An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Mon Feb 22 06:57:59 2021 +0000
Revision:
111:42dc75fbe623
Parent:
109:310ac82cbbee
Child:
112:8ed709f455c0
Add initial support for VCNL4010 IR distance sensor -  experimental and untested

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 111:42dc75fbe623 1 /* Copyright 2014, 2021 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 99:8139b0c274f4 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 87:8d35c74403af 50 // We support several sensor types:
mjr 35:e959ffba78fd 51 //
mjr 87:8d35c74403af 52 // - AEDR-8300-1K2 optical encoders. These are quadrature encoders with
mjr 87:8d35c74403af 53 // reflective optical sensing and built-in lighting and optics. The sensor
mjr 87:8d35c74403af 54 // is attached to the plunger so that it moves with the plunger, and slides
mjr 87:8d35c74403af 55 // along a guide rail with a reflective pattern of regularly spaces bars
mjr 87:8d35c74403af 56 // for the encoder to read. We read the plunger position by counting the
mjr 87:8d35c74403af 57 // bars the sensor passes as it moves across the rail. This is the newest
mjr 87:8d35c74403af 58 // option, and it's my current favorite because it's highly accurate,
mjr 87:8d35c74403af 59 // precise, and fast, plus it's relatively inexpensive.
mjr 87:8d35c74403af 60 //
mjr 87:8d35c74403af 61 // - Slide potentiometers. There are slide potentioneters available with a
mjr 87:8d35c74403af 62 // long enough travel distance (at least 85mm) to cover the plunger travel.
mjr 87:8d35c74403af 63 // Attach the plunger to the potentiometer knob so that the moving the
mjr 87:8d35c74403af 64 // plunger moves the pot knob. We sense the position by simply reading
mjr 87:8d35c74403af 65 // the analog voltage on the pot brush. A pot with a "linear taper" (that
mjr 87:8d35c74403af 66 // is, the resistance varies linearly with the position) is required.
mjr 87:8d35c74403af 67 // This option is cheap, easy to set up, and works well.
mjr 5:a70c0bce770d 68 //
mjr 111:42dc75fbe623 69 // - TCD1103 optical linear imaging array. This is a CCD-based optical
mjr 111:42dc75fbe623 70 // imaging sensor, essentially an optical camera sensor, with a linear
mjr 111:42dc75fbe623 71 // (single-row) pixel file. This is similar to the venerable TSL1410R,
mjr 111:42dc75fbe623 72 // the original Pinscape plunger sensor. By arranging the sensor's
mjr 111:42dc75fbe623 73 // linear pixel array parallel to the plunger's axis of travel, we can
mjr 111:42dc75fbe623 74 // use the sensor to take pictures of the plunger, and then analyze the
mjr 111:42dc75fbe623 75 // images in software to determine the position by looking for the edge
mjr 111:42dc75fbe623 76 // between the tip of the plunger and the background. The TCD1103 is
mjr 111:42dc75fbe623 77 // produces low-noise images with 1500 pixels of resolution, and with
mjr 111:42dc75fbe623 78 // a small focusing lens, the software can reliably determine the
mjr 111:42dc75fbe623 79 // plunger position to a single pixel, which translates to about
mjr 111:42dc75fbe623 80 // 1/400" precision. The sensor can take these images (and we can
mjr 111:42dc75fbe623 81 // analyze them) at about 400 frames per second. Between the high
mjr 111:42dc75fbe623 82 // spatial resolution and fast update rate, this is the best sensor
mjr 111:42dc75fbe623 83 // I've found for this job.
mjr 111:42dc75fbe623 84 //
mjr 111:42dc75fbe623 85 // - VCNL4010 IR proximity sensor. This is an optical distance sensor that
mjr 111:42dc75fbe623 86 // estimates the distance to a target by measuring the intensity of a
mjr 111:42dc75fbe623 87 // reflected IR light signal that the sensor bounces off the target.
mjr 111:42dc75fbe623 88 // This is the sensor that's used in the commercial VirtuaPin "v3"
mjr 111:42dc75fbe623 89 // plunger kit. Since the VirtuaPin kit also uses a KL25Z as its
mjr 111:42dc75fbe623 90 // microcontroller, some users of that product have asked for support
mjr 111:42dc75fbe623 91 // for this sensor in the Pinscape code, so that they have the option
mjr 111:42dc75fbe623 92 // to use their hardware from that kit with the Pinscape software.
mjr 111:42dc75fbe623 93 // IR proximity sensors aren't very accurate or precise, so I don't
mjr 111:42dc75fbe623 94 // recommend it to people setting up a new system from scratch - it's
mjr 111:42dc75fbe623 95 // mostly for people who already have the VirtuaPin kit and don't want
mjr 111:42dc75fbe623 96 // to change their hardware to migrate to Pinscape. However, Adafruit
mjr 111:42dc75fbe623 97 // makes a breakout board for the sensor that you can use to set up a
mjr 111:42dc75fbe623 98 // new system if you want to try it - it only requires a few wires to
mjr 111:42dc75fbe623 99 // connect to the KL25Z. (In fact, it appears that VirtuaPin buys the
mjr 111:42dc75fbe623 100 // Adafruit breakout board and repackages it for their kit, so you'll
mjr 111:42dc75fbe623 101 // be using the same thing that VirtuaPin customers have.)
mjr 111:42dc75fbe623 102 //
mjr 87:8d35c74403af 103 // - VL6108X time-of-flight distance sensor. This is an optical distance
mjr 87:8d35c74403af 104 // sensor that measures the distance to a nearby object (within about 10cm)
mjr 87:8d35c74403af 105 // by measuring the travel time for reflected pulses of light. It's fairly
mjr 87:8d35c74403af 106 // cheap and easy to set up, but I don't recommend it because it has very
mjr 87:8d35c74403af 107 // low precision.
mjr 6:cc35eb643e8f 108 //
mjr 87:8d35c74403af 109 // - TSL1410R/TSL1412R linear array optical sensors. These are large optical
mjr 87:8d35c74403af 110 // sensors with the pixels arranged in a single row. The pixel arrays are
mjr 87:8d35c74403af 111 // large enough on these to cover the travel distance of the plunger, so we
mjr 87:8d35c74403af 112 // can set up the sensor near the plunger in such a way that the plunger
mjr 87:8d35c74403af 113 // casts a shadow on the sensor. We detect the plunger position by finding
mjr 87:8d35c74403af 114 // the edge of the sahdow in the image. The optics for this setup are very
mjr 87:8d35c74403af 115 // simple since we don't need any lenses. This was the first sensor we
mjr 87:8d35c74403af 116 // supported, and works very well, but unfortunately the sensor is difficult
mjr 111:42dc75fbe623 117 // to find now since it's been discontinued by the manufacturer. Happily,
mjr 111:42dc75fbe623 118 // a good alternative is available: the Toshiba TCD1103, which is another
mjr 111:42dc75fbe623 119 // linear imaging sensor that works on a similar principle, but produces
mjr 111:42dc75fbe623 120 // even better results.
mjr 87:8d35c74403af 121 //
mjr 87:8d35c74403af 122 // The v2 Build Guide has details on how to build and configure all of the
mjr 87:8d35c74403af 123 // sensor options.
mjr 87:8d35c74403af 124 //
mjr 87:8d35c74403af 125 // Visual Pinball has built-in support for plunger devices like this one, but
mjr 87:8d35c74403af 126 // some older VP tables (particularly for VP 9) can't use it without some
mjr 87:8d35c74403af 127 // modifications to their scripting. The Build Guide has advice on how to
mjr 87:8d35c74403af 128 // fix up VP tables to add plunger support when necessary.
mjr 5:a70c0bce770d 129 //
mjr 77:0b96f6867312 130 // - Button input wiring. You can assign GPIO ports as inputs for physical
mjr 77:0b96f6867312 131 // pinball-style buttons, such as flipper buttons, a Start button, coin
mjr 77:0b96f6867312 132 // chute switches, tilt bobs, and service panel buttons. You can configure
mjr 77:0b96f6867312 133 // each button input to report a keyboard key or joystick button press to
mjr 77:0b96f6867312 134 // the PC when the physical button is pushed.
mjr 13:72dda449c3c0 135 //
mjr 53:9b2611964afc 136 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 137 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 138 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 139 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 140 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 141 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 142 // attached devices without any modifications.
mjr 5:a70c0bce770d 143 //
mjr 53:9b2611964afc 144 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 145 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 146 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 147 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 148 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 149 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 150 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 151 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 152 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 153 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 154 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 155 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 156 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 157 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 158 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 159 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 160 //
mjr 87:8d35c74403af 161 // - Enhanced LedWiz emulation with TLC5940 and/or TLC59116 PWM controller chips.
mjr 87:8d35c74403af 162 // You can attach external PWM chips for controlling device outputs, instead of
mjr 87:8d35c74403af 163 // using (or in addition to) the on-board GPIO ports as described above. The
mjr 87:8d35c74403af 164 // software can control a set of daisy-chained TLC5940 or TLC59116 chips. Each
mjr 87:8d35c74403af 165 // chip provides 16 PWM outputs, so you just need two of them to get the full
mjr 87:8d35c74403af 166 // complement of 32 output ports of a real LedWiz. You can hook up even more,
mjr 87:8d35c74403af 167 // though. Four chips gives you 64 ports, which should be plenty for nearly any
mjr 87:8d35c74403af 168 // virtual pinball project.
mjr 53:9b2611964afc 169 //
mjr 53:9b2611964afc 170 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 171 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 172 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 173 // outputs with full PWM control and power handling for high-current devices
mjr 87:8d35c74403af 174 // built in to the boards.
