Eurobot2012_Secondary

Fork of Eurobot_2012_Secondary by Shuto Naruse

Committer:
narshu
Date:
Wed Oct 17 22:25:31 2012 +0000
Revision:
1:cc2a9eb0bd55
Commit before publishing

Who changed what in which revision?

UserRevisionLine numberNew contents of line
narshu 1:cc2a9eb0bd55 1 //***************************************************************************************
narshu 1:cc2a9eb0bd55 2 //Kalman Filter implementation
narshu 1:cc2a9eb0bd55 3 //***************************************************************************************
narshu 1:cc2a9eb0bd55 4 #include "Kalman.h"
narshu 1:cc2a9eb0bd55 5 #include "rtos.h"
narshu 1:cc2a9eb0bd55 6 #include "RFSRF05.h"
narshu 1:cc2a9eb0bd55 7 #include "math.h"
narshu 1:cc2a9eb0bd55 8 #include "globals.h"
narshu 1:cc2a9eb0bd55 9 #include "motors.h"
narshu 1:cc2a9eb0bd55 10 #include "system.h"
narshu 1:cc2a9eb0bd55 11 #include "geometryfuncs.h"
narshu 1:cc2a9eb0bd55 12
narshu 1:cc2a9eb0bd55 13 #include <tvmet/Matrix.h>
narshu 1:cc2a9eb0bd55 14 #include <tvmet/Vector.h>
narshu 1:cc2a9eb0bd55 15 using namespace tvmet;
narshu 1:cc2a9eb0bd55 16
narshu 1:cc2a9eb0bd55 17 Kalman::Kalman(Motors &motorsin,
narshu 1:cc2a9eb0bd55 18 UI &uiin,
narshu 1:cc2a9eb0bd55 19 PinName Sonar_Trig,
narshu 1:cc2a9eb0bd55 20 PinName Sonar_Echo0,
narshu 1:cc2a9eb0bd55 21 PinName Sonar_Echo1,
narshu 1:cc2a9eb0bd55 22 PinName Sonar_Echo2,
narshu 1:cc2a9eb0bd55 23 PinName Sonar_Echo3,
narshu 1:cc2a9eb0bd55 24 PinName Sonar_Echo4,
narshu 1:cc2a9eb0bd55 25 PinName Sonar_Echo5,
narshu 1:cc2a9eb0bd55 26 PinName Sonar_SDI,
narshu 1:cc2a9eb0bd55 27 PinName Sonar_SDO,
narshu 1:cc2a9eb0bd55 28 PinName Sonar_SCK,
narshu 1:cc2a9eb0bd55 29 PinName Sonar_NCS,
narshu 1:cc2a9eb0bd55 30 PinName Sonar_NIRQ) :
narshu 1:cc2a9eb0bd55 31 ir(*this),
narshu 1:cc2a9eb0bd55 32 sonararray(Sonar_Trig,
narshu 1:cc2a9eb0bd55 33 Sonar_Echo0,
narshu 1:cc2a9eb0bd55 34 Sonar_Echo1,
narshu 1:cc2a9eb0bd55 35 Sonar_Echo2,
narshu 1:cc2a9eb0bd55 36 Sonar_Echo3,
narshu 1:cc2a9eb0bd55 37 Sonar_Echo4,
narshu 1:cc2a9eb0bd55 38 Sonar_Echo5,
narshu 1:cc2a9eb0bd55 39 Sonar_SDI,
narshu 1:cc2a9eb0bd55 40 Sonar_SDO,
narshu 1:cc2a9eb0bd55 41 Sonar_SCK,
narshu 1:cc2a9eb0bd55 42 Sonar_NCS,
narshu 1:cc2a9eb0bd55 43 Sonar_NIRQ),
narshu 1:cc2a9eb0bd55 44 motors(motorsin),
narshu 1:cc2a9eb0bd55 45 ui(uiin),
narshu 1:cc2a9eb0bd55 46 predictthread(predictloopwrapper, this, osPriorityNormal, 512),
narshu 1:cc2a9eb0bd55 47 predictticker( SIGTICKARGS(predictthread, 0x1) ),
narshu 1:cc2a9eb0bd55 48 // sonarthread(sonarloopwrapper, this, osPriorityNormal, 256),
narshu 1:cc2a9eb0bd55 49 // sonarticker( SIGTICKARGS(sonarthread, 0x1) ),
narshu 1:cc2a9eb0bd55 50 updatethread(updateloopwrapper, this, osPriorityNormal, 512) {
narshu 1:cc2a9eb0bd55 51
narshu 1:cc2a9eb0bd55 52 //Initilising offsets
