 1:fdd22bb7aa52 10 * Description: Correlation of floating-point sequences.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
emilmont 1:fdd22bb7aa52 14 * Version 1.1.0 2012/02/15
emilmont 1:fdd22bb7aa52 15 * Updated with more optimizations, bug fixes and minor API changes.
emilmont 1:fdd22bb7aa52 16 *
emilmont 1:fdd22bb7aa52 17 * Version 1.0.11 2011/10/18
emilmont 1:fdd22bb7aa52 18 * Bug Fix in conv, correlation, partial convolution.
emilmont 1:fdd22bb7aa52 19 *
emilmont 1:fdd22bb7aa52 20 * Version 1.0.10 2011/7/15
emilmont 1:fdd22bb7aa52 21 * Big Endian support added and Merged M0 and M3/M4 Source code.
emilmont 1:fdd22bb7aa52 22 *
emilmont 1:fdd22bb7aa52 23 * Version 1.0.3 2010/11/29
emilmont 1:fdd22bb7aa52 24 * Re-organized the CMSIS folders and updated documentation.
emilmont 1:fdd22bb7aa52 25 *
emilmont 1:fdd22bb7aa52 26 * Version 1.0.2 2010/11/11
emilmont 1:fdd22bb7aa52 27 * Documentation updated.
emilmont 1:fdd22bb7aa52 28 *
emilmont 1:fdd22bb7aa52 29 * Version 1.0.1 2010/10/05
emilmont 1:fdd22bb7aa52 30 * Production release and review comments incorporated.
emilmont 1:fdd22bb7aa52 31 *
emilmont 1:fdd22bb7aa52 32 * Version 1.0.0 2010/09/20
emilmont 1:fdd22bb7aa52 33 * Production release and review comments incorporated
emilmont 1:fdd22bb7aa52 34 *
emilmont 1:fdd22bb7aa52 35 * Version 0.0.7 2010/06/10
emilmont 1:fdd22bb7aa52 36 * Misra-C changes done
emilmont 1:fdd22bb7aa52 37 *
emilmont 1:fdd22bb7aa52 38 * -------------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 39
emilmont 1:fdd22bb7aa52 40 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 41
emilmont 1:fdd22bb7aa52 42 /**
emilmont 1:fdd22bb7aa52 43 * @ingroup groupFilters
emilmont 1:fdd22bb7aa52 44 */
emilmont 1:fdd22bb7aa52 45
emilmont 1:fdd22bb7aa52 46 /**
emilmont 1:fdd22bb7aa52 47 * @defgroup Corr Correlation
emilmont 1:fdd22bb7aa52 48 *
emilmont 1:fdd22bb7aa52 49 * Correlation is a mathematical operation that is similar to convolution.
emilmont 1:fdd22bb7aa52 50 * As with convolution, correlation uses two signals to produce a third signal.
emilmont 1:fdd22bb7aa52 51 * The underlying algorithms in correlation and convolution are identical except that one of the inputs is flipped in convolution.
emilmont 1:fdd22bb7aa52 52 * Correlation is commonly used to measure the similarity between two signals.
emilmont 1:fdd22bb7aa52 53 * It has applications in pattern recognition, cryptanalysis, and searching.
emilmont 1:fdd22bb7aa52 54 * The CMSIS library provides correlation functions for Q7, Q15, Q31 and floating-point data types.
emilmont 1:fdd22bb7aa52 55 * Fast versions of the Q15 and Q31 functions are also provided.
emilmont 1:fdd22bb7aa52 56 *
emilmont 1:fdd22bb7aa52 57 * \par Algorithm
emilmont 1:fdd22bb7aa52 58 * Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
emilmont 1:fdd22bb7aa52 59 * The convolution of the two signals is denoted by
emilmont 1:fdd22bb7aa52 60 * <pre>
emilmont 1:fdd22bb7aa52 61 * c[n] = a[n] * b[n]
emilmont 1:fdd22bb7aa52 62 * </pre>
emilmont 1:fdd22bb7aa52 63 * In correlation, one of the signals is flipped in time
emilmont 1:fdd22bb7aa52 64 * <pre>
emilmont 1:fdd22bb7aa52 65 * c[n] = a[n] * b[-n]
emilmont 1:fdd22bb7aa52 66 * </pre>
emilmont 1:fdd22bb7aa52 67 *
emilmont 1:fdd22bb7aa52 68 * \par
emilmont 1:fdd22bb7aa52 69 * and this is mathematically defined as
emilmont 1:fdd22bb7aa52 70 * \image html CorrelateEquation.gif
emilmont 1:fdd22bb7aa52 71 * \par
emilmont 1:fdd22bb7aa52 72 * The <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
emilmont 1:fdd22bb7aa52 73 * The result <code>c[n]</code> is of length <code>2 * max(srcALen, srcBLen) - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., (2 * max(srcALen, srcBLen) - 2)</code>.
emilmont 1:fdd22bb7aa52 74 * The output result is written to <code>pDst</code> and the calling function must allocate <code>2 * max(srcALen, srcBLen) - 1</code> words for the result.
emilmont 1:fdd22bb7aa52 75 *
emilmont 1:fdd22bb7aa52 76 * <b>Note</b>
emilmont 1:fdd22bb7aa52 77 * \par
emilmont 1:fdd22bb7aa52 78 * The <code>pDst</code> should be initialized to all zeros before being used.
emilmont 1:fdd22bb7aa52 79 *
emilmont 1:fdd22bb7aa52 80 * <b>Fixed-Point Behavior</b>
emilmont 1:fdd22bb7aa52 81 * \par
emilmont 1:fdd22bb7aa52 82 * Correlation requires summing up a large number of intermediate products.