mjr 87:8d35c74403af 175 //
mjr 87:8d35c74403af 176 // To accommodate the larger supply of ports possible with the external chips,
mjr 87:8d35c74403af 177 // the controller software provides a custom, extended version of the LedWiz
mjr 87:8d35c74403af 178 // protocol that can handle up to 128 ports. Legacy PC software designed only
mjr 87:8d35c74403af 179 // for the original LedWiz obviously can't use the extended protocol, and thus
mjr 87:8d35c74403af 180 // can't take advantage of its extra capabilities, but the latest version of
mjr 87:8d35c74403af 181 // DOF (DirectOutput Framework) *does* know the new language and can take full
mjr 87:8d35c74403af 182 // advantage. Older software will still work, though - the new extensions are
mjr 87:8d35c74403af 183 // all backwards compatible, so old software that only knows about the original
mjr 87:8d35c74403af 184 // LedWiz protocol will still work, with the limitation that it can only access
mjr 87:8d35c74403af 185 // the first 32 ports. In addition, we provide a replacement LEDWIZ.DLL that
mjr 87:8d35c74403af 186 // creates virtual LedWiz units representing additional ports beyond the first
mjr 87:8d35c74403af 187 // 32. This allows legacy LedWiz client software to address all ports by
mjr 87:8d35c74403af 188 // making them think that you have several physical LedWiz units installed.
mjr 26:cb71c4af2912 189 //
mjr 38:091e511ce8a0 190 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 191 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 192 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 193 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 194 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 195 //
mjr 38:091e511ce8a0 196 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 197 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 198 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 199 // To use this feature, you have to build some external circuitry to allow the
mjr 77:0b96f6867312 200 // software to sense the power supply status. The Build Guide has details
mjr 77:0b96f6867312 201 // on the necessary circuitry. You can use this to switch your TV on via a
mjr 77:0b96f6867312 202 // hardwired connection to the TV's "on" button, which requires taking the
mjr 77:0b96f6867312 203 // TV apart to gain access to its internal wiring, or optionally via the IR
mjr 77:0b96f6867312 204 // remote control transmitter feature below.
mjr 77:0b96f6867312 205 //
mjr 77:0b96f6867312 206 // - Infrared (IR) remote control receiver and transmitter. You can attach an
mjr 77:0b96f6867312 207 // IR LED and/or an IR sensor (we recommend the TSOP384xx series) to make the
mjr 77:0b96f6867312 208 // KL25Z capable of sending and/or receiving IR remote control signals. This
mjr 77:0b96f6867312 209 // can be used with the TV ON feature above to turn your TV(s) on when the
mjr 77:0b96f6867312 210 // system power comes on by sending the "on" command to them via IR, as though
mjr 77:0b96f6867312 211 // you pressed the "on" button on the remote control. The sensor lets the
mjr 77:0b96f6867312 212 // Pinscape software learn the IR codes from your existing remotes, in the
mjr 77:0b96f6867312 213 // same manner as a handheld universal remote control, and the IR LED lets
mjr 77:0b96f6867312 214 // it transmit learned codes. The sensor can also be used to receive codes
mjr 77:0b96f6867312 215 // during normal operation and turn them into PC keystrokes; this lets you
mjr 77:0b96f6867312 216 // access extra commands on the PC without adding more buttons to your
mjr 77:0b96f6867312 217 // cabinet. The IR LED can also be used to transmit other codes when you
mjr 77:0b96f6867312 218 // press selected cabinet buttons, allowing you to assign cabinet buttons
mjr 77:0b96f6867312 219 // to send IR commands to your cabinet TV or other devices.
mjr 38:091e511ce8a0 220 //
mjr 35:e959ffba78fd 221 //
mjr 35:e959ffba78fd 222 //
mjr 33:d832bcab089e 223 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 224 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 225 //
mjr 48:058ace2aed1d 226 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 227 //
mjr 48:058ace2aed1d 228 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 229 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 230 // has been established)
mjr 48:058ace2aed1d 231 //
mjr 48:058ace2aed1d 232 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 233 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 234 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 235 //
mjr 38:091e511ce8a0 236 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 237 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 238 // transmissions are failing.
mjr 38:091e511ce8a0 239 //
mjr 73:4e8ce0b18915 240 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 241 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 242 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 243 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 244 // enabled.
mjr 73:4e8ce0b18915 245 //
mjr 6:cc35eb643e8f 246 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 247 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 248 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 249 // no plunger sensor configured.
mjr 6:cc35eb643e8f 250 //
mjr 38:091e511ce8a0 251 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 252 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 253 //
mjr 48:058ace2aed1d 254 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 255 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 256 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 257 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 258 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 259 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 260 //
mjr 48:058ace2aed1d 261 //
mjr 48:058ace2aed1d 262 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 263 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 264 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 265 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 266 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 267 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 268 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 269 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 270
mjr 33:d832bcab089e 271
mjr 0:5acbbe3f4cf4 272 #include "mbed.h"
mjr 6:cc35eb643e8f 273 #include "math.h"
mjr 74:822a92bc11d2 274 #include "diags.h"
mjr 48:058ace2aed1d 275 #include "pinscape.h"
mjr 79:682ae3171a08 276 #include "NewMalloc.h"
mjr 0:5acbbe3f4cf4 277 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 278 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 279 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 280 #include "crc32.h"
mjr 26:cb71c4af2912 281 #include "TLC5940.h"
mjr 87:8d35c74403af 282 #include "TLC59116.h"
mjr 34:6b981a2afab7 283 #include "74HC595.h"
mjr 35:e959ffba78fd 284 #include "nvm.h"
mjr 48:058ace2aed1d 285 #include "TinyDigitalIn.h"
mjr 77:0b96f6867312 286 #include "IRReceiver.h"
mjr 77:0b96f6867312 287 #include "IRTransmitter.h"
mjr 77:0b96f6867312 288 #include "NewPwm.h"
mjr 74:822a92bc11d2 289
mjr 82:4f6209cb5c33 290 // plunger sensors
mjr 82:4f6209cb5c33 291 #include "plunger.h"
mjr 82:4f6209cb5c33 292 #include "edgeSensor.h"
mjr 82:4f6209cb5c33 293 #include "potSensor.h"
mjr 82:4f6209cb5c33 294 #include "quadSensor.h"
mjr 82:4f6209cb5c33 295 #include "nullSensor.h"
mjr 82:4f6209cb5c33 296 #include "barCodeSensor.h"
mjr 82:4f6209cb5c33 297 #include "distanceSensor.h"
mjr 87:8d35c74403af 298 #include "tsl14xxSensor.h"
mjr 100:1ff35c07217c 299 #include "rotarySensor.h"
mjr 100:1ff35c07217c 300 #include "tcd1103Sensor.h"
mjr 82:4f6209cb5c33 301
mjr 2:c174f9ee414a 302
mjr 21:5048e16cc9ef 303 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 304 #include "config.h"
mjr 17:ab3cec0c8bf4 305
mjr 53:9b2611964afc 306
mjr 53:9b2611964afc 307 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 308 //
mjr 53:9b2611964afc 309 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 310 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 311 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 312 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 313 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 314 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 315 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 316 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 317 // interface.
mjr 53:9b2611964afc 318 //
mjr 53:9b2611964afc 319 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 320 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 321 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 322 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 323 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 324 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 325 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 326 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 327 //
mjr 53:9b2611964afc 328 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 329 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 330 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 331 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 332 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 333 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 334 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 335 //
mjr 53:9b2611964afc 336 const char *getOpenSDAID()
mjr 53:9b2611964afc 337 {
mjr 53:9b2611964afc 338 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 339 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 340 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 341
mjr 53:9b2611964afc 342 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 343 }
mjr 53:9b2611964afc 344
mjr 53:9b2611964afc 345 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 346 //
mjr 53:9b2611964afc 347 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 348 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 349 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 350 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 351 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 352 // want from this.
mjr 53:9b2611964afc 353 //
mjr 53:9b2611964afc 354 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 355 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 356 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 357 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 358 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 359 // macros.
mjr 53:9b2611964afc 360 //
mjr 53:9b2611964afc 361 const char *getBuildID()
mjr 53:9b2611964afc 362 {
mjr 53:9b2611964afc 363 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 364 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 365 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 366
mjr 53:9b2611964afc 367 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 368 }
mjr 53:9b2611964afc 369
mjr 74:822a92bc11d2 370 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 371 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 372 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 76:7f5912b6340e 373 #if ENABLE_DIAGNOSTICS
mjr 76:7f5912b6340e 374 uint64_t mainLoopIterTime, mainLoopIterCheckpt[15], mainLoopIterCount;
mjr 76:7f5912b6340e 375 uint64_t mainLoopMsgTime, mainLoopMsgCount;
mjr 76:7f5912b6340e 376 Timer mainLoopTimer;
mjr 76:7f5912b6340e 377 #endif
mjr 76:7f5912b6340e 378
mjr 53:9b2611964afc 379
mjr 5:a70c0bce770d 380 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 381 //
mjr 38:091e511ce8a0 382 // Forward declarations
mjr 38:091e511ce8a0 383 //
mjr 38:091e511ce8a0 384 void setNightMode(bool on);
mjr 38:091e511ce8a0 385 void toggleNightMode();
mjr 38:091e511ce8a0 386
mjr 38:091e511ce8a0 387 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 388 // utilities
mjr 17:ab3cec0c8bf4 389
mjr 77:0b96f6867312 390 // int/float point square of a number
mjr 77:0b96f6867312 391 inline int square(int x) { return x*x; }
mjr 26:cb71c4af2912 392 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 393
mjr 26:cb71c4af2912 394 // floating point rounding
mjr 26:cb71c4af2912 395 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 396
mjr 17:ab3cec0c8bf4 397
mjr 33:d832bcab089e 398 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 399 //
mjr 40:cc0d9814522b 400 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 401 // the running state.