narshu 1:cc2a9eb0bd55 53 InitLock.lock();
narshu 1:cc2a9eb0bd55 54 IR_Offset = 0;
narshu 1:cc2a9eb0bd55 55 Sonar_Offset = 0;
narshu 1:cc2a9eb0bd55 56 InitLock.unlock();
narshu 1:cc2a9eb0bd55 57
narshu 1:cc2a9eb0bd55 58
narshu 1:cc2a9eb0bd55 59 //Initilising matrices
narshu 1:cc2a9eb0bd55 60
narshu 1:cc2a9eb0bd55 61 // X = x, y, theta;
narshu 1:cc2a9eb0bd55 62 if (Colour)
narshu 1:cc2a9eb0bd55 63 X = 0.5, 0, 0;
narshu 1:cc2a9eb0bd55 64 else
narshu 1:cc2a9eb0bd55 65 X = 2.5, 0, PI;
narshu 1:cc2a9eb0bd55 66
narshu 1:cc2a9eb0bd55 67 P = 1, 0, 0,
narshu 1:cc2a9eb0bd55 68 0, 1, 0,
narshu 1:cc2a9eb0bd55 69 0, 0, 0.04;
narshu 1:cc2a9eb0bd55 70
narshu 1:cc2a9eb0bd55 71 //measurment variance R is provided by each sensor when calling runupdate
narshu 1:cc2a9eb0bd55 72
narshu 1:cc2a9eb0bd55 73 //attach callback
narshu 1:cc2a9eb0bd55 74 sonararray.callbackobj = (DummyCT*)this;
narshu 1:cc2a9eb0bd55 75 sonararray.mcallbackfunc = (void (DummyCT::*)(int beaconnum, float distance, float variance)) &Kalman::runupdate;
narshu 1:cc2a9eb0bd55 76
narshu 1:cc2a9eb0bd55 77
narshu 1:cc2a9eb0bd55 78 predictticker.start(20);
narshu 1:cc2a9eb0bd55 79 // sonarticker.start(50);
narshu 1:cc2a9eb0bd55 80
narshu 1:cc2a9eb0bd55 81 }
narshu 1:cc2a9eb0bd55 82
narshu 1:cc2a9eb0bd55 83
narshu 1:cc2a9eb0bd55 84 //Note: this init function assumes that the robot faces east, theta=0, in the +x direction
narshu 1:cc2a9eb0bd55 85 void Kalman::KalmanInit() {
narshu 1:cc2a9eb0bd55 86 motors.stop();
narshu 1:cc2a9eb0bd55 87 float SonarMeasuresx1000[3];
narshu 1:cc2a9eb0bd55 88 float IRMeasuresloc[3];
narshu 1:cc2a9eb0bd55 89 int beacon_cnt = 0;
narshu 1:cc2a9eb0bd55 90
narshu 1:cc2a9eb0bd55 91
narshu 1:cc2a9eb0bd55 92 // doesn't work since they break the ISR
narshu 1:cc2a9eb0bd55 93 /*
narshu 1:cc2a9eb0bd55 94 #ifdef ROBOT_PRIMARY
narshu 1:cc2a9eb0bd55 95 LPC_UART3->FCR = LPC_UART3->FCR | 0x06; // Flush the serial FIFO buffer / OR with FCR
narshu 1:cc2a9eb0bd55 96 #else
narshu 1:cc2a9eb0bd55 97 LPC_UART1->FCR = LPC_UART1->FCR | 0x06; // Flush the serial FIFO buffer / OR with FCR
narshu 1:cc2a9eb0bd55 98 #endif
narshu 1:cc2a9eb0bd55 99 */
narshu 1:cc2a9eb0bd55 100 // zeros the measurements
narshu 1:cc2a9eb0bd55 101 for (int i = 0; i < 3; i++) {
narshu 1:cc2a9eb0bd55 102 SonarMeasures[i] = 0;
narshu 1:cc2a9eb0bd55 103 IRMeasures[i] = 0;
narshu 1:cc2a9eb0bd55 104 }
narshu 1:cc2a9eb0bd55 105
narshu 1:cc2a9eb0bd55 106 InitLock.lock();
narshu 1:cc2a9eb0bd55 107 //zeros offsets
narshu 1:cc2a9eb0bd55 108 IR_Offset = 0;
narshu 1:cc2a9eb0bd55 109 Sonar_Offset = 0;
narshu 1:cc2a9eb0bd55 110 InitLock.unlock();
narshu 1:cc2a9eb0bd55 111
narshu 1:cc2a9eb0bd55 112 // attaches ir interrup
narshu 1:cc2a9eb0bd55 113 ir.attachisr();
narshu 1:cc2a9eb0bd55 114
narshu 1:cc2a9eb0bd55 115 //wating untill the IR has reved up and picked up some valid data