emilmont 1:fdd22bb7aa52 83 * As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
emilmont 1:fdd22bb7aa52 84 * Refer to the function specific documentation below for further details of the particular algorithm used.
emilmont 1:fdd22bb7aa52 85 *
emilmont 1:fdd22bb7aa52 86 *
emilmont 1:fdd22bb7aa52 87 * <b>Fast Versions</b>
emilmont 1:fdd22bb7aa52 88 *
emilmont 1:fdd22bb7aa52 89 * \par
emilmont 1:fdd22bb7aa52 90 * Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of correlate and the design requires
emilmont 1:fdd22bb7aa52 91 * the input signals should be scaled down to avoid intermediate overflows.
emilmont 1:fdd22bb7aa52 92 *
emilmont 1:fdd22bb7aa52 93 *
emilmont 1:fdd22bb7aa52 94 * <b>Opt Versions</b>
emilmont 1:fdd22bb7aa52 95 *
emilmont 1:fdd22bb7aa52 96 * \par
emilmont 1:fdd22bb7aa52 97 * Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
emilmont 1:fdd22bb7aa52 98 * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions of correlate
emilmont 1:fdd22bb7aa52 99 */
emilmont 1:fdd22bb7aa52 100
emilmont 1:fdd22bb7aa52 101 /**
emilmont 1:fdd22bb7aa52 102 * @addtogroup Corr
emilmont 1:fdd22bb7aa52 103 * @{
emilmont 1:fdd22bb7aa52 104 */
emilmont 1:fdd22bb7aa52 105 /**
emilmont 1:fdd22bb7aa52 106 * @brief Correlation of floating-point sequences.
emilmont 1:fdd22bb7aa52 107 * @param[in] *pSrcA points to the first input sequence.
emilmont 1:fdd22bb7aa52 108 * @param[in] srcALen length of the first input sequence.
emilmont 1:fdd22bb7aa52 109 * @param[in] *pSrcB points to the second input sequence.
emilmont 1:fdd22bb7aa52 110 * @param[in] srcBLen length of the second input sequence.
emilmont 1:fdd22bb7aa52 111 * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
emilmont 1:fdd22bb7aa52 112 * @return none.
emilmont 1:fdd22bb7aa52 113 */
emilmont 1:fdd22bb7aa52 114
emilmont 1:fdd22bb7aa52 115 void arm_correlate_f32(
emilmont 1:fdd22bb7aa52 116 float32_t * pSrcA,
emilmont 1:fdd22bb7aa52 117 uint32_t srcALen,
emilmont 1:fdd22bb7aa52 118 float32_t * pSrcB,
emilmont 1:fdd22bb7aa52 119 uint32_t srcBLen,
emilmont 1:fdd22bb7aa52 120 float32_t * pDst)
emilmont 1:fdd22bb7aa52 121 {
emilmont 1:fdd22bb7aa52 122
emilmont 1:fdd22bb7aa52 123
emilmont 1:fdd22bb7aa52 124 #ifndef ARM_MATH_CM0
emilmont 1:fdd22bb7aa52 125
emilmont 1:fdd22bb7aa52 126 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 127
emilmont 1:fdd22bb7aa52 128 float32_t *pIn1; /* inputA pointer */
emilmont 1:fdd22bb7aa52 129 float32_t *pIn2; /* inputB pointer */
emilmont 1:fdd22bb7aa52 130 float32_t *pOut = pDst; /* output pointer */
emilmont 1:fdd22bb7aa52 131 float32_t *px; /* Intermediate inputA pointer */
emilmont 1:fdd22bb7aa52 132 float32_t *py; /* Intermediate inputB pointer */
emilmont 1:fdd22bb7aa52 133 float32_t *pSrc1; /* Intermediate pointers */
emilmont 1:fdd22bb7aa52 134 float32_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
emilmont 1:fdd22bb7aa52 135 float32_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */
emilmont 1:fdd22bb7aa52 136 uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counters */
emilmont 1:fdd22bb7aa52 137 int32_t inc = 1; /* Destination address modifier */
emilmont 1:fdd22bb7aa52 138
emilmont 1:fdd22bb7aa52 139
emilmont 1:fdd22bb7aa52 140 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 141 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 142 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 143 /* But CORR(x, y) is reverse of CORR(y, x) */
emilmont 1:fdd22bb7aa52 144 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
emilmont 1:fdd22bb7aa52 145 /* and the destination pointer modifier, inc is set to -1 */
emilmont 1:fdd22bb7aa52 146 /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
emilmont 1:fdd22bb7aa52 147 /* But to improve the performance,
emilmont 1:fdd22bb7aa52 148 * we include zeroes in the output instead of zero padding either of the the inputs*/
emilmont 1:fdd22bb7aa52 149 /* If srcALen > srcBLen,
emilmont 1:fdd22bb7aa52 150 * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
emilmont 1:fdd22bb7aa52 151 /* If srcALen < srcBLen,
emilmont 1:fdd22bb7aa52 152 * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
emilmont 1:fdd22bb7aa52 153 if(srcALen >= srcBLen)
emilmont 1:fdd22bb7aa52 154 {
emilmont 1:fdd22bb7aa52 155 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 156 pIn1 = pSrcA;
emilmont 1:fdd22bb7aa52 157
emilmont 1:fdd22bb7aa52 158 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 159 pIn2 = pSrcB;
emilmont 1:fdd22bb7aa52 160
emilmont 1:fdd22bb7aa52 161 /* Number of output samples is calculated */
emilmont 1:fdd22bb7aa52 162 outBlockSize = (2u * srcALen) - 1u;
emilmont 1:fdd22bb7aa52 163
emilmont 1:fdd22bb7aa52 164 /* When srcALen > srcBLen, zero padding has to be done to srcB
emilmont 1:fdd22bb7aa52 165 * to make their lengths equal.