mjr 40:cc0d9814522b 402 //
mjr 77:0b96f6867312 403 class ExtTimer: public Timer
mjr 40:cc0d9814522b 404 {
mjr 40:cc0d9814522b 405 public:
mjr 77:0b96f6867312 406 ExtTimer() : running(false) { }
mjr 40:cc0d9814522b 407
mjr 40:cc0d9814522b 408 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 409 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 410
mjr 40:cc0d9814522b 411 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 412
mjr 40:cc0d9814522b 413 private:
mjr 40:cc0d9814522b 414 bool running;
mjr 40:cc0d9814522b 415 };
mjr 40:cc0d9814522b 416
mjr 53:9b2611964afc 417
mjr 53:9b2611964afc 418 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 419 //
mjr 33:d832bcab089e 420 // USB product version number
mjr 5:a70c0bce770d 421 //
mjr 47:df7a88cd249c 422 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 423
mjr 33:d832bcab089e 424 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 425 //
mjr 6:cc35eb643e8f 426 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 427 //
mjr 6:cc35eb643e8f 428 #define JOYMAX 4096
mjr 6:cc35eb643e8f 429
mjr 9:fd65b0a94720 430
mjr 17:ab3cec0c8bf4 431 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 432 //
mjr 40:cc0d9814522b 433 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 434 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 435 //
mjr 35:e959ffba78fd 436
mjr 35:e959ffba78fd 437 // unsigned 16-bit integer
mjr 35:e959ffba78fd 438 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 439 {
mjr 35:e959ffba78fd 440 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 441 }
mjr 40:cc0d9814522b 442 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 443 {
mjr 40:cc0d9814522b 444 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 445 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 446 }
mjr 35:e959ffba78fd 447
mjr 35:e959ffba78fd 448 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 449 {
mjr 35:e959ffba78fd 450 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 451 }
mjr 40:cc0d9814522b 452 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 453 {
mjr 40:cc0d9814522b 454 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 455 }
mjr 35:e959ffba78fd 456
mjr 35:e959ffba78fd 457 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 458 {
mjr 35:e959ffba78fd 459 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 460 }
mjr 40:cc0d9814522b 461 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 462 {
mjr 40:cc0d9814522b 463 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 464 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 465 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 466 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 467 }
mjr 35:e959ffba78fd 468
mjr 35:e959ffba78fd 469 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 470 {
mjr 35:e959ffba78fd 471 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 472 }
mjr 35:e959ffba78fd 473
mjr 53:9b2611964afc 474 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 475 //
mjr 53:9b2611964afc 476 // The internal mbed PinName format is
mjr 53:9b2611964afc 477 //
mjr 53:9b2611964afc 478 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 479 //
mjr 53:9b2611964afc 480 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 481 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 482 //
mjr 53:9b2611964afc 483 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 484 // pin name fits in 8 bits:
mjr 53:9b2611964afc 485 //
mjr 53:9b2611964afc 486 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 487 //
mjr 53:9b2611964afc 488 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 489 //
mjr 53:9b2611964afc 490 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 491 //
mjr 53:9b2611964afc 492 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 493 {
mjr 53:9b2611964afc 494 if (c == 0xFF)
mjr 53:9b2611964afc 495 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 496 else
mjr 53:9b2611964afc 497 return PinName(
mjr 53:9b2611964afc 498 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 499 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 500 }
mjr 40:cc0d9814522b 501 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 502 {
mjr 53:9b2611964afc 503 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 504 }
mjr 35:e959ffba78fd 505
mjr 35:e959ffba78fd 506
mjr 35:e959ffba78fd 507 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 508 //
mjr 38:091e511ce8a0 509 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 510 //
mjr 38:091e511ce8a0 511 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 512 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 513 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 514 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 515 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 516 // SPI capability.
mjr 38:091e511ce8a0 517 //
mjr 38:091e511ce8a0 518 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 519
mjr 73:4e8ce0b18915 520 // Power on timer state for diagnostics. We flash the blue LED when
mjr 77:0b96f6867312 521 // nothing else is going on. State 0-1 = off, 2-3 = on blue. Also
mjr 77:0b96f6867312 522 // show red when transmitting an LED signal, indicated by state 4.
mjr 73:4e8ce0b18915 523 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 524
mjr 38:091e511ce8a0 525 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 526 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 527 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 528 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 529 {
mjr 73:4e8ce0b18915 530 // remember the new state
mjr 73:4e8ce0b18915 531 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 532
mjr 73:4e8ce0b18915 533 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 534 // applying it to the blue LED
mjr 73:4e8ce0b18915 535 if (diagLEDState == 0)
mjr 77:0b96f6867312 536 {
mjr 77:0b96f6867312 537 b = (powerTimerDiagState == 2 || powerTimerDiagState == 3);
mjr 77:0b96f6867312 538 r = (powerTimerDiagState == 4);
mjr 77:0b96f6867312 539 }
mjr 73:4e8ce0b18915 540
mjr 73:4e8ce0b18915 541 // set the new state
mjr 38:091e511ce8a0 542 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 543 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 544 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 545 }
mjr 38:091e511ce8a0 546
mjr 73:4e8ce0b18915 547 // update the LEDs with the current state
mjr 73:4e8ce0b18915 548 void diagLED(void)
mjr 73:4e8ce0b18915 549 {
mjr 73:4e8ce0b18915 550 diagLED(
mjr 73:4e8ce0b18915 551 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 552 (diagLEDState >> 1) & 0x01,
mjr 77:0b96f6867312 553 (diagLEDState >> 2) & 0x01);
mjr 73:4e8ce0b18915 554 }
mjr 73:4e8ce0b18915 555
mjr 106:e9e3b46132c1 556 // check an output port or pin assignment to see if it conflicts with
mjr 38:091e511ce8a0 557 // an on-board LED segment
mjr 38:091e511ce8a0 558 struct LedSeg
mjr 38:091e511ce8a0 559 {
mjr 38:091e511ce8a0 560 bool r, g, b;
mjr 38:091e511ce8a0 561 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 562
mjr 106:e9e3b46132c1 563 // check an output port to see if it conflicts with one of the LED ports
mjr 38:091e511ce8a0 564 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 565 {
mjr 38:091e511ce8a0 566 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 567 // our on-board LED segments
mjr 38:091e511ce8a0 568 int t = pc.typ;
mjr 38:091e511ce8a0 569 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 106:e9e3b46132c1 570 check(pc.pin);
mjr 106:e9e3b46132c1 571 }
mjr 106:e9e3b46132c1 572
mjr 106:e9e3b46132c1 573 // check a pin to see if it conflicts with one of the diagnostic LED ports
mjr 106:e9e3b46132c1 574 void check(uint8_t pinId)
mjr 106:e9e3b46132c1 575 {
mjr 106:e9e3b46132c1 576 PinName pin = wirePinName(pinId);
mjr 106:e9e3b46132c1 577 if (pin == LED1)
mjr 106:e9e3b46132c1 578 r = true;
mjr 106:e9e3b46132c1 579 else if (pin == LED2)
mjr 106:e9e3b46132c1 580 g = true;
mjr 106:e9e3b46132c1 581 else if (pin == LED3)
mjr 106:e9e3b46132c1 582 b = true;
mjr 38:091e511ce8a0 583 }
mjr 38:091e511ce8a0 584 };
mjr 38:091e511ce8a0 585
mjr 38:091e511ce8a0 586 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 587 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 588 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 589 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 590 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 591 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 592 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 593 {
mjr 38:091e511ce8a0 594 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 595 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 596 LedSeg l;
mjr 38:091e511ce8a0 597 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 598 l.check(cfg.outPort[i]);
mjr 106:e9e3b46132c1 599
mjr 106:e9e3b46132c1 600 // check the button inputs
mjr 106:e9e3b46132c1 601 for (int i = 0 ; i < countof(cfg.button) ; ++i)
mjr 106:e9e3b46132c1 602 l.check(cfg.button[i].pin);
mjr 106:e9e3b46132c1 603
mjr 106:e9e3b46132c1 604 // check plunger inputs
mjr 106:e9e3b46132c1 605 if (cfg.plunger.enabled && cfg.plunger.sensorType != PlungerType_None)
mjr 106:e9e3b46132c1 606 {
mjr 106:e9e3b46132c1 607 for (int i = 0 ; i < countof(cfg.plunger.sensorPin) ; ++i)
mjr 106:e9e3b46132c1 608 l.check(cfg.plunger.sensorPin[i]);
mjr 107:8f3c7aeae7e0 609
mjr 107:8f3c7aeae7e0 610 l.check(cfg.plunger.cal.btn);
mjr 107:8f3c7aeae7e0 611 l.check(cfg.plunger.cal.led);
mjr 106:e9e3b46132c1 612 }
mjr 106:e9e3b46132c1 613
mjr 106:e9e3b46132c1 614 // check the TV ON pin assignments
mjr 106:e9e3b46132c1 615 l.check(cfg.TVON.statusPin);
mjr 106:e9e3b46132c1 616 l.check(cfg.TVON.latchPin);
mjr 106:e9e3b46132c1 617 l.check(cfg.TVON.relayPin);
mjr 106:e9e3b46132c1 618
mjr 106:e9e3b46132c1 619 // check the TLC5940 pins
mjr 106:e9e3b46132c1 620 if (cfg.tlc5940.nchips != 0)
mjr 106:e9e3b46132c1 621 {
mjr 106:e9e3b46132c1 622 l.check(cfg.tlc5940.sin);
mjr 106:e9e3b46132c1 623 l.check(cfg.tlc5940.sclk);
mjr 106:e9e3b46132c1 624 l.check(cfg.tlc5940.xlat);
mjr 106:e9e3b46132c1 625 l.check(cfg.tlc5940.blank);
mjr 106:e9e3b46132c1 626 l.check(cfg.tlc5940.gsclk);
mjr 106:e9e3b46132c1 627 }
mjr 106:e9e3b46132c1 628
mjr 106:e9e3b46132c1 629 // check 74HC595 pin assignments
mjr 106:e9e3b46132c1 630 if (cfg.hc595.nchips != 0)
mjr 106:e9e3b46132c1 631 {
mjr 106:e9e3b46132c1 632 l.check(cfg.hc595.sin);
mjr 106:e9e3b46132c1 633 l.check(cfg.hc595.sclk);
mjr 106:e9e3b46132c1 634 l.check(cfg.hc595.latch);
mjr 106:e9e3b46132c1 635 l.check(cfg.hc595.ena);
mjr 106:e9e3b46132c1 636 }
mjr 106:e9e3b46132c1 637
mjr 106:e9e3b46132c1 638 // check TLC59116 pin assignments
mjr 106:e9e3b46132c1 639 if (cfg.tlc59116.chipMask != 0)
mjr 106:e9e3b46132c1 640 {
mjr 106:e9e3b46132c1 641 l.check(cfg.tlc59116.sda);
mjr 106:e9e3b46132c1 642 l.check(cfg.tlc59116.scl);
mjr 106:e9e3b46132c1 643 l.check(cfg.tlc59116.reset);
mjr 106:e9e3b46132c1 644 }
mjr 106:e9e3b46132c1 645
mjr 106:e9e3b46132c1 646 // check the IR remove control hardware
mjr 106:e9e3b46132c1 647 l.check(cfg.IR.sensor);
mjr 106:e9e3b46132c1 648 l.check(cfg.IR.emitter);
mjr 106:e9e3b46132c1 649
mjr 106:e9e3b46132c1 650 // We now know which segments are taken for other uses and which
mjr 38:091e511ce8a0 651 // are free. Create diagnostic ports for the ones not claimed for
mjr 106:e9e3b46132c1 652 // other purposes.