narshu 1:cc2a9eb0bd55 116 //Thread::wait(1000);
narshu 1:cc2a9eb0bd55 117 wait(2);
narshu 1:cc2a9eb0bd55 118
narshu 1:cc2a9eb0bd55 119 //temporaraly disable IR updates
narshu 1:cc2a9eb0bd55 120 ir.detachisr();
narshu 1:cc2a9eb0bd55 121
narshu 1:cc2a9eb0bd55 122 //lock the state throughout the computation, as we will override the state at the end
narshu 1:cc2a9eb0bd55 123 InitLock.lock();
narshu 1:cc2a9eb0bd55 124 statelock.lock();
narshu 1:cc2a9eb0bd55 125
narshu 1:cc2a9eb0bd55 126
narshu 1:cc2a9eb0bd55 127
narshu 1:cc2a9eb0bd55 128 SonarMeasuresx1000[0] = SonarMeasures[0]*1000.0f;
narshu 1:cc2a9eb0bd55 129 SonarMeasuresx1000[1] = SonarMeasures[1]*1000.0f;
narshu 1:cc2a9eb0bd55 130 SonarMeasuresx1000[2] = SonarMeasures[2]*1000.0f;
narshu 1:cc2a9eb0bd55 131 IRMeasuresloc[0] = IRMeasures[0];
narshu 1:cc2a9eb0bd55 132 IRMeasuresloc[1] = IRMeasures[1];
narshu 1:cc2a9eb0bd55 133 IRMeasuresloc[2] = IRMeasures[2];
narshu 1:cc2a9eb0bd55 134 //printf("0: %0.4f, 1: %0.4f, 2: %0.4f \n\r", IRMeasuresloc[0]*180/PI, IRMeasuresloc[1]*180/PI, IRMeasuresloc[2]*180/PI);
narshu 1:cc2a9eb0bd55 135
narshu 1:cc2a9eb0bd55 136 float d = beaconpos[2].y - beaconpos[1].y;
narshu 1:cc2a9eb0bd55 137 float i = beaconpos[0].y - beaconpos[1].y;
narshu 1:cc2a9eb0bd55 138 float j = beaconpos[0].x - beaconpos[1].x;
narshu 1:cc2a9eb0bd55 139 float origin_x = beaconpos[1].x;
narshu 1:cc2a9eb0bd55 140 float y_coor = (SonarMeasuresx1000[1]*SonarMeasuresx1000[1]- SonarMeasuresx1000[2]*SonarMeasuresx1000[2] + d*d) / (2*d);
narshu 1:cc2a9eb0bd55 141 float x_coor = origin_x + (SonarMeasuresx1000[1]*SonarMeasuresx1000[1] - SonarMeasuresx1000[0]*SonarMeasuresx1000[0] + i*i + j*j)/(2*j) - i*y_coor/j;
narshu 1:cc2a9eb0bd55 142
narshu 1:cc2a9eb0bd55 143 //debug for trilateration
narshu 1:cc2a9eb0bd55 144 printf("Cal at x: %0.4f, y: %0.4f \r\n",x_coor,y_coor );
narshu 1:cc2a9eb0bd55 145
narshu 1:cc2a9eb0bd55 146 float Dist_Exp[3];
narshu 1:cc2a9eb0bd55 147 for (int i = 0; i < 3; i++) {
narshu 1:cc2a9eb0bd55 148 //Compute sonar offset
narshu 1:cc2a9eb0bd55 149 Dist_Exp[i] = hypot(beaconpos[i].y - y_coor,beaconpos[i].x - x_coor);
narshu 1:cc2a9eb0bd55 150 Sonar_Offset += (SonarMeasuresx1000[i]-Dist_Exp[i])/3000.0f;
narshu 1:cc2a9eb0bd55 151
narshu 1:cc2a9eb0bd55 152 //Compute IR offset
narshu 1:cc2a9eb0bd55 153 float angle_est = atan2(beaconpos[i].y - y_coor,beaconpos[i].x - x_coor);
narshu 1:cc2a9eb0bd55 154 if (!Colour)
narshu 1:cc2a9eb0bd55 155 angle_est -= PI;
narshu 1:cc2a9eb0bd55 156 //printf("Angle %d : %f \n\r",i,angle_est*180/PI );
narshu 1:cc2a9eb0bd55 157 // take average offset angle from valid readings
narshu 1:cc2a9eb0bd55 158 if (IRMeasuresloc[i] != 0) {
narshu 1:cc2a9eb0bd55 159 beacon_cnt ++;
narshu 1:cc2a9eb0bd55 160 // changed to current angle - estimated angle