emilmont 1:fdd22bb7aa52 166 * Instead, (outBlockSize - (srcALen + srcBLen - 1))
emilmont 1:fdd22bb7aa52 167 * number of output samples are made zero */
emilmont 1:fdd22bb7aa52 168 j = outBlockSize - (srcALen + (srcBLen - 1u));
emilmont 1:fdd22bb7aa52 169
emilmont 1:fdd22bb7aa52 170 /* Updating the pointer position to non zero value */
emilmont 1:fdd22bb7aa52 171 pOut += j;
emilmont 1:fdd22bb7aa52 172
emilmont 1:fdd22bb7aa52 173 //while(j > 0u)
emilmont 1:fdd22bb7aa52 174 //{
emilmont 1:fdd22bb7aa52 175 // /* Zero is stored in the destination buffer */
emilmont 1:fdd22bb7aa52 176 // *pOut++ = 0.0f;
emilmont 1:fdd22bb7aa52 177
emilmont 1:fdd22bb7aa52 178 // /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 179 // j--;
emilmont 1:fdd22bb7aa52 180 //}
emilmont 1:fdd22bb7aa52 181
emilmont 1:fdd22bb7aa52 182 }
emilmont 1:fdd22bb7aa52 183 else
emilmont 1:fdd22bb7aa52 184 {
emilmont 1:fdd22bb7aa52 185 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 186 pIn1 = pSrcB;
emilmont 1:fdd22bb7aa52 187
emilmont 1:fdd22bb7aa52 188 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 189 pIn2 = pSrcA;
emilmont 1:fdd22bb7aa52 190
emilmont 1:fdd22bb7aa52 191 /* srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 192 j = srcBLen;
emilmont 1:fdd22bb7aa52 193 srcBLen = srcALen;
emilmont 1:fdd22bb7aa52 194 srcALen = j;
emilmont 1:fdd22bb7aa52 195
emilmont 1:fdd22bb7aa52 196 /* CORR(x, y) = Reverse order(CORR(y, x)) */
emilmont 1:fdd22bb7aa52 197 /* Hence set the destination pointer to point to the last output sample */
emilmont 1:fdd22bb7aa52 198 pOut = pDst + ((srcALen + srcBLen) - 2u);
emilmont 1:fdd22bb7aa52 199
emilmont 1:fdd22bb7aa52 200 /* Destination address modifier is set to -1 */
emilmont 1:fdd22bb7aa52 201 inc = -1;
emilmont 1:fdd22bb7aa52 202
emilmont 1:fdd22bb7aa52 203 }
emilmont 1:fdd22bb7aa52 204
emilmont 1:fdd22bb7aa52 205 /* The function is internally
emilmont 1:fdd22bb7aa52 206 * divided into three parts according to the number of multiplications that has to be
emilmont 1:fdd22bb7aa52 207 * taken place between inputA samples and inputB samples. In the first part of the
emilmont 1:fdd22bb7aa52 208 * algorithm, the multiplications increase by one for every iteration.
emilmont 1:fdd22bb7aa52 209 * In the second part of the algorithm, srcBLen number of multiplications are done.
emilmont 1:fdd22bb7aa52 210 * In the third part of the algorithm, the multiplications decrease by one
emilmont 1:fdd22bb7aa52 211 * for every iteration.*/
emilmont 1:fdd22bb7aa52 212 /* The algorithm is implemented in three stages.
emilmont 1:fdd22bb7aa52 213 * The loop counters of each stage is initiated here. */
emilmont 1:fdd22bb7aa52 214 blockSize1 = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 215 blockSize2 = srcALen - (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 216 blockSize3 = blockSize1;
emilmont 1:fdd22bb7aa52 217
emilmont 1:fdd22bb7aa52 218 /* --------------------------
emilmont 1:fdd22bb7aa52 219 * Initializations of stage1
emilmont 1:fdd22bb7aa52 220 * -------------------------*/
emilmont 1:fdd22bb7aa52 221
emilmont 1:fdd22bb7aa52 222 /* sum = x[0] * y[srcBlen - 1]
emilmont 1:fdd22bb7aa52 223 * sum = x[0] * y[srcBlen-2] + x[1] * y[srcBlen - 1]
emilmont 1:fdd22bb7aa52 224 * ....