mjr 38:091e511ce8a0 653 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 654 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 655 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 656 }
mjr 38:091e511ce8a0 657
mjr 38:091e511ce8a0 658
mjr 38:091e511ce8a0 659 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 660 //
mjr 76:7f5912b6340e 661 // LedWiz emulation
mjr 76:7f5912b6340e 662 //
mjr 76:7f5912b6340e 663
mjr 76:7f5912b6340e 664 // LedWiz output states.
mjr 76:7f5912b6340e 665 //
mjr 76:7f5912b6340e 666 // The LedWiz protocol has two separate control axes for each output.
mjr 76:7f5912b6340e 667 // One axis is its on/off state; the other is its "profile" state, which
mjr 76:7f5912b6340e 668 // is either a fixed brightness or a blinking pattern for the light.
mjr 76:7f5912b6340e 669 // The two axes are independent.
mjr 76:7f5912b6340e 670 //
mjr 76:7f5912b6340e 671 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 76:7f5912b6340e 672 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 76:7f5912b6340e 673 // extended protocol allows the client to send LedWiz-style messages that
mjr 76:7f5912b6340e 674 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 76:7f5912b6340e 675 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 76:7f5912b6340e 676 // allowing them to control all of our ports. The clients will still be
mjr 76:7f5912b6340e 677 // using LedWiz-style states to control the ports, so we need to support
mjr 76:7f5912b6340e 678 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 76:7f5912b6340e 679
mjr 76:7f5912b6340e 680 // On/off state for each LedWiz output
mjr 76:7f5912b6340e 681 static uint8_t *wizOn;
mjr 76:7f5912b6340e 682
mjr 76:7f5912b6340e 683 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 76:7f5912b6340e 684 // for each LedWiz output. If the output was last updated through an
mjr 76:7f5912b6340e 685 // LedWiz protocol message, it will have one of these values:
mjr 76:7f5912b6340e 686 //
mjr 76:7f5912b6340e 687 // 0-48 = fixed brightness 0% to 100%
mjr 76:7f5912b6340e 688 // 49 = fixed brightness 100% (equivalent to 48)
mjr 76:7f5912b6340e 689 // 129 = ramp up / ramp down
mjr 76:7f5912b6340e 690 // 130 = flash on / off
mjr 76:7f5912b6340e 691 // 131 = on / ramp down
mjr 76:7f5912b6340e 692 // 132 = ramp up / on
mjr 5:a70c0bce770d 693 //
mjr 76:7f5912b6340e 694 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 76:7f5912b6340e 695 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 76:7f5912b6340e 696 // it, so we need to accept it for compatibility.)
mjr 76:7f5912b6340e 697 static uint8_t *wizVal;
mjr 76:7f5912b6340e 698
mjr 76:7f5912b6340e 699 // Current actual brightness for each output. This is a simple linear
mjr 76:7f5912b6340e 700 // value on a 0..255 scale. This is EITHER the linear brightness computed
mjr 76:7f5912b6340e 701 // from the LedWiz setting for the port, OR the 0..255 value set explicitly
mjr 76:7f5912b6340e 702 // by the extended protocol:
mjr 76:7f5912b6340e 703 //
mjr 76:7f5912b6340e 704 // - If the last command that updated the port was an extended protocol
mjr 76:7f5912b6340e 705 // SET BRIGHTNESS command, this is the value set by that command. In
mjr 76:7f5912b6340e 706 // addition, wizOn[port] is set to 0 if the brightness is 0, 1 otherwise;
mjr 76:7f5912b6340e 707 // and wizVal[port] is set to the brightness rescaled to the 0..48 range
mjr 76:7f5912b6340e 708 // if the brightness is non-zero.
mjr 76:7f5912b6340e 709 //
mjr 76:7f5912b6340e 710 // - If the last command that updated the port was an LedWiz command
mjr 76:7f5912b6340e 711 // (SBA/PBA/SBX/PBX), this contains the brightness value computed from
mjr 76:7f5912b6340e 712 // the combination of wizOn[port] and wizVal[port]. If wizOn[port] is
mjr 76:7f5912b6340e 713 // zero, this is simply 0, otherwise it's wizVal[port] rescaled to the
mjr 76:7f5912b6340e 714 // 0..255 range.
mjr 26:cb71c4af2912 715 //
mjr 76:7f5912b6340e 716 // - For a port set to wizOn[port]=1 and wizVal[port] in 129..132, this is
mjr 76:7f5912b6340e 717 // also updated continuously to reflect the current flashing brightness
mjr 76:7f5912b6340e 718 // level.
mjr 26:cb71c4af2912 719 //
mjr 76:7f5912b6340e 720 static uint8_t *outLevel;
mjr 76:7f5912b6340e 721
mjr 76:7f5912b6340e 722
mjr 76:7f5912b6340e 723 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 76:7f5912b6340e 724 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 76:7f5912b6340e 725 // what the numbers mean in real time units, but by observation, the
mjr 76:7f5912b6340e 726 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 76:7f5912b6340e 727 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 76:7f5912b6340e 728 // The period is the full cycle time of the flash waveform.
mjr 76:7f5912b6340e 729 //
mjr 76:7f5912b6340e 730 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 76:7f5912b6340e 731 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 76:7f5912b6340e 732 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 76:7f5912b6340e 733 // this dynamically once we know the number of actual outputs, but the
mjr 76:7f5912b6340e 734 // upper limit is low enough that it's more efficient to use a fixed array
mjr 76:7f5912b6340e 735 // at the maximum size.
mjr 76:7f5912b6340e 736 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 76:7f5912b6340e 737 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 29:582472d0bc57 738
mjr 26:cb71c4af2912 739 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 740 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 741 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 742 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 743 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 744
mjr 76:7f5912b6340e 745
mjr 76:7f5912b6340e 746 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 747 //
mjr 76:7f5912b6340e 748 // Output Ports
mjr 76:7f5912b6340e 749 //
mjr 76:7f5912b6340e 750 // There are two way to connect outputs. First, you can use the on-board
mjr 76:7f5912b6340e 751 // GPIO ports to implement device outputs: each LedWiz software port is
mjr 76:7f5912b6340e 752 // connected to a physical GPIO pin on the KL25Z. This has some pretty
mjr 76:7f5912b6340e 753 // strict limits, though. The KL25Z only has 10 PWM channels, so only 10
mjr 76:7f5912b6340e 754 // GPIO LedWiz ports can be made dimmable; the rest are strictly on/off.
mjr 76:7f5912b6340e 755 // The KL25Z also simply doesn't have enough exposed GPIO ports overall to
mjr 76:7f5912b6340e 756 // support all of the features the software supports. The software allows
mjr 76:7f5912b6340e 757 // for up to 128 outputs, 48 button inputs, plunger input (requiring 1-5
mjr 76:7f5912b6340e 758 // GPIO pins), and various other external devices. The KL25Z only exposes
mjr 76:7f5912b6340e 759 // about 50 GPIO pins. So if you want to do everything with GPIO ports,
mjr 76:7f5912b6340e 760 // you have to ration pins among features.
mjr 76:7f5912b6340e 761 //
mjr 87:8d35c74403af 762 // To overcome some of these limitations, we also support several external
mjr 76:7f5912b6340e 763 // peripheral controllers that allow adding many more outputs, using only
mjr 87:8d35c74403af 764 // a small number of GPIO pins to interface with the peripherals:
mjr 87:8d35c74403af 765 //
mjr 87:8d35c74403af 766 // - TLC5940 PWM controller chips. Each TLC5940 provides 16 ports with
mjr 87:8d35c74403af 767 // 12-bit PWM, and multiple TLC5940 chips can be daisy-chained. The
mjr 87:8d35c74403af 768 // chips connect via 5 GPIO pins, and since they're daisy-chainable,
mjr 87:8d35c74403af 769 // one set of 5 pins can control any number of the chips. So this chip
mjr 87:8d35c74403af 770 // effectively converts 5 GPIO pins into almost any number of PWM outputs.
mjr 87:8d35c74403af 771 //
mjr 87:8d35c74403af 772 // - TLC59116 PWM controller chips. These are similar to the TLC5940 but
mjr 87:8d35c74403af 773 // a newer generation with an improved design. These use an I2C bus,
mjr 87:8d35c74403af 774 // allowing up to 14 chips to be connected via 3 GPIO pins.
mjr 87:8d35c74403af 775 //
mjr 87:8d35c74403af 776 // - 74HC595 shift register chips. These provide 8 digital (on/off only)
mjr 87:8d35c74403af 777 // outputs per chip. These need 4 GPIO pins, and like the other can be
mjr 87:8d35c74403af 778 // daisy chained to add more outputs without using more GPIO pins. These
mjr 87:8d35c74403af 779 // are advantageous for outputs that don't require PWM, since the data
mjr 87:8d35c74403af 780 // transfer sizes are so much smaller. The expansion boards use these
mjr 87:8d35c74403af 781 // for the chime board outputs.