narshu 1:cc2a9eb0bd55 161 float angle_temp = IRMeasuresloc[i] - angle_est;
narshu 1:cc2a9eb0bd55 162 angle_temp -= (floor(angle_temp/(2*PI)))*2*PI;
narshu 1:cc2a9eb0bd55 163 IR_Offset += angle_temp;
narshu 1:cc2a9eb0bd55 164 }
narshu 1:cc2a9eb0bd55 165 }
narshu 1:cc2a9eb0bd55 166 IR_Offset /= float(beacon_cnt);
narshu 1:cc2a9eb0bd55 167
narshu 1:cc2a9eb0bd55 168 //debug
narshu 1:cc2a9eb0bd55 169 printf("Offsets IR: %0.4f, Sonar: %0.4f \r\n",IR_Offset*180/PI,Sonar_Offset*1000 );
narshu 1:cc2a9eb0bd55 170
narshu 1:cc2a9eb0bd55 171 //statelock already locked
narshu 1:cc2a9eb0bd55 172 X(0) = x_coor/1000.0f;
narshu 1:cc2a9eb0bd55 173 X(1) = y_coor/1000.0f;
narshu 1:cc2a9eb0bd55 174
narshu 1:cc2a9eb0bd55 175 if (Colour)
narshu 1:cc2a9eb0bd55 176 X(2) = 0;
narshu 1:cc2a9eb0bd55 177 else
narshu 1:cc2a9eb0bd55 178 X(2) = PI;
narshu 1:cc2a9eb0bd55 179
narshu 1:cc2a9eb0bd55 180 // unlocks mutexes
narshu 1:cc2a9eb0bd55 181 InitLock.unlock();
narshu 1:cc2a9eb0bd55 182 statelock.unlock();
narshu 1:cc2a9eb0bd55 183
narshu 1:cc2a9eb0bd55 184
narshu 1:cc2a9eb0bd55 185 //reattach the IR processing
narshu 1:cc2a9eb0bd55 186 ir.attachisr();
narshu 1:cc2a9eb0bd55 187 }
narshu 1:cc2a9eb0bd55 188
narshu 1:cc2a9eb0bd55 189
narshu 1:cc2a9eb0bd55 190 void Kalman::predictloop() {
narshu 1:cc2a9eb0bd55 191
narshu 1:cc2a9eb0bd55 192 OLED4 = !ui.regid(0, 3);
narshu 1:cc2a9eb0bd55 193 OLED4 = !ui.regid(1, 4);
narshu 1:cc2a9eb0bd55 194
narshu 1:cc2a9eb0bd55 195 float lastleft = 0;
narshu 1:cc2a9eb0bd55 196 float lastright = 0;
narshu 1:cc2a9eb0bd55 197
narshu 1:cc2a9eb0bd55 198 while (1) {
narshu 1:cc2a9eb0bd55 199 Thread::signal_wait(0x1);
narshu 1:cc2a9eb0bd55 200 OLED1 = !OLED1;
narshu 1:cc2a9eb0bd55 201
narshu 1:cc2a9eb0bd55 202 int leftenc = motors.getEncoder1();
narshu 1:cc2a9eb0bd55 203 int rightenc = motors.getEncoder2();
narshu 1:cc2a9eb0bd55 204
narshu 1:cc2a9eb0bd55 205 float dleft = motors.encoderToDistance(leftenc-lastleft)/1000.0f;
narshu 1:cc2a9eb0bd55 206 float dright = motors.encoderToDistance(rightenc-lastright)/1000.0f;
narshu 1:cc2a9eb0bd55 207
narshu 1:cc2a9eb0bd55 208 lastleft = leftenc;
narshu 1:cc2a9eb0bd55 209 lastright = rightenc;
narshu 1:cc2a9eb0bd55 210
narshu 1:cc2a9eb0bd55 211
narshu 1:cc2a9eb0bd55 212 //The below calculation are in body frame (where +x is forward)
narshu 1:cc2a9eb0bd55 213 float dxp, dyp,d,r;
narshu 1:cc2a9eb0bd55 214 float thetap = (dright - dleft)*PI / (float(robotCircumference)/1000.0f);
narshu 1:cc2a9eb0bd55 215 if (abs(thetap) < 0.02) { //if the rotation through the integration step is small, approximate with a straight line to avoid numerical error
narshu 1:cc2a9eb0bd55 216 d = (dright + dleft)/2.0f;
narshu 1:cc2a9eb0bd55 217 dxp = d*cos(thetap/2.0f);
narshu 1:cc2a9eb0bd55 218 dyp = d*sin(thetap/2.0f);