emilmont 1:fdd22bb7aa52 225 * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
emilmont 1:fdd22bb7aa52 226 */
emilmont 1:fdd22bb7aa52 227
emilmont 1:fdd22bb7aa52 228 /* In this stage the MAC operations are increased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 229 The count variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 230 count = 1u;
emilmont 1:fdd22bb7aa52 231
emilmont 1:fdd22bb7aa52 232 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 233 px = pIn1;
emilmont 1:fdd22bb7aa52 234
emilmont 1:fdd22bb7aa52 235 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 236 pSrc1 = pIn2 + (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 237 py = pSrc1;
emilmont 1:fdd22bb7aa52 238
emilmont 1:fdd22bb7aa52 239 /* ------------------------
emilmont 1:fdd22bb7aa52 240 * Stage1 process
emilmont 1:fdd22bb7aa52 241 * ----------------------*/
emilmont 1:fdd22bb7aa52 242
emilmont 1:fdd22bb7aa52 243 /* The first stage starts here */
emilmont 1:fdd22bb7aa52 244 while(blockSize1 > 0u)
emilmont 1:fdd22bb7aa52 245 {
emilmont 1:fdd22bb7aa52 246 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 247 sum = 0.0f;
emilmont 1:fdd22bb7aa52 248
emilmont 1:fdd22bb7aa52 249 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 250 k = count >> 2u;
emilmont 1:fdd22bb7aa52 251
emilmont 1:fdd22bb7aa52 252 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 253 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 254 while(k > 0u)
emilmont 1:fdd22bb7aa52 255 {
emilmont 1:fdd22bb7aa52 256 /* x[0] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 257 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 258 /* x[1] * y[srcBLen - 3] */
emilmont 1:fdd22bb7aa52 259 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 260 /* x[2] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 261 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 262 /* x[3] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 263 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 264
emilmont 1:fdd22bb7aa52 265 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 266 k--;
emilmont 1:fdd22bb7aa52 267 }
emilmont 1:fdd22bb7aa52 268
emilmont 1:fdd22bb7aa52 269 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 270 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 271 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 272
emilmont 1:fdd22bb7aa52 273 while(k > 0u)
emilmont 1:fdd22bb7aa52 274 {
emilmont 1:fdd22bb7aa52 275 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 276 /* x[0] * y[srcBLen - 1] */
emilmont 1:fdd22bb7aa52 277 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 278
emilmont 1:fdd22bb7aa52 279 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 280 k--;
emilmont 1:fdd22bb7aa52 281 }
emilmont 1:fdd22bb7aa52 282
emilmont 1:fdd22bb7aa52 283 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 284 *pOut = sum;
emilmont 1:fdd22bb7aa52 285 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 286 pOut += inc;
emilmont 1:fdd22bb7aa52 287
emilmont 1:fdd22bb7aa52 288 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 289 py = pSrc1 - count;
emilmont 1:fdd22bb7aa52 290 px = pIn1;
emilmont 1:fdd22bb7aa52 291
emilmont 1:fdd22bb7aa52 292 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 293 count++;
emilmont 1:fdd22bb7aa52 294
emilmont 1:fdd22bb7aa52 295 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 296 blockSize1--;
emilmont 1:fdd22bb7aa52 297 }
emilmont 1:fdd22bb7aa52 298
emilmont 1:fdd22bb7aa52 299 /* --------------------------
emilmont 1:fdd22bb7aa52 300 * Initializations of stage2
emilmont 1:fdd22bb7aa52 301 * ------------------------*/
emilmont 1:fdd22bb7aa52 302
emilmont 1:fdd22bb7aa52 303 /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 304 * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 305 * ....
emilmont 1:fdd22bb7aa52 306 * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 307 */
emilmont 1:fdd22bb7aa52 308
emilmont 1:fdd22bb7aa52 309 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 310 px = pIn1;
emilmont 1:fdd22bb7aa52 311
emilmont 1:fdd22bb7aa52 312 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 313 py = pIn2;
emilmont 1:fdd22bb7aa52 314
emilmont 1:fdd22bb7aa52 315 /* count is index by which the pointer pIn1 to be incremented */
emilmont 1:fdd22bb7aa52 316 count = 0u;
emilmont 1:fdd22bb7aa52 317
emilmont 1:fdd22bb7aa52 318 /* -------------------
emilmont 1:fdd22bb7aa52 319 * Stage2 process
emilmont 1:fdd22bb7aa52 320 * ------------------*/
emilmont 1:fdd22bb7aa52 321
emilmont 1:fdd22bb7aa52 322 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
emilmont 1:fdd22bb7aa52 323 * So, to loop unroll over blockSize2,
emilmont 1:fdd22bb7aa52 324 * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */
emilmont 1:fdd22bb7aa52 325 if(srcBLen >= 4u)
emilmont 1:fdd22bb7aa52 326 {
emilmont 1:fdd22bb7aa52 327 /* Loop unroll over blockSize2, by 4 */
emilmont 1:fdd22bb7aa52 328 blkCnt = blockSize2 >> 2u;
emilmont 1:fdd22bb7aa52 329
emilmont 1:fdd22bb7aa52 330 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 331 {
emilmont 1:fdd22bb7aa52 332 /* Set all accumulators to zero */
emilmont 1:fdd22bb7aa52 333 acc0 = 0.0f;
emilmont 1:fdd22bb7aa52 334 acc1 = 0.0f;
emilmont 1:fdd22bb7aa52 335 acc2 = 0.0f;
emilmont 1:fdd22bb7aa52 336 acc3 = 0.0f;