mjr 76:7f5912b6340e 782 //
mjr 76:7f5912b6340e 783 // Direct GPIO output ports and peripheral controllers can be mixed and
mjr 76:7f5912b6340e 784 // matched in one system. The assignment of pins to ports and the
mjr 76:7f5912b6340e 785 // configuration of peripheral controllers is all handled in the software
mjr 76:7f5912b6340e 786 // setup, so a physical system can be expanded and updated at any time.
mjr 76:7f5912b6340e 787 //
mjr 76:7f5912b6340e 788 // To handle the diversity of output port types, we start with an abstract
mjr 76:7f5912b6340e 789 // base class for outputs. Each type of physical output interface has a
mjr 76:7f5912b6340e 790 // concrete subclass. During initialization, we create the appropriate
mjr 76:7f5912b6340e 791 // subclass for each software port, mapping it to the assigned GPIO pin
mjr 76:7f5912b6340e 792 // or peripheral port. Most of the rest of the software only cares about
mjr 76:7f5912b6340e 793 // the abstract interface, so once the subclassed port objects are set up,
mjr 76:7f5912b6340e 794 // the rest of the system can control the ports without knowing which types
mjr 76:7f5912b6340e 795 // of physical devices they're connected to.
mjr 76:7f5912b6340e 796
mjr 76:7f5912b6340e 797
mjr 26:cb71c4af2912 798 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 799 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 800 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 801 class LwOut
mjr 6:cc35eb643e8f 802 {
mjr 6:cc35eb643e8f 803 public:
mjr 40:cc0d9814522b 804 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 805 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 806 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 807 };
mjr 26:cb71c4af2912 808
mjr 35:e959ffba78fd 809 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 810 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 811 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 812 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 813 // numbering.
mjr 35:e959ffba78fd 814 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 815 {
mjr 33:d832bcab089e 816 public:
mjr 35:e959ffba78fd 817 LwVirtualOut() { }
mjr 40:cc0d9814522b 818 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 819 };
mjr 26:cb71c4af2912 820
mjr 34:6b981a2afab7 821 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 822 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 823 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 824 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 825 {
mjr 34:6b981a2afab7 826 public:
mjr 34:6b981a2afab7 827 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 828 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 829
mjr 34:6b981a2afab7 830 private:
mjr 53:9b2611964afc 831 // underlying physical output
mjr 34:6b981a2afab7 832 LwOut *out;
mjr 34:6b981a2afab7 833 };
mjr 34:6b981a2afab7 834
mjr 53:9b2611964afc 835 // Global ZB Launch Ball state
mjr 53:9b2611964afc 836 bool zbLaunchOn = false;
mjr 53:9b2611964afc 837
mjr 53:9b2611964afc 838 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 839 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 840 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 841 {
mjr 53:9b2611964afc 842 public:
mjr 53:9b2611964afc 843 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 844 virtual void set(uint8_t val)
mjr 53:9b2611964afc 845 {
mjr 53:9b2611964afc 846 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 847 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 848
mjr 53:9b2611964afc 849 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 850 out->set(val);
mjr 53:9b2611964afc 851 }
mjr 53:9b2611964afc 852
mjr 53:9b2611964afc 853 private:
mjr 53:9b2611964afc 854 // underlying physical or virtual output
mjr 53:9b2611964afc 855 LwOut *out;
mjr 53:9b2611964afc 856 };
mjr 53:9b2611964afc 857
mjr 53:9b2611964afc 858
mjr 40:cc0d9814522b 859 // Gamma correction table for 8-bit input values
mjr 87:8d35c74403af 860 static const uint8_t dof_to_gamma_8bit[] = {
mjr 40:cc0d9814522b 861 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 862 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 863 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 864 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 865 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 866 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 867 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 868 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 869 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 870 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 871 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 872 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 873 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 874 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 875 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 876 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 877 };
mjr 40:cc0d9814522b 878
mjr 40:cc0d9814522b 879 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 880 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 881 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 882 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 883 {
mjr 40:cc0d9814522b 884 public:
mjr 40:cc0d9814522b 885 LwGammaOut(LwOut *o) : out(o) { }
mjr 87:8d35c74403af 886 virtual void set(uint8_t val) { out->set(dof_to_gamma_8bit[val]); }
mjr 40:cc0d9814522b 887
mjr 40:cc0d9814522b 888 private:
mjr 40:cc0d9814522b 889 LwOut *out;
mjr 40:cc0d9814522b 890 };
mjr 40:cc0d9814522b 891
mjr 77:0b96f6867312 892 // Global night mode flag. To minimize overhead when reporting
mjr 77:0b96f6867312 893 // the status, we set this to the status report flag bit for
mjr 77:0b96f6867312 894 // night mode, 0x02, when engaged.
mjr 77:0b96f6867312 895 static uint8_t nightMode = 0x00;
mjr 53:9b2611964afc 896
mjr 40:cc0d9814522b 897 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 898 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 899 // mode is engaged.
mjr 40:cc0d9814522b 900 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 901 {
mjr 40:cc0d9814522b 902 public:
mjr 40:cc0d9814522b 903 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 904 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 905
mjr 53:9b2611964afc 906 private:
mjr 53:9b2611964afc 907 LwOut *out;
mjr 53:9b2611964afc 908 };
mjr 53:9b2611964afc 909
mjr 53:9b2611964afc 910 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 911 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 912 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 913 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 914 {
mjr 53:9b2611964afc 915 public:
mjr 53:9b2611964afc 916 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 89:c43cd923401c 917 virtual void set(uint8_t)
mjr 53:9b2611964afc 918 {
mjr 53:9b2611964afc 919 // ignore the host value and simply show the current
mjr 53:9b2611964afc 920 // night mode setting
mjr 53:9b2611964afc 921 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 922 }
mjr 40:cc0d9814522b 923
mjr 40:cc0d9814522b 924 private:
mjr 40:cc0d9814522b 925 LwOut *out;
mjr 40:cc0d9814522b 926 };
mjr 40:cc0d9814522b 927
mjr 26:cb71c4af2912 928
mjr 89:c43cd923401c 929 // Flipper Logic output. This is a filter object that we layer on
mjr 89:c43cd923401c 930 // top of a physical pin output.
mjr 89:c43cd923401c 931 //
mjr 89:c43cd923401c 932 // A Flipper Logic output is effectively a digital output from the
mjr 89:c43cd923401c 933 // client's perspective, in that it ignores the intensity level and
mjr 89:c43cd923401c 934 // only pays attention to the ON/OFF state. 0 is OFF and any other
mjr 89:c43cd923401c 935 // level is ON.
mjr 89:c43cd923401c 936 //
mjr 89:c43cd923401c 937 // In terms of the physical output, though, we do use varying power.
mjr 89:c43cd923401c 938 // It's just that the varying power isn't under the client's control;
mjr 89:c43cd923401c 939 // we control it according to our flipperLogic settings:
mjr 89:c43cd923401c 940 //
mjr 89:c43cd923401c 941 // - When the software port transitions from OFF (0 brightness) to ON
mjr 89:c43cd923401c 942 // (any non-zero brightness level), we set the physical port to 100%
mjr 89:c43cd923401c 943 // power and start a timer.
mjr 89:c43cd923401c 944 //
mjr 89:c43cd923401c 945 // - When the full power time in our flipperLogic settings elapses,
mjr 89:c43cd923401c 946 // if the software port is still ON, we reduce the physical port to
mjr 89:c43cd923401c 947 // the PWM level in our flipperLogic setting.
mjr 89:c43cd923401c 948 //
mjr 89:c43cd923401c 949 class LwFlipperLogicOut: public LwOut
mjr 89:c43cd923401c 950 {
mjr 89:c43cd923401c 951 public:
mjr 89:c43cd923401c 952 // Set up the output. 'params' is the flipperLogic value from
mjr 89:c43cd923401c 953 // the configuration.
mjr 89:c43cd923401c 954 LwFlipperLogicOut(LwOut *o, uint8_t params)
mjr 89:c43cd923401c 955 : out(o), params(params)
mjr 89:c43cd923401c 956 {
mjr 89:c43cd923401c 957 // initially OFF
mjr 89:c43cd923401c 958 state = 0;
mjr 89:c43cd923401c 959 }
mjr 89:c43cd923401c 960
mjr 89:c43cd923401c 961 virtual void set(uint8_t level)
mjr 89:c43cd923401c 962 {
mjr 98:4df3c0f7e707 963 // remember the new nominal level set by the client
mjr 89:c43cd923401c 964 val = level;
mjr 89:c43cd923401c 965
mjr 89:c43cd923401c 966 // update the physical output according to our current timing state
mjr 89:c43cd923401c 967 switch (state)
mjr 89:c43cd923401c 968 {
mjr 89:c43cd923401c 969 case 0:
mjr 89:c43cd923401c 970 // We're currently off. If the new level is non-zero, switch
mjr 89:c43cd923401c 971 // to state 1 (initial full-power interval) and set the requested
mjr 89:c43cd923401c 972 // level. If the new level is zero, we're switching from off to
mjr 89:c43cd923401c 973 // off, so there's no change.