narshu 1:cc2a9eb0bd55 219
narshu 1:cc2a9eb0bd55 220 } else { //calculate circle arc
narshu 1:cc2a9eb0bd55 221 //float r = (right + left) / (4.0f * PI * thetap);
narshu 1:cc2a9eb0bd55 222 r = (dright + dleft) / (2.0f*thetap);
narshu 1:cc2a9eb0bd55 223 dxp = abs(r)*sin(thetap);
narshu 1:cc2a9eb0bd55 224 dyp = r - r*cos(thetap);
narshu 1:cc2a9eb0bd55 225 }
narshu 1:cc2a9eb0bd55 226
narshu 1:cc2a9eb0bd55 227 statelock.lock();
narshu 1:cc2a9eb0bd55 228
narshu 1:cc2a9eb0bd55 229 float tempX2 = X(2);
narshu 1:cc2a9eb0bd55 230 //rotating to cartesian frame and updating state
narshu 1:cc2a9eb0bd55 231 X(0) += dxp * cos(X(2)) - dyp * sin(X(2));
narshu 1:cc2a9eb0bd55 232 X(1) += dxp * sin(X(2)) + dyp * cos(X(2));
narshu 1:cc2a9eb0bd55 233 X(2) = rectifyAng(X(2) + thetap);
narshu 1:cc2a9eb0bd55 234
narshu 1:cc2a9eb0bd55 235 //Linearising F around X
narshu 1:cc2a9eb0bd55 236 float avgX2 = (X(2) + tempX2)/2.0f;
narshu 1:cc2a9eb0bd55 237 Matrix<float, 3, 3> F;
narshu 1:cc2a9eb0bd55 238 F = 1, 0, (dxp * -sin(avgX2) - dyp * cos(avgX2)),
narshu 1:cc2a9eb0bd55 239 0, 1, (dxp * cos(avgX2) - dyp * sin(avgX2)),
narshu 1:cc2a9eb0bd55 240 0, 0, 1;
narshu 1:cc2a9eb0bd55 241
narshu 1:cc2a9eb0bd55 242 //Generating forward and rotational variance
narshu 1:cc2a9eb0bd55 243 float varfwd = fwdvarperunit * abs(dright + dleft) / 2.0f;
narshu 1:cc2a9eb0bd55 244 float varang = varperang * abs(thetap);
narshu 1:cc2a9eb0bd55 245 float varxydt = xyvarpertime * PREDICTPERIOD/1000.0f;
narshu 1:cc2a9eb0bd55 246 float varangdt = angvarpertime * PREDICTPERIOD/1000.0f;
narshu 1:cc2a9eb0bd55 247
narshu 1:cc2a9eb0bd55 248 //Rotating into cartesian frame
narshu 1:cc2a9eb0bd55 249 Matrix<float, 2, 2> Qsub,Qsubrot,Qrot;
narshu 1:cc2a9eb0bd55 250 Qsub = varfwd + varxydt, 0,
narshu 1:cc2a9eb0bd55 251 0, varxydt;
narshu 1:cc2a9eb0bd55 252
narshu 1:cc2a9eb0bd55 253 Qrot = Rotmatrix(X(2));
narshu 1:cc2a9eb0bd55 254
narshu 1:cc2a9eb0bd55 255 Qsubrot = Qrot * Qsub * trans(Qrot);
narshu 1:cc2a9eb0bd55 256
narshu 1:cc2a9eb0bd55 257 //Generate Q
narshu 1:cc2a9eb0bd55 258 Matrix<float, 3, 3> Q;//(Qsubrot);
narshu 1:cc2a9eb0bd55 259 Q = Qsubrot(0,0), Qsubrot(0,1), 0,
narshu 1:cc2a9eb0bd55 260 Qsubrot(1,0), Qsubrot(1,1), 0,
narshu 1:cc2a9eb0bd55 261 0, 0, varang + varangdt;
narshu 1:cc2a9eb0bd55 262
narshu 1:cc2a9eb0bd55 263 P = F * P * trans(F) + Q;
narshu 1:cc2a9eb0bd55 264
narshu 1:cc2a9eb0bd55 265 //Update UI
narshu 1:cc2a9eb0bd55 266 float statecpy[] = {X(0), X(1), X(2)};
narshu 1:cc2a9eb0bd55 267 ui.updateval(0, statecpy, 3);
narshu 1:cc2a9eb0bd55 268
narshu 1:cc2a9eb0bd55 269 float Pcpy[] = {P(0,0), P(0,1), P(1,0), P(1,1)};
narshu 1:cc2a9eb0bd55 270 ui.updateval(1, Pcpy, 4);
narshu 1:cc2a9eb0bd55 271
narshu 1:cc2a9eb0bd55 272 statelock.unlock();
narshu 1:cc2a9eb0bd55 273 }
narshu 1:cc2a9eb0bd55 274 }