emilmont 1:fdd22bb7aa52 337
emilmont 1:fdd22bb7aa52 338 /* read x[0], x[1], x[2] samples */
emilmont 1:fdd22bb7aa52 339 x0 = *(px++);
emilmont 1:fdd22bb7aa52 340 x1 = *(px++);
emilmont 1:fdd22bb7aa52 341 x2 = *(px++);
emilmont 1:fdd22bb7aa52 342
emilmont 1:fdd22bb7aa52 343 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 344 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 345
emilmont 1:fdd22bb7aa52 346 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 347 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 348 do
emilmont 1:fdd22bb7aa52 349 {
emilmont 1:fdd22bb7aa52 350 /* Read y[0] sample */
emilmont 1:fdd22bb7aa52 351 c0 = *(py++);
emilmont 1:fdd22bb7aa52 352
emilmont 1:fdd22bb7aa52 353 /* Read x[3] sample */
emilmont 1:fdd22bb7aa52 354 x3 = *(px++);
emilmont 1:fdd22bb7aa52 355
emilmont 1:fdd22bb7aa52 356 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 357 /* acc0 += x[0] * y[0] */
emilmont 1:fdd22bb7aa52 358 acc0 += x0 * c0;
emilmont 1:fdd22bb7aa52 359 /* acc1 += x[1] * y[0] */
emilmont 1:fdd22bb7aa52 360 acc1 += x1 * c0;
emilmont 1:fdd22bb7aa52 361 /* acc2 += x[2] * y[0] */
emilmont 1:fdd22bb7aa52 362 acc2 += x2 * c0;
emilmont 1:fdd22bb7aa52 363 /* acc3 += x[3] * y[0] */
emilmont 1:fdd22bb7aa52 364 acc3 += x3 * c0;
emilmont 1:fdd22bb7aa52 365
emilmont 1:fdd22bb7aa52 366 /* Read y[1] sample */
emilmont 1:fdd22bb7aa52 367 c0 = *(py++);
emilmont 1:fdd22bb7aa52 368
emilmont 1:fdd22bb7aa52 369 /* Read x[4] sample */
emilmont 1:fdd22bb7aa52 370 x0 = *(px++);
emilmont 1:fdd22bb7aa52 371
emilmont 1:fdd22bb7aa52 372 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 373 /* acc0 += x[1] * y[1] */
emilmont 1:fdd22bb7aa52 374 acc0 += x1 * c0;
emilmont 1:fdd22bb7aa52 375 /* acc1 += x[2] * y[1] */
emilmont 1:fdd22bb7aa52 376 acc1 += x2 * c0;
emilmont 1:fdd22bb7aa52 377 /* acc2 += x[3] * y[1] */
emilmont 1:fdd22bb7aa52 378 acc2 += x3 * c0;
emilmont 1:fdd22bb7aa52 379 /* acc3 += x[4] * y[1] */
emilmont 1:fdd22bb7aa52 380 acc3 += x0 * c0;
emilmont 1:fdd22bb7aa52 381
emilmont 1:fdd22bb7aa52 382 /* Read y[2] sample */
emilmont 1:fdd22bb7aa52 383 c0 = *(py++);
emilmont 1:fdd22bb7aa52 384
emilmont 1:fdd22bb7aa52 385 /* Read x[5] sample */
emilmont 1:fdd22bb7aa52 386 x1 = *(px++);
emilmont 1:fdd22bb7aa52 387
emilmont 1:fdd22bb7aa52 388 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 389 /* acc0 += x[2] * y[2] */
emilmont 1:fdd22bb7aa52 390 acc0 += x2 * c0;
emilmont 1:fdd22bb7aa52 391 /* acc1 += x[3] * y[2] */
emilmont 1:fdd22bb7aa52 392 acc1 += x3 * c0;
emilmont 1:fdd22bb7aa52 393 /* acc2 += x[4] * y[2] */
emilmont 1:fdd22bb7aa52 394 acc2 += x0 * c0;
emilmont 1:fdd22bb7aa52 395 /* acc3 += x[5] * y[2] */
emilmont 1:fdd22bb7aa52 396 acc3 += x1 * c0;
emilmont 1:fdd22bb7aa52 397
emilmont 1:fdd22bb7aa52 398 /* Read y[3] sample */
emilmont 1:fdd22bb7aa52 399 c0 = *(py++);
emilmont 1:fdd22bb7aa52 400
emilmont 1:fdd22bb7aa52 401 /* Read x[6] sample */
emilmont 1:fdd22bb7aa52 402 x2 = *(px++);
emilmont 1:fdd22bb7aa52 403
emilmont 1:fdd22bb7aa52 404 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 405 /* acc0 += x[3] * y[3] */
emilmont 1:fdd22bb7aa52 406 acc0 += x3 * c0;
emilmont 1:fdd22bb7aa52 407 /* acc1 += x[4] * y[3] */
emilmont 1:fdd22bb7aa52 408 acc1 += x0 * c0;
emilmont 1:fdd22bb7aa52 409 /* acc2 += x[5] * y[3] */
emilmont 1:fdd22bb7aa52 410 acc2 += x1 * c0;
emilmont 1:fdd22bb7aa52 411 /* acc3 += x[6] * y[3] */
emilmont 1:fdd22bb7aa52 412 acc3 += x2 * c0;
emilmont 1:fdd22bb7aa52 413
emilmont 1:fdd22bb7aa52 414
emilmont 1:fdd22bb7aa52 415 } while(--k);
emilmont 1:fdd22bb7aa52 416
emilmont 1:fdd22bb7aa52 417 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 418 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 419 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 420
emilmont 1:fdd22bb7aa52 421 while(k > 0u)
emilmont 1:fdd22bb7aa52 422 {
emilmont 1:fdd22bb7aa52 423 /* Read y[4] sample */
emilmont 1:fdd22bb7aa52 424 c0 = *(py++);
emilmont 1:fdd22bb7aa52 425
emilmont 1:fdd22bb7aa52 426 /* Read x[7] sample */
emilmont 1:fdd22bb7aa52 427 x3 = *(px++);
emilmont 1:fdd22bb7aa52 428
emilmont 1:fdd22bb7aa52 429 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 430 /* acc0 += x[4] * y[4] */
emilmont 1:fdd22bb7aa52 431 acc0 += x0 * c0;
emilmont 1:fdd22bb7aa52 432 /* acc1 += x[5] * y[4] */
emilmont 1:fdd22bb7aa52 433 acc1 += x1 * c0;
emilmont 1:fdd22bb7aa52 434 /* acc2 += x[6] * y[4] */
emilmont 1:fdd22bb7aa52 435 acc2 += x2 * c0;
emilmont 1:fdd22bb7aa52 436 /* acc3 += x[7] * y[4] */
emilmont 1:fdd22bb7aa52 437 acc3 += x3 * c0;
emilmont 1:fdd22bb7aa52 438
emilmont 1:fdd22bb7aa52 439 /* Reuse the present samples for the next MAC */
emilmont 1:fdd22bb7aa52 440 x0 = x1;
emilmont 1:fdd22bb7aa52 441 x1 = x2;
emilmont 1:fdd22bb7aa52 442 x2 = x3;
emilmont 1:fdd22bb7aa52 443
emilmont 1:fdd22bb7aa52 444 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 445 k--;
emilmont 1:fdd22bb7aa52 446 }
emilmont 1:fdd22bb7aa52 447
emilmont 1:fdd22bb7aa52 448 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 449 *pOut = acc0;
emilmont 1:fdd22bb7aa52 450 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 451 pOut += inc;
emilmont 1:fdd22bb7aa52 452
emilmont 1:fdd22bb7aa52 453 *pOut = acc1;
emilmont 1:fdd22bb7aa52 454 pOut += inc;
emilmont 1:fdd22bb7aa52 455