mjr 89:c43cd923401c 974 if (level != 0)
mjr 89:c43cd923401c 975 {
mjr 89:c43cd923401c 976 // switch to state 1 (initial full-power interval)
mjr 89:c43cd923401c 977 state = 1;
mjr 89:c43cd923401c 978
mjr 89:c43cd923401c 979 // set the requested output level - there's no limit during
mjr 89:c43cd923401c 980 // the initial full-power interval, so set the exact level
mjr 89:c43cd923401c 981 // requested
mjr 89:c43cd923401c 982 out->set(level);
mjr 89:c43cd923401c 983
mjr 89:c43cd923401c 984 // add myself to the pending timer list
mjr 89:c43cd923401c 985 pending[nPending++] = this;
mjr 89:c43cd923401c 986
mjr 89:c43cd923401c 987 // note the starting time
mjr 89:c43cd923401c 988 t0 = timer.read_us();
mjr 89:c43cd923401c 989 }
mjr 89:c43cd923401c 990 break;
mjr 89:c43cd923401c 991
mjr 89:c43cd923401c 992 case 1:
mjr 89:c43cd923401c 993 // Initial full-power interval. If the new level is non-zero,
mjr 89:c43cd923401c 994 // simply apply the new level as requested, since there's no
mjr 89:c43cd923401c 995 // limit during this period. If the new level is zero, shut
mjr 89:c43cd923401c 996 // off the output and cancel the pending timer.
mjr 89:c43cd923401c 997 out->set(level);
mjr 89:c43cd923401c 998 if (level == 0)
mjr 89:c43cd923401c 999 {
mjr 89:c43cd923401c 1000 // We're switching off. In state 1, we have a pending timer,
mjr 89:c43cd923401c 1001 // so we need to remove it from the list.
mjr 89:c43cd923401c 1002 for (int i = 0 ; i < nPending ; ++i)
mjr 89:c43cd923401c 1003 {
mjr 89:c43cd923401c 1004 // is this us?
mjr 89:c43cd923401c 1005 if (pending[i] == this)
mjr 89:c43cd923401c 1006 {
mjr 89:c43cd923401c 1007 // remove myself by replacing the slot with the
mjr 89:c43cd923401c 1008 // last list entry
mjr 89:c43cd923401c 1009 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1010
mjr 89:c43cd923401c 1011 // no need to look any further
mjr 89:c43cd923401c 1012 break;
mjr 89:c43cd923401c 1013 }
mjr 89:c43cd923401c 1014 }
mjr 89:c43cd923401c 1015
mjr 89:c43cd923401c 1016 // switch to state 0 (off)
mjr 89:c43cd923401c 1017 state = 0;
mjr 89:c43cd923401c 1018 }
mjr 89:c43cd923401c 1019 break;
mjr 89:c43cd923401c 1020
mjr 89:c43cd923401c 1021 case 2:
mjr 89:c43cd923401c 1022 // Hold interval. If the new level is zero, switch to state
mjr 89:c43cd923401c 1023 // 0 (off). If the new level is non-zero, stay in the hold
mjr 89:c43cd923401c 1024 // state, and set the new level, applying the hold power setting
mjr 89:c43cd923401c 1025 // as the upper bound.
mjr 89:c43cd923401c 1026 if (level == 0)
mjr 89:c43cd923401c 1027 {
mjr 89:c43cd923401c 1028 // switching off - turn off the physical output
mjr 89:c43cd923401c 1029 out->set(0);
mjr 89:c43cd923401c 1030
mjr 89:c43cd923401c 1031 // go to state 0 (off)
mjr 89:c43cd923401c 1032 state = 0;
mjr 89:c43cd923401c 1033 }
mjr 89:c43cd923401c 1034 else
mjr 89:c43cd923401c 1035 {
mjr 89:c43cd923401c 1036 // staying on - set the new physical output power to the
mjr 89:c43cd923401c 1037 // lower of the requested power and the hold power
mjr 89:c43cd923401c 1038 uint8_t hold = holdPower();
mjr 89:c43cd923401c 1039 out->set(level < hold ? level : hold);
mjr 89:c43cd923401c 1040 }
mjr 89:c43cd923401c 1041 break;
mjr 89:c43cd923401c 1042 }
mjr 89:c43cd923401c 1043 }
mjr 89:c43cd923401c 1044
mjr 89:c43cd923401c 1045 // Class initialization
mjr 89:c43cd923401c 1046 static void classInit(Config &cfg)
mjr 89:c43cd923401c 1047 {
mjr 89:c43cd923401c 1048 // Count the Flipper Logic outputs in the configuration. We
mjr 89:c43cd923401c 1049 // need to allocate enough pending timer list space to accommodate
mjr 89:c43cd923401c 1050 // all of these outputs.
mjr 89:c43cd923401c 1051 int n = 0;
mjr 89:c43cd923401c 1052 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 89:c43cd923401c 1053 {
mjr 89:c43cd923401c 1054 // if this port is active and marked as Flipper Logic, count it
mjr 89:c43cd923401c 1055 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 89:c43cd923401c 1056 && (cfg.outPort[i].flags & PortFlagFlipperLogic) != 0)
mjr 89:c43cd923401c 1057 ++n;
mjr 89:c43cd923401c 1058 }
mjr 89:c43cd923401c 1059
mjr 89:c43cd923401c 1060 // allocate space for the pending timer list
mjr 89:c43cd923401c 1061 pending = new LwFlipperLogicOut*[n];
mjr 89:c43cd923401c 1062
mjr 89:c43cd923401c 1063 // there's nothing in the pending list yet
mjr 89:c43cd923401c 1064 nPending = 0;
mjr 89:c43cd923401c 1065
mjr 89:c43cd923401c 1066 // Start our shared timer. The epoch is arbitrary, since we only
mjr 89:c43cd923401c 1067 // use it to figure elapsed times.
mjr 89:c43cd923401c 1068 timer.start();
mjr 89:c43cd923401c 1069 }
mjr 89:c43cd923401c 1070
mjr 89:c43cd923401c 1071 // Check for ports with pending timers. The main routine should
mjr 89:c43cd923401c 1072 // call this on each iteration to process our state transitions.
mjr 89:c43cd923401c 1073 static void poll()
mjr 89:c43cd923401c 1074 {
mjr 89:c43cd923401c 1075 // note the current time
mjr 89:c43cd923401c 1076 uint32_t t = timer.read_us();
mjr 89:c43cd923401c 1077
mjr 89:c43cd923401c 1078 // go through the timer list
mjr 89:c43cd923401c 1079 for (int i = 0 ; i < nPending ; )
mjr 89:c43cd923401c 1080 {
mjr 89:c43cd923401c 1081 // get the port
mjr 89:c43cd923401c 1082 LwFlipperLogicOut *port = pending[i];
mjr 89:c43cd923401c 1083
mjr 89:c43cd923401c 1084 // assume we'll keep it
mjr 89:c43cd923401c 1085 bool remove = false;
mjr 89:c43cd923401c 1086
mjr 89:c43cd923401c 1087 // check if the port is still on
mjr 89:c43cd923401c 1088 if (port->state != 0)
mjr 89:c43cd923401c 1089 {
mjr 89:c43cd923401c 1090 // it's still on - check if the initial full power time has elapsed
mjr 89:c43cd923401c 1091 if (uint32_t(t - port->t0) > port->fullPowerTime_us())
mjr 89:c43cd923401c 1092 {
mjr 89:c43cd923401c 1093 // done with the full power interval - switch to hold state
mjr 89:c43cd923401c 1094 port->state = 2;
mjr 89:c43cd923401c 1095
mjr 89:c43cd923401c 1096 // set the physical port to the hold power setting or the
mjr 89:c43cd923401c 1097 // client brightness setting, whichever is lower
mjr 89:c43cd923401c 1098 uint8_t hold = port->holdPower();
mjr 89:c43cd923401c 1099 uint8_t val = port->val;
mjr 89:c43cd923401c 1100 port->out->set(val < hold ? val : hold);
mjr 89:c43cd923401c 1101
mjr 89:c43cd923401c 1102 // we're done with the timer
mjr 89:c43cd923401c 1103 remove = true;
mjr 89:c43cd923401c 1104 }
mjr 89:c43cd923401c 1105 }
mjr 89:c43cd923401c 1106 else
mjr 89:c43cd923401c 1107 {
mjr 89:c43cd923401c 1108 // the port was turned off before the timer expired - remove
mjr 89:c43cd923401c 1109 // it from the timer list
mjr 89:c43cd923401c 1110 remove = true;
mjr 89:c43cd923401c 1111 }
mjr 89:c43cd923401c 1112
mjr 89:c43cd923401c 1113 // if desired, remove the port from the timer list
mjr 89:c43cd923401c 1114 if (remove)
mjr 89:c43cd923401c 1115 {
mjr 89:c43cd923401c 1116 // Remove the list entry by overwriting the slot with
mjr 89:c43cd923401c 1117 // the last entry in the list.
mjr 89:c43cd923401c 1118 pending[i] = pending[--nPending];
mjr 89:c43cd923401c 1119
mjr 89:c43cd923401c 1120 // Note that we don't increment the loop counter, since
mjr 89:c43cd923401c 1121 // we now need to revisit this same slot.
mjr 89:c43cd923401c 1122 }
mjr 89:c43cd923401c 1123 else
mjr 89:c43cd923401c 1124 {
mjr 89:c43cd923401c 1125 // we're keeping this item; move on to the next one
mjr 89:c43cd923401c 1126 ++i;
mjr 89:c43cd923401c 1127 }
mjr 89:c43cd923401c 1128 }
mjr 89:c43cd923401c 1129 }
mjr 89:c43cd923401c 1130
mjr 89:c43cd923401c 1131 protected:
mjr 89:c43cd923401c 1132 // underlying physical output
mjr 89:c43cd923401c 1133 LwOut *out;
mjr 89:c43cd923401c 1134
mjr 89:c43cd923401c 1135 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 89:c43cd923401c 1136 // to the current 'timer' timestamp when entering state 1.
mjr 89:c43cd923401c 1137 uint32_t t0;
mjr 89:c43cd923401c 1138
mjr 89:c43cd923401c 1139 // Nominal output level (brightness) last set by the client. During
mjr 89:c43cd923401c 1140 // the initial full-power interval, we replicate the requested level
mjr 89:c43cd923401c 1141 // exactly on the physical output. During the hold interval, we limit
mjr 89:c43cd923401c 1142 // the physical output to the hold power, but use the caller's value
mjr 89:c43cd923401c 1143 // if it's lower.