narshu 1:cc2a9eb0bd55 275
narshu 1:cc2a9eb0bd55 276 //void Kalman::sonarloop() {
narshu 1:cc2a9eb0bd55 277 // while (1) {
narshu 1:cc2a9eb0bd55 278 // Thread::signal_wait(0x1);
narshu 1:cc2a9eb0bd55 279 // sonararray.startRange();
narshu 1:cc2a9eb0bd55 280 // }
narshu 1:cc2a9eb0bd55 281 //}
narshu 1:cc2a9eb0bd55 282
narshu 1:cc2a9eb0bd55 283
narshu 1:cc2a9eb0bd55 284 void Kalman::runupdate(measurement_t type, float value, float variance) {
narshu 1:cc2a9eb0bd55 285 //printf("beacon %d dist %f\r\n", sonarid, dist);
narshu 1:cc2a9eb0bd55 286 //led2 = !led2;
narshu 1:cc2a9eb0bd55 287
narshu 1:cc2a9eb0bd55 288 measurmentdata* measured = (measurmentdata*)measureMQ.alloc();
narshu 1:cc2a9eb0bd55 289 if (measured) {
narshu 1:cc2a9eb0bd55 290 measured->mtype = type;
narshu 1:cc2a9eb0bd55 291 measured->value = value;
narshu 1:cc2a9eb0bd55 292 measured->variance = variance;
narshu 1:cc2a9eb0bd55 293
narshu 1:cc2a9eb0bd55 294 osStatus putret = measureMQ.put(measured);
narshu 1:cc2a9eb0bd55 295 if (putret)
narshu 1:cc2a9eb0bd55 296 OLED4 = 1;
narshu 1:cc2a9eb0bd55 297 // printf("putting in MQ error code %#x\r\n", putret);
narshu 1:cc2a9eb0bd55 298 } else {
narshu 1:cc2a9eb0bd55 299 OLED4 = 1;
narshu 1:cc2a9eb0bd55 300 //printf("MQalloc returned NULL ptr\r\n");
narshu 1:cc2a9eb0bd55 301 }
narshu 1:cc2a9eb0bd55 302
narshu 1:cc2a9eb0bd55 303 }
narshu 1:cc2a9eb0bd55 304
narshu 1:cc2a9eb0bd55 305 void Kalman::updateloop() {
narshu 1:cc2a9eb0bd55 306
narshu 1:cc2a9eb0bd55 307 //sonar Y chanels
narshu 1:cc2a9eb0bd55 308 ui.regid(2, 1);
narshu 1:cc2a9eb0bd55 309 ui.regid(3, 1);
narshu 1:cc2a9eb0bd55 310 ui.regid(4, 1);
narshu 1:cc2a9eb0bd55 311
narshu 1:cc2a9eb0bd55 312 //IR Y chanels
narshu 1:cc2a9eb0bd55 313 ui.regid(5, 1);
narshu 1:cc2a9eb0bd55 314 ui.regid(6, 1);
narshu 1:cc2a9eb0bd55 315 ui.regid(7, 1);
narshu 1:cc2a9eb0bd55 316
narshu 1:cc2a9eb0bd55 317 measurement_t type;
narshu 1:cc2a9eb0bd55 318 float value,variance,rbx,rby,expecdist,Y;
narshu 1:cc2a9eb0bd55 319 float dhdx,dhdy;
narshu 1:cc2a9eb0bd55 320 bool aborton2stddev = false;
narshu 1:cc2a9eb0bd55 321
narshu 1:cc2a9eb0bd55 322 Matrix<float, 1, 3> H;
narshu 1:cc2a9eb0bd55 323
narshu 1:cc2a9eb0bd55 324 float S;
narshu 1:cc2a9eb0bd55 325 Matrix<float, 3, 3> I3( identity< Matrix<float, 3, 3> >() );
narshu 1:cc2a9eb0bd55 326
narshu 1:cc2a9eb0bd55 327
narshu 1:cc2a9eb0bd55 328 while (1) {
narshu 1:cc2a9eb0bd55 329 OLED2 = !OLED2;
narshu 1:cc2a9eb0bd55 330
narshu 1:cc2a9eb0bd55 331 osEvent evt = measureMQ.get();
narshu 1:cc2a9eb0bd55 332
narshu 1:cc2a9eb0bd55 333 if (evt.status == osEventMail) {
narshu 1:cc2a9eb0bd55 334
narshu 1:cc2a9eb0bd55 335 measurmentdata &measured = *(measurmentdata*)evt.value.p;
narshu 1:cc2a9eb0bd55 336 type = measured.mtype; //Note, may support more measurment types than sonar in the future!