emilmont 1:fdd22bb7aa52 456 *pOut = acc2;
emilmont 1:fdd22bb7aa52 457 pOut += inc;
emilmont 1:fdd22bb7aa52 458
emilmont 1:fdd22bb7aa52 459 *pOut = acc3;
emilmont 1:fdd22bb7aa52 460 pOut += inc;
emilmont 1:fdd22bb7aa52 461
emilmont 1:fdd22bb7aa52 462 /* Increment the pointer pIn1 index, count by 4 */
emilmont 1:fdd22bb7aa52 463 count += 4u;
emilmont 1:fdd22bb7aa52 464
emilmont 1:fdd22bb7aa52 465 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 466 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 467 py = pIn2;
emilmont 1:fdd22bb7aa52 468
emilmont 1:fdd22bb7aa52 469 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 470 blkCnt--;
emilmont 1:fdd22bb7aa52 471 }
emilmont 1:fdd22bb7aa52 472
emilmont 1:fdd22bb7aa52 473 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
emilmont 1:fdd22bb7aa52 474 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 475 blkCnt = blockSize2 % 0x4u;
emilmont 1:fdd22bb7aa52 476
emilmont 1:fdd22bb7aa52 477 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 478 {
emilmont 1:fdd22bb7aa52 479 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 480 sum = 0.0f;
emilmont 1:fdd22bb7aa52 481
emilmont 1:fdd22bb7aa52 482 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 483 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 484
emilmont 1:fdd22bb7aa52 485 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 486 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 487 while(k > 0u)
emilmont 1:fdd22bb7aa52 488 {
emilmont 1:fdd22bb7aa52 489 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 490 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 491 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 492 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 493 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 494
emilmont 1:fdd22bb7aa52 495 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 496 k--;
emilmont 1:fdd22bb7aa52 497 }
emilmont 1:fdd22bb7aa52 498
emilmont 1:fdd22bb7aa52 499 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 500 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 501 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 502
emilmont 1:fdd22bb7aa52 503 while(k > 0u)
emilmont 1:fdd22bb7aa52 504 {
emilmont 1:fdd22bb7aa52 505 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 506 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 507
emilmont 1:fdd22bb7aa52 508 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 509 k--;
emilmont 1:fdd22bb7aa52 510 }
emilmont 1:fdd22bb7aa52 511
emilmont 1:fdd22bb7aa52 512 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 513 *pOut = sum;
emilmont 1:fdd22bb7aa52 514 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 515 pOut += inc;
emilmont 1:fdd22bb7aa52 516
emilmont 1:fdd22bb7aa52 517 /* Increment the pointer pIn1 index, count by 1 */
emilmont 1:fdd22bb7aa52 518 count++;
emilmont 1:fdd22bb7aa52 519
emilmont 1:fdd22bb7aa52 520 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 521 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 522 py = pIn2;
emilmont 1:fdd22bb7aa52 523
emilmont 1:fdd22bb7aa52 524 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 525 blkCnt--;
emilmont 1:fdd22bb7aa52 526 }
emilmont 1:fdd22bb7aa52 527 }
emilmont 1:fdd22bb7aa52 528 else
emilmont 1:fdd22bb7aa52 529 {
emilmont 1:fdd22bb7aa52 530 /* If the srcBLen is not a multiple of 4,
emilmont 1:fdd22bb7aa52 531 * the blockSize2 loop cannot be unrolled by 4 */
emilmont 1:fdd22bb7aa52 532 blkCnt = blockSize2;
emilmont 1:fdd22bb7aa52 533
emilmont 1:fdd22bb7aa52 534 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 535 {
emilmont 1:fdd22bb7aa52 536 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 537 sum = 0.0f;
emilmont 1:fdd22bb7aa52 538
emilmont 1:fdd22bb7aa52 539 /* Loop over srcBLen */
emilmont 1:fdd22bb7aa52 540 k = srcBLen;
emilmont 1:fdd22bb7aa52 541
emilmont 1:fdd22bb7aa52 542 while(k > 0u)
emilmont 1:fdd22bb7aa52 543 {
emilmont 1:fdd22bb7aa52 544 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 545 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 546
emilmont 1:fdd22bb7aa52 547 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 548 k--;
emilmont 1:fdd22bb7aa52 549 }
emilmont 1:fdd22bb7aa52 550
emilmont 1:fdd22bb7aa52 551 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 552 *pOut = sum;
emilmont 1:fdd22bb7aa52 553 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 554 pOut += inc;
emilmont 1:fdd22bb7aa52 555
emilmont 1:fdd22bb7aa52 556 /* Increment the pointer pIn1 index, count by 1 */
emilmont 1:fdd22bb7aa52 557 count++;
emilmont 1:fdd22bb7aa52 558
emilmont 1:fdd22bb7aa52 559 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 560 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 561 py = pIn2;
emilmont 1:fdd22bb7aa52 562
emilmont 1:fdd22bb7aa52 563 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 564 blkCnt--;
emilmont 1:fdd22bb7aa52 565 }
emilmont 1:fdd22bb7aa52 566 }
emilmont 1:fdd22bb7aa52 567
emilmont 1:fdd22bb7aa52 568 /* --------------------------
emilmont 1:fdd22bb7aa52 569 * Initializations of stage3
emilmont 1:fdd22bb7aa52 570 * -------------------------*/
emilmont 1:fdd22bb7aa52 571
emilmont 1:fdd22bb7aa52 572 /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 573 * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 574 * ....