mjr 89:c43cd923401c 1144 uint8_t val;
mjr 89:c43cd923401c 1145
mjr 89:c43cd923401c 1146 // Current port state:
mjr 89:c43cd923401c 1147 //
mjr 89:c43cd923401c 1148 // 0 = off
mjr 89:c43cd923401c 1149 // 1 = on at initial full power
mjr 89:c43cd923401c 1150 // 2 = on at hold power
mjr 89:c43cd923401c 1151 uint8_t state;
mjr 89:c43cd923401c 1152
mjr 89:c43cd923401c 1153 // Configuration parameters. The high 4 bits encode the initial full-
mjr 89:c43cd923401c 1154 // power time in 50ms units, starting at 0=50ms. The low 4 bits encode
mjr 89:c43cd923401c 1155 // the hold power (applied after the initial time expires if the output
mjr 89:c43cd923401c 1156 // is still on) in units of 6.66%. The resulting percentage is used
mjr 89:c43cd923401c 1157 // for the PWM duty cycle of the physical output.
mjr 89:c43cd923401c 1158 uint8_t params;
mjr 89:c43cd923401c 1159
mjr 99:8139b0c274f4 1160 // Figure the initial full-power time in microseconds: 50ms * (1+N),
mjr 99:8139b0c274f4 1161 // where N is the high 4 bits of the parameter byte.
mjr 99:8139b0c274f4 1162 inline uint32_t fullPowerTime_us() const { return 50000*(1 + ((params >> 4) & 0x0F)); }
mjr 89:c43cd923401c 1163
mjr 89:c43cd923401c 1164 // Figure the hold power PWM level (0-255)
mjr 89:c43cd923401c 1165 inline uint8_t holdPower() const { return (params & 0x0F) * 17; }
mjr 89:c43cd923401c 1166
mjr 89:c43cd923401c 1167 // Timer. This is a shared timer for all of the FL ports. When we
mjr 89:c43cd923401c 1168 // transition from OFF to ON, we note the current time on this timer
mjr 89:c43cd923401c 1169 // (which runs continuously).
mjr 89:c43cd923401c 1170 static Timer timer;
mjr 89:c43cd923401c 1171
mjr 89:c43cd923401c 1172 // Flipper logic pending timer list. Whenever a flipper logic output
mjr 98:4df3c0f7e707 1173 // transitions from OFF to ON, we add it to this list. We scan the
mjr 98:4df3c0f7e707 1174 // list in our polling routine to find ports that have reached the
mjr 98:4df3c0f7e707 1175 // expiration of their initial full-power intervals.
mjr 89:c43cd923401c 1176 static LwFlipperLogicOut **pending;
mjr 89:c43cd923401c 1177 static uint8_t nPending;
mjr 89:c43cd923401c 1178 };
mjr 89:c43cd923401c 1179
mjr 89:c43cd923401c 1180 // Flipper Logic statics
mjr 89:c43cd923401c 1181 Timer LwFlipperLogicOut::timer;
mjr 89:c43cd923401c 1182 LwFlipperLogicOut **LwFlipperLogicOut::pending;
mjr 89:c43cd923401c 1183 uint8_t LwFlipperLogicOut::nPending;
mjr 99:8139b0c274f4 1184
mjr 99:8139b0c274f4 1185 // Chime Logic. This is a filter output that we layer on a physical
mjr 99:8139b0c274f4 1186 // output to set a minimum and maximum ON time for the output.
mjr 99:8139b0c274f4 1187 class LwChimeLogicOut: public LwOut
mjr 98:4df3c0f7e707 1188 {
mjr 98:4df3c0f7e707 1189 public:
mjr 99:8139b0c274f4 1190 // Set up the output. 'params' encodes the minimum and maximum time.
mjr 99:8139b0c274f4 1191 LwChimeLogicOut(LwOut *o, uint8_t params)
mjr 99:8139b0c274f4 1192 : out(o), params(params)
mjr 98:4df3c0f7e707 1193 {
mjr 98:4df3c0f7e707 1194 // initially OFF
mjr 98:4df3c0f7e707 1195 state = 0;
mjr 98:4df3c0f7e707 1196 }
mjr 98:4df3c0f7e707 1197
mjr 98:4df3c0f7e707 1198 virtual void set(uint8_t level)
mjr 98:4df3c0f7e707 1199 {
mjr 98:4df3c0f7e707 1200 // update the physical output according to our current timing state
mjr 98:4df3c0f7e707 1201 switch (state)
mjr 98:4df3c0f7e707 1202 {
mjr 98:4df3c0f7e707 1203 case 0:
mjr 98:4df3c0f7e707 1204 // We're currently off. If the new level is non-zero, switch
mjr 98:4df3c0f7e707 1205 // to state 1 (initial minimum interval) and set the requested
mjr 98:4df3c0f7e707 1206 // level. If the new level is zero, we're switching from off to
mjr 98:4df3c0f7e707 1207 // off, so there's no change.
mjr 98:4df3c0f7e707 1208 if (level != 0)
mjr 98:4df3c0f7e707 1209 {
mjr 98:4df3c0f7e707 1210 // switch to state 1 (initial minimum interval, port is
mjr 98:4df3c0f7e707 1211 // logically on)
mjr 98:4df3c0f7e707 1212 state = 1;
mjr 98:4df3c0f7e707 1213
mjr 98:4df3c0f7e707 1214 // set the requested output level
mjr 98:4df3c0f7e707 1215 out->set(level);
mjr 98:4df3c0f7e707 1216
mjr 98:4df3c0f7e707 1217 // add myself to the pending timer list
mjr 98:4df3c0f7e707 1218 pending[nPending++] = this;
mjr 98:4df3c0f7e707 1219
mjr 98:4df3c0f7e707 1220 // note the starting time
mjr 98:4df3c0f7e707 1221 t0 = timer.read_us();
mjr 98:4df3c0f7e707 1222 }
mjr 98:4df3c0f7e707 1223 break;
mjr 98:4df3c0f7e707 1224
mjr 98:4df3c0f7e707 1225 case 1: // min ON interval, port on
mjr 98:4df3c0f7e707 1226 case 2: // min ON interval, port off
mjr 98:4df3c0f7e707 1227 // We're in the initial minimum ON interval. If the new power
mjr 98:4df3c0f7e707 1228 // level is non-zero, pass it through to the physical port, since
mjr 98:4df3c0f7e707 1229 // the client is allowed to change the power level during the
mjr 98:4df3c0f7e707 1230 // initial ON interval - they just can't turn it off entirely.
mjr 98:4df3c0f7e707 1231 // Set the state to 1 to indicate that the logical port is on.
mjr 98:4df3c0f7e707 1232 //
mjr 98:4df3c0f7e707 1233 // If the new level is zero, leave the underlying port at its
mjr 98:4df3c0f7e707 1234 // current power level, since we're not allowed to turn it off
mjr 98:4df3c0f7e707 1235 // during this period. Set the state to 2 to indicate that the
mjr 98:4df3c0f7e707 1236 // logical port is off even though the physical port has to stay
mjr 98:4df3c0f7e707 1237 // on for the remainder of the interval.
mjr 98:4df3c0f7e707 1238 if (level != 0)
mjr 98:4df3c0f7e707 1239 {
mjr 98:4df3c0f7e707 1240 // client is leaving the port on - pass through the new
mjr 98:4df3c0f7e707 1241 // power level and set state 1 (logically on)
mjr 98:4df3c0f7e707 1242 out->set(level);
mjr 98:4df3c0f7e707 1243 state = 1;
mjr 98:4df3c0f7e707 1244 }
mjr 98:4df3c0f7e707 1245 else
mjr 98:4df3c0f7e707 1246 {
mjr 98:4df3c0f7e707 1247 // Client is turning off the port - leave the underlying port
mjr 98:4df3c0f7e707 1248 // on at its current level and set state 2 (logically off).
mjr 98:4df3c0f7e707 1249 // When the minimum ON time expires, the polling routine will
mjr 98:4df3c0f7e707 1250 // see that we're logically off and will pass that through to
mjr 98:4df3c0f7e707 1251 // the underlying physical port. Until then, though, we have
mjr 98:4df3c0f7e707 1252 // to leave the physical port on to satisfy the minimum ON
mjr 98:4df3c0f7e707 1253 // time requirement.
mjr 98:4df3c0f7e707 1254 state = 2;
mjr 98:4df3c0f7e707 1255 }
mjr 98:4df3c0f7e707 1256 break;
mjr 98:4df3c0f7e707 1257
mjr 98:4df3c0f7e707 1258 case 3:
mjr 99:8139b0c274f4 1259 // We're after the minimum ON interval and before the maximum
mjr 99:8139b0c274f4 1260 // ON time limit. We can set any new level, including fully off.
mjr 99:8139b0c274f4 1261 // Pass the new power level through to the port.
mjr 98:4df3c0f7e707 1262 out->set(level);
mjr 98:4df3c0f7e707 1263
mjr 98:4df3c0f7e707 1264 // if the port is now off, return to state 0 (OFF)
mjr 98:4df3c0f7e707 1265 if (level == 0)
mjr 99:8139b0c274f4 1266 {
mjr 99:8139b0c274f4 1267 // return to the OFF state
mjr 99:8139b0c274f4 1268 state = 0;
mjr 99:8139b0c274f4 1269
mjr 99:8139b0c274f4 1270 // If we have a timer pending, remove it. A timer will be
mjr 99:8139b0c274f4 1271 // pending if we have a non-infinite maximum on time for the
mjr 99:8139b0c274f4 1272 // port.
mjr 99:8139b0c274f4 1273 for (int i = 0 ; i < nPending ; ++i)
mjr 99:8139b0c274f4 1274 {
mjr 99:8139b0c274f4 1275 // is this us?