narshu 1:cc2a9eb0bd55 337 value = measured.value;
narshu 1:cc2a9eb0bd55 338 variance = measured.variance;
narshu 1:cc2a9eb0bd55 339
narshu 1:cc2a9eb0bd55 340 // don't forget to free the memory
narshu 1:cc2a9eb0bd55 341 measureMQ.free(&measured);
narshu 1:cc2a9eb0bd55 342
narshu 1:cc2a9eb0bd55 343 if (type <= maxmeasure) {
narshu 1:cc2a9eb0bd55 344
narshu 1:cc2a9eb0bd55 345 if (type <= SONAR3) {
narshu 1:cc2a9eb0bd55 346
narshu 1:cc2a9eb0bd55 347 InitLock.lock();
narshu 1:cc2a9eb0bd55 348 float dist = value / 1000.0f - Sonar_Offset; //converting to m from mm,subtract the offset
narshu 1:cc2a9eb0bd55 349 InitLock.unlock();
narshu 1:cc2a9eb0bd55 350
narshu 1:cc2a9eb0bd55 351 int sonarid = type;
narshu 1:cc2a9eb0bd55 352 aborton2stddev = true;
narshu 1:cc2a9eb0bd55 353
narshu 1:cc2a9eb0bd55 354 statelock.lock();
narshu 1:cc2a9eb0bd55 355 //update the current sonar readings
narshu 1:cc2a9eb0bd55 356 SonarMeasures[sonarid] = dist;
narshu 1:cc2a9eb0bd55 357
narshu 1:cc2a9eb0bd55 358 rbx = X(0) - beaconpos[sonarid].x/1000.0f;
narshu 1:cc2a9eb0bd55 359 rby = X(1) - beaconpos[sonarid].y/1000.0f;
narshu 1:cc2a9eb0bd55 360
narshu 1:cc2a9eb0bd55 361 expecdist = hypot(rbx, rby);//sqrt(rbx*rbx + rby*rby);
narshu 1:cc2a9eb0bd55 362 Y = dist - expecdist;
narshu 1:cc2a9eb0bd55 363
narshu 1:cc2a9eb0bd55 364 //send to ui
narshu 1:cc2a9eb0bd55 365 ui.updateval(sonarid+2, Y);
narshu 1:cc2a9eb0bd55 366
narshu 1:cc2a9eb0bd55 367 dhdx = rbx / expecdist;
narshu 1:cc2a9eb0bd55 368 dhdy = rby / expecdist;
narshu 1:cc2a9eb0bd55 369
narshu 1:cc2a9eb0bd55 370 H = dhdx, dhdy, 0;
narshu 1:cc2a9eb0bd55 371
narshu 1:cc2a9eb0bd55 372 } else if (type <= IR3) {
narshu 1:cc2a9eb0bd55 373
narshu 1:cc2a9eb0bd55 374 aborton2stddev = false;
narshu 1:cc2a9eb0bd55 375 int IRidx = type-3;
narshu 1:cc2a9eb0bd55 376
narshu 1:cc2a9eb0bd55 377 // subtract the IR offset
narshu 1:cc2a9eb0bd55 378 InitLock.lock();
narshu 1:cc2a9eb0bd55 379 value -= IR_Offset;
narshu 1:cc2a9eb0bd55 380 InitLock.unlock();
narshu 1:cc2a9eb0bd55 381
narshu 1:cc2a9eb0bd55 382 statelock.lock();
narshu 1:cc2a9eb0bd55 383 IRMeasures[IRidx] = value;
narshu 1:cc2a9eb0bd55 384
narshu 1:cc2a9eb0bd55 385 rbx = X(0) - beaconpos[IRidx].x/1000.0f;
narshu 1:cc2a9eb0bd55 386 rby = X(1) - beaconpos[IRidx].y/1000.0f;
narshu 1:cc2a9eb0bd55 387
narshu 1:cc2a9eb0bd55 388 float expecang = atan2(-rby, -rbx) - X(2);
narshu 1:cc2a9eb0bd55 389 Y = rectifyAng(value - expecang);
narshu 1:cc2a9eb0bd55 390
narshu 1:cc2a9eb0bd55 391 //send to ui
narshu 1:cc2a9eb0bd55 392 ui.updateval(IRidx + 5, Y);
narshu 1:cc2a9eb0bd55 393
narshu 1:cc2a9eb0bd55 394 float dstsq = rbx*rbx + rby*rby;
narshu 1:cc2a9eb0bd55 395 H = -rby/dstsq, rbx/dstsq, -1;
narshu 1:cc2a9eb0bd55 396 }
narshu 1:cc2a9eb0bd55 397
narshu 1:cc2a9eb0bd55 398 Matrix<float, 3, 1> PH (P * trans(H));
narshu 1:cc2a9eb0bd55 399 S = (H * PH)(0,0) + variance;
narshu 1:cc2a9eb0bd55 400
narshu 1:cc2a9eb0bd55 401 if (aborton2stddev && Y*Y > 4 * S) {
narshu 1:cc2a9eb0bd55 402 statelock.unlock();