emilmont 1:fdd22bb7aa52 575 * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
emilmont 1:fdd22bb7aa52 576 * sum += x[srcALen-1] * y[0]
emilmont 1:fdd22bb7aa52 577 */
emilmont 1:fdd22bb7aa52 578
emilmont 1:fdd22bb7aa52 579 /* In this stage the MAC operations are decreased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 580 The count variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 581 count = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 582
emilmont 1:fdd22bb7aa52 583 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 584 pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
emilmont 1:fdd22bb7aa52 585 px = pSrc1;
emilmont 1:fdd22bb7aa52 586
emilmont 1:fdd22bb7aa52 587 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 588 py = pIn2;
emilmont 1:fdd22bb7aa52 589
emilmont 1:fdd22bb7aa52 590 /* -------------------
emilmont 1:fdd22bb7aa52 591 * Stage3 process
emilmont 1:fdd22bb7aa52 592 * ------------------*/
emilmont 1:fdd22bb7aa52 593
emilmont 1:fdd22bb7aa52 594 while(blockSize3 > 0u)
emilmont 1:fdd22bb7aa52 595 {
emilmont 1:fdd22bb7aa52 596 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 597 sum = 0.0f;
emilmont 1:fdd22bb7aa52 598
emilmont 1:fdd22bb7aa52 599 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 600 k = count >> 2u;
emilmont 1:fdd22bb7aa52 601
emilmont 1:fdd22bb7aa52 602 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 603 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 604 while(k > 0u)
emilmont 1:fdd22bb7aa52 605 {
emilmont 1:fdd22bb7aa52 606 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 607 /* sum += x[srcALen - srcBLen + 4] * y[3] */
emilmont 1:fdd22bb7aa52 608 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 609 /* sum += x[srcALen - srcBLen + 3] * y[2] */
emilmont 1:fdd22bb7aa52 610 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 611 /* sum += x[srcALen - srcBLen + 2] * y[1] */
emilmont 1:fdd22bb7aa52 612 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 613 /* sum += x[srcALen - srcBLen + 1] * y[0] */
emilmont 1:fdd22bb7aa52 614 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 615
emilmont 1:fdd22bb7aa52 616 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 617 k--;
emilmont 1:fdd22bb7aa52 618 }
emilmont 1:fdd22bb7aa52 619
emilmont 1:fdd22bb7aa52 620 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 621 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 622 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 623
emilmont 1:fdd22bb7aa52 624 while(k > 0u)
emilmont 1:fdd22bb7aa52 625 {
emilmont 1:fdd22bb7aa52 626 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 627 sum += *px++ * *py++;
emilmont 1:fdd22bb7aa52 628
emilmont 1:fdd22bb7aa52 629 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 630 k--;
emilmont 1:fdd22bb7aa52 631 }
emilmont 1:fdd22bb7aa52 632
emilmont 1:fdd22bb7aa52 633 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 634 *pOut = sum;
emilmont 1:fdd22bb7aa52 635 /* Destination pointer is updated according to the address modifier, inc */
emilmont 1:fdd22bb7aa52 636 pOut += inc;
emilmont 1:fdd22bb7aa52 637
emilmont 1:fdd22bb7aa52 638 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 639 px = ++pSrc1;
emilmont 1:fdd22bb7aa52 640 py = pIn2;
emilmont 1:fdd22bb7aa52 641
emilmont 1:fdd22bb7aa52 642 /* Decrement the MAC count */
emilmont 1:fdd22bb7aa52 643 count--;
emilmont 1:fdd22bb7aa52 644
emilmont 1:fdd22bb7aa52 645 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 646 blockSize3--;
emilmont 1:fdd22bb7aa52 647 }
emilmont 1:fdd22bb7aa52 648
emilmont 1:fdd22bb7aa52 649 #else
emilmont 1:fdd22bb7aa52 650
emilmont 1:fdd22bb7aa52 651 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 652
emilmont 1:fdd22bb7aa52 653 float32_t *pIn1 = pSrcA; /* inputA pointer */
emilmont 1:fdd22bb7aa52 654 float32_t *pIn2 = pSrcB + (srcBLen - 1u); /* inputB pointer */
emilmont 1:fdd22bb7aa52 655 float32_t sum; /* Accumulator */
emilmont 1:fdd22bb7aa52 656 uint32_t i = 0u, j; /* loop counters */
emilmont 1:fdd22bb7aa52 657 uint32_t inv = 0u; /* Reverse order flag */
emilmont 1:fdd22bb7aa52 658 uint32_t tot = 0u; /* Length */
emilmont 1:fdd22bb7aa52 659