narshu 1:cc2a9eb0bd55 403 continue;
narshu 1:cc2a9eb0bd55 404 }
narshu 1:cc2a9eb0bd55 405
narshu 1:cc2a9eb0bd55 406 Matrix<float, 3, 1> K (PH * (1/S));
narshu 1:cc2a9eb0bd55 407
narshu 1:cc2a9eb0bd55 408 //Updating state
narshu 1:cc2a9eb0bd55 409 X += col(K, 0) * Y;
narshu 1:cc2a9eb0bd55 410 X(2) = rectifyAng(X(2));
narshu 1:cc2a9eb0bd55 411
narshu 1:cc2a9eb0bd55 412 P = (I3 - K * H) * P;
narshu 1:cc2a9eb0bd55 413
narshu 1:cc2a9eb0bd55 414 statelock.unlock();
narshu 1:cc2a9eb0bd55 415
narshu 1:cc2a9eb0bd55 416 }
narshu 1:cc2a9eb0bd55 417
narshu 1:cc2a9eb0bd55 418 } else {
narshu 1:cc2a9eb0bd55 419 OLED4 = 1;
narshu 1:cc2a9eb0bd55 420 //printf("ERROR: in updateloop, code %#x", evt);
narshu 1:cc2a9eb0bd55 421 }
narshu 1:cc2a9eb0bd55 422
narshu 1:cc2a9eb0bd55 423 }
narshu 1:cc2a9eb0bd55 424
narshu 1:cc2a9eb0bd55 425 }
narshu 1:cc2a9eb0bd55 426
narshu 1:cc2a9eb0bd55 427 // reset kalman states
narshu 1:cc2a9eb0bd55 428 void Kalman::KalmanReset() {
narshu 1:cc2a9eb0bd55 429 float SonarMeasuresx1000[3];
narshu 1:cc2a9eb0bd55 430 statelock.lock();
narshu 1:cc2a9eb0bd55 431 SonarMeasuresx1000[0] = SonarMeasures[0]*1000.0f;
narshu 1:cc2a9eb0bd55 432 SonarMeasuresx1000[1] = SonarMeasures[1]*1000.0f;
narshu 1:cc2a9eb0bd55 433 SonarMeasuresx1000[2] = SonarMeasures[2]*1000.0f;
narshu 1:cc2a9eb0bd55 434 //printf("0: %0.4f, 1: %0.4f, 2: %0.4f \n\r", IRMeasuresloc[0]*180/PI, IRMeasuresloc[1]*180/PI, IRMeasuresloc[2]*180/PI);
narshu 1:cc2a9eb0bd55 435
narshu 1:cc2a9eb0bd55 436 float d = beaconpos[2].y - beaconpos[1].y;
narshu 1:cc2a9eb0bd55 437 float i = beaconpos[0].y - beaconpos[1].y;
narshu 1:cc2a9eb0bd55 438 float j = beaconpos[0].x - beaconpos[1].x;
narshu 1:cc2a9eb0bd55 439 float origin_x = beaconpos[1].x;
narshu 1:cc2a9eb0bd55 440 float y_coor = (SonarMeasuresx1000[1]*SonarMeasuresx1000[1]- SonarMeasuresx1000[2]*SonarMeasuresx1000[2] + d*d) / (2*d);
narshu 1:cc2a9eb0bd55 441 float x_coor = origin_x +(SonarMeasuresx1000[1]*SonarMeasuresx1000[1] - SonarMeasuresx1000[0]*SonarMeasuresx1000[0] + i*i + j*j)/(2*j) - i*y_coor/j;
narshu 1:cc2a9eb0bd55 442
narshu 1:cc2a9eb0bd55 443 //statelock already locked
narshu 1:cc2a9eb0bd55 444 X(0) = x_coor/1000.0f;
narshu 1:cc2a9eb0bd55 445 X(1) = y_coor/1000.0f;
narshu 1:cc2a9eb0bd55 446
narshu 1:cc2a9eb0bd55 447
narshu 1:cc2a9eb0bd55 448
narshu 1:cc2a9eb0bd55 449 /* if (Colour){
narshu 1:cc2a9eb0bd55 450 X(0) = 0.2;
narshu 1:cc2a9eb0bd55 451 X(1) = 0.2;
narshu 1:cc2a9eb0bd55 452 //X(2) = 0;
narshu 1:cc2a9eb0bd55 453 }
narshu 1:cc2a9eb0bd55 454 else {
narshu 1:cc2a9eb0bd55 455 X(0) = 2.8;
narshu 1:cc2a9eb0bd55 456 X(1) = 0.2;
narshu 1:cc2a9eb0bd55 457 //X(2) = PI;
narshu 1:cc2a9eb0bd55 458 }
narshu 1:cc2a9eb0bd55 459 */
narshu 1:cc2a9eb0bd55 460 P = 0.05, 0, 0,
narshu 1:cc2a9eb0bd55 461 0, 0.05, 0,
narshu 1:cc2a9eb0bd55 462 0, 0, 0.04;
narshu 1:cc2a9eb0bd55 463
narshu 1:cc2a9eb0bd55 464 // unlocks mutexes
narshu 1:cc2a9eb0bd55 465 statelock.unlock();
narshu 1:cc2a9eb0bd55 466
narshu 1:cc2a9eb0bd55 467 }