emilmont 1:fdd22bb7aa52 660 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 661 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 662 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 663 /* But CORR(x, y) is reverse of CORR(y, x) */
emilmont 1:fdd22bb7aa52 664 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
emilmont 1:fdd22bb7aa52 665 /* and a varaible, inv is set to 1 */
emilmont 1:fdd22bb7aa52 666 /* If lengths are not equal then zero pad has to be done to make the two
emilmont 1:fdd22bb7aa52 667 * inputs of same length. But to improve the performance, we include zeroes
emilmont 1:fdd22bb7aa52 668 * in the output instead of zero padding either of the the inputs*/
emilmont 1:fdd22bb7aa52 669 /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
emilmont 1:fdd22bb7aa52 670 * starting of the output buffer */
emilmont 1:fdd22bb7aa52 671 /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
emilmont 1:fdd22bb7aa52 672 * ending of the output buffer */
emilmont 1:fdd22bb7aa52 673 /* Once the zero padding is done the remaining of the output is calcualted
emilmont 1:fdd22bb7aa52 674 * using convolution but with the shorter signal time shifted. */
emilmont 1:fdd22bb7aa52 675
emilmont 1:fdd22bb7aa52 676 /* Calculate the length of the remaining sequence */
emilmont 1:fdd22bb7aa52 677 tot = ((srcALen + srcBLen) - 2u);
emilmont 1:fdd22bb7aa52 678
emilmont 1:fdd22bb7aa52 679 if(srcALen > srcBLen)
emilmont 1:fdd22bb7aa52 680 {
emilmont 1:fdd22bb7aa52 681 /* Calculating the number of zeros to be padded to the output */
emilmont 1:fdd22bb7aa52 682 j = srcALen - srcBLen;
emilmont 1:fdd22bb7aa52 683
emilmont 1:fdd22bb7aa52 684 /* Initialise the pointer after zero padding */
emilmont 1:fdd22bb7aa52 685 pDst += j;
emilmont 1:fdd22bb7aa52 686 }
emilmont 1:fdd22bb7aa52 687
emilmont 1:fdd22bb7aa52 688 else if(srcALen < srcBLen)
emilmont 1:fdd22bb7aa52 689 {
emilmont 1:fdd22bb7aa52 690 /* Initialization to inputB pointer */
emilmont 1:fdd22bb7aa52 691 pIn1 = pSrcB;
emilmont 1:fdd22bb7aa52 692
emilmont 1:fdd22bb7aa52 693 /* Initialization to the end of inputA pointer */
emilmont 1:fdd22bb7aa52 694 pIn2 = pSrcA + (srcALen - 1u);
emilmont 1:fdd22bb7aa52 695
emilmont 1:fdd22bb7aa52 696 /* Initialisation of the pointer after zero padding */
emilmont 1:fdd22bb7aa52 697 pDst = pDst + tot;
emilmont 1:fdd22bb7aa52 698
emilmont 1:fdd22bb7aa52 699 /* Swapping the lengths */
emilmont 1:fdd22bb7aa52 700 j = srcALen;
emilmont 1:fdd22bb7aa52 701 srcALen = srcBLen;
emilmont 1:fdd22bb7aa52 702 srcBLen = j;
emilmont 1:fdd22bb7aa52 703
emilmont 1:fdd22bb7aa52 704 /* Setting the reverse flag */
emilmont 1:fdd22bb7aa52 705 inv = 1;
emilmont 1:fdd22bb7aa52 706
emilmont 1:fdd22bb7aa52 707 }
emilmont 1:fdd22bb7aa52 708
emilmont 1:fdd22bb7aa52 709 /* Loop to calculate convolution for output length number of times */
emilmont 1:fdd22bb7aa52 710 for (i = 0u; i <= tot; i++)
emilmont 1:fdd22bb7aa52 711 {
emilmont 1:fdd22bb7aa52 712 /* Initialize sum with zero to carry on MAC operations */
emilmont 1:fdd22bb7aa52 713 sum = 0.0f;
emilmont 1:fdd22bb7aa52 714
emilmont 1:fdd22bb7aa52 715 /* Loop to perform MAC operations according to convolution equation */
emilmont 1:fdd22bb7aa52 716 for (j = 0u; j <= i; j++)
emilmont 1:fdd22bb7aa52 717 {
emilmont 1:fdd22bb7aa52 718 /* Check the array limitations */
emilmont 1:fdd22bb7aa52 719 if((((i - j) < srcBLen) && (j < srcALen)))
emilmont 1:fdd22bb7aa52 720 {
emilmont 1:fdd22bb7aa52 721 /* z[i] += x[i-j] * y[j] */
emilmont 1:fdd22bb7aa52 722 sum += pIn1[j] * pIn2[-((int32_t) i - j)];
emilmont 1:fdd22bb7aa52 723 }
emilmont 1:fdd22bb7aa52 724 }
emilmont 1:fdd22bb7aa52 725 /* Store the output in the destination buffer */
emilmont 1:fdd22bb7aa52 726 if(inv == 1)
emilmont 1:fdd22bb7aa52 727 *pDst-- = sum;
emilmont 1:fdd22bb7aa52 728 else
emilmont 1:fdd22bb7aa52 729 *pDst++ = sum;
emilmont 1:fdd22bb7aa52 730 }
emilmont 1:fdd22bb7aa52 731
emilmont 1:fdd22bb7aa52 732 #endif /* #ifndef ARM_MATH_CM0 */
emilmont 1:fdd22bb7aa52 733
emilmont 1:fdd22bb7aa52 734 }
emilmont 1:fdd22bb7aa52 735
emilmont 1:fdd22bb7aa52 736 /**
emilmont 1:fdd22bb7aa52 737 * @} end of Corr group
emilmont 1:fdd22bb7aa52 738 */