mjr 99:8139b0c274f4 1276 if (pending[i] == this)
mjr 99:8139b0c274f4 1277 {
mjr 99:8139b0c274f4 1278 // remove myself by replacing the slot with the
mjr 99:8139b0c274f4 1279 // last list entry
mjr 99:8139b0c274f4 1280 pending[i] = pending[--nPending];
mjr 99:8139b0c274f4 1281
mjr 99:8139b0c274f4 1282 // no need to look any further
mjr 99:8139b0c274f4 1283 break;
mjr 99:8139b0c274f4 1284 }
mjr 99:8139b0c274f4 1285 }
mjr 99:8139b0c274f4 1286 }
mjr 99:8139b0c274f4 1287 break;
mjr 99:8139b0c274f4 1288
mjr 99:8139b0c274f4 1289 case 4:
mjr 99:8139b0c274f4 1290 // We're after the maximum ON time. The physical port stays off
mjr 99:8139b0c274f4 1291 // during this interval, so we don't pass any changes through to
mjr 99:8139b0c274f4 1292 // the physical port. When the client sets the level to 0, we
mjr 99:8139b0c274f4 1293 // turn off the logical port and reset to state 0.
mjr 99:8139b0c274f4 1294 if (level == 0)
mjr 98:4df3c0f7e707 1295 state = 0;
mjr 98:4df3c0f7e707 1296 break;
mjr 98:4df3c0f7e707 1297 }
mjr 98:4df3c0f7e707 1298 }
mjr 98:4df3c0f7e707 1299
mjr 98:4df3c0f7e707 1300 // Class initialization
mjr 98:4df3c0f7e707 1301 static void classInit(Config &cfg)
mjr 98:4df3c0f7e707 1302 {
mjr 98:4df3c0f7e707 1303 // Count the Minimum On Time outputs in the configuration. We
mjr 98:4df3c0f7e707 1304 // need to allocate enough pending timer list space to accommodate
mjr 98:4df3c0f7e707 1305 // all of these outputs.
mjr 98:4df3c0f7e707 1306 int n = 0;
mjr 98:4df3c0f7e707 1307 for (int i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 98:4df3c0f7e707 1308 {
mjr 98:4df3c0f7e707 1309 // if this port is active and marked as Flipper Logic, count it
mjr 98:4df3c0f7e707 1310 if (cfg.outPort[i].typ != PortTypeDisabled
mjr 99:8139b0c274f4 1311 && (cfg.outPort[i].flags & PortFlagChimeLogic) != 0)
mjr 98:4df3c0f7e707 1312 ++n;
mjr 98:4df3c0f7e707 1313 }
mjr 98:4df3c0f7e707 1314
mjr 98:4df3c0f7e707 1315 // allocate space for the pending timer list
mjr 99:8139b0c274f4 1316 pending = new LwChimeLogicOut*[n];
mjr 98:4df3c0f7e707 1317
mjr 98:4df3c0f7e707 1318 // there's nothing in the pending list yet
mjr 98:4df3c0f7e707 1319 nPending = 0;
mjr 98:4df3c0f7e707 1320
mjr 98:4df3c0f7e707 1321 // Start our shared timer. The epoch is arbitrary, since we only
mjr 98:4df3c0f7e707 1322 // use it to figure elapsed times.
mjr 98:4df3c0f7e707 1323 timer.start();
mjr 98:4df3c0f7e707 1324 }
mjr 98:4df3c0f7e707 1325
mjr 98:4df3c0f7e707 1326 // Check for ports with pending timers. The main routine should
mjr 98:4df3c0f7e707 1327 // call this on each iteration to process our state transitions.
mjr 98:4df3c0f7e707 1328 static void poll()
mjr 98:4df3c0f7e707 1329 {
mjr 98:4df3c0f7e707 1330 // note the current time
mjr 98:4df3c0f7e707 1331 uint32_t t = timer.read_us();
mjr 98:4df3c0f7e707 1332
mjr 98:4df3c0f7e707 1333 // go through the timer list
mjr 98:4df3c0f7e707 1334 for (int i = 0 ; i < nPending ; )
mjr 98:4df3c0f7e707 1335 {
mjr 98:4df3c0f7e707 1336 // get the port
mjr 99:8139b0c274f4 1337 LwChimeLogicOut *port = pending[i];
mjr 98:4df3c0f7e707 1338
mjr 98:4df3c0f7e707 1339 // assume we'll keep it
mjr 98:4df3c0f7e707 1340 bool remove = false;
mjr 98:4df3c0f7e707 1341
mjr 99:8139b0c274f4 1342 // check our state
mjr 99:8139b0c274f4 1343 switch (port->state)
mjr 98:4df3c0f7e707 1344 {
mjr 99:8139b0c274f4 1345 case 1: // initial minimum ON time, port logically on
mjr 99:8139b0c274f4 1346 case 2: // initial minimum ON time, port logically off
mjr 99:8139b0c274f4 1347 // check if the minimum ON time has elapsed
mjr 98:4df3c0f7e707 1348 if (uint32_t(t - port->t0) > port->minOnTime_us())
mjr 98:4df3c0f7e707 1349 {
mjr 98:4df3c0f7e707 1350 // This port has completed its initial ON interval, so
mjr 98:4df3c0f7e707 1351 // it advances to the next state.
mjr 98:4df3c0f7e707 1352 if (port->state == 1)
mjr 98:4df3c0f7e707 1353 {
mjr 99:8139b0c274f4 1354 // The port is logically on, so advance to state 3.
mjr 99:8139b0c274f4 1355 // The underlying port is already at its proper level,
mjr 99:8139b0c274f4 1356 // since we pass through non-zero power settings to the
mjr 99:8139b0c274f4 1357 // underlying port throughout the initial minimum time.
mjr 99:8139b0c274f4 1358 // The timer stays active into state 3.
mjr 98:4df3c0f7e707 1359 port->state = 3;
mjr 99:8139b0c274f4 1360
mjr 99:8139b0c274f4 1361 // Special case: maximum on time 0 means "infinite".
mjr 99:8139b0c274f4 1362 // There's no need for a timer in this case; we'll
mjr 99:8139b0c274f4 1363 // just stay in state 3 until the client turns the
mjr 99:8139b0c274f4 1364 // port off.
mjr 99:8139b0c274f4 1365 if (port->maxOnTime_us() == 0)
mjr 99:8139b0c274f4 1366 remove = true;
mjr 98:4df3c0f7e707 1367 }
mjr 98:4df3c0f7e707 1368 else
mjr 98:4df3c0f7e707 1369 {
mjr 98:4df3c0f7e707 1370 // The port was switched off by the client during the
mjr 98:4df3c0f7e707 1371 // minimum ON period. We haven't passed the OFF state
mjr 98:4df3c0f7e707 1372 // to the underlying port yet, because the port has to
mjr 98:4df3c0f7e707 1373 // stay on throughout the minimum ON period. So turn
mjr 98:4df3c0f7e707 1374 // the port off now.
mjr 98:4df3c0f7e707 1375 port->out->set(0);
mjr 98:4df3c0f7e707 1376
mjr 98:4df3c0f7e707 1377 // return to state 0 (OFF)
mjr 98:4df3c0f7e707 1378 port->state = 0;
mjr 99:8139b0c274f4 1379
mjr 99:8139b0c274f4 1380 // we're done with the timer
mjr 99:8139b0c274f4 1381 remove = true;
mjr 98:4df3c0f7e707 1382 }
mjr 99:8139b0c274f4 1383 }
mjr 99:8139b0c274f4 1384 break;
mjr 99:8139b0c274f4 1385
mjr 99:8139b0c274f4 1386 case 3: // between minimum ON time and maximum ON time
mjr 99:8139b0c274f4 1387 // check if the maximum ON time has expired
mjr 99:8139b0c274f4 1388 if (uint32_t(t - port->t0) > port->maxOnTime_us())
mjr 99:8139b0c274f4 1389 {
mjr 99:8139b0c274f4 1390 // The maximum ON time has expired. Turn off the physical
mjr 99:8139b0c274f4 1391 // port.
mjr 99:8139b0c274f4 1392 port->out->set(0);
mjr 98:4df3c0f7e707 1393
mjr 99:8139b0c274f4 1394 // Switch to state 4 (logically ON past maximum time)
mjr 99:8139b0c274f4 1395 port->state = 4;
mjr 99:8139b0c274f4 1396
mjr 99:8139b0c274f4 1397 // Remove the timer on this port. This port simply stays
mjr 99:8139b0c274f4 1398 // in state 4 until the client turns off the port.
mjr 98:4df3c0f7e707 1399 remove = true;
mjr 98:4df3c0f7e707 1400 }
mjr 99:8139b0c274f4 1401 break;
mjr 98:4df3c0f7e707 1402 }
mjr 98:4df3c0f7e707 1403
mjr 98:4df3c0f7e707 1404 // if desired, remove the port from the timer list
mjr 98:4df3c0f7e707 1405 if (remove)
mjr 98:4df3c0f7e707 1406 {
mjr 98:4df3c0f7e707 1407 // Remove the list entry by overwriting the slot with
mjr 98:4df3c0f7e707 1408 // the last entry in the list.
mjr 98:4df3c0f7e707 1409 pending[i] = pending[--nPending];
mjr 98:4df3c0f7e707 1410
mjr 98:4df3c0f7e707 1411 // Note that we don't increment the loop counter, since
mjr 98:4df3c0f7e707 1412 // we now need to revisit this same slot.
mjr 98:4df3c0f7e707 1413 }
mjr 98:4df3c0f7e707 1414 else
mjr 98:4df3c0f7e707 1415 {
mjr 98:4df3c0f7e707 1416 // we're keeping this item; move on to the next one
mjr 98:4df3c0f7e707 1417 ++i;
mjr 98:4df3c0f7e707 1418 }
mjr 98:4df3c0f7e707 1419 }
mjr 98:4df3c0f7e707 1420 }
mjr 98:4df3c0f7e707 1421
mjr 98:4df3c0f7e707 1422 protected:
mjr 98:4df3c0f7e707 1423 // underlying physical output
mjr 98:4df3c0f7e707 1424 LwOut *out;
mjr 98:4df3c0f7e707 1425
mjr 98:4df3c0f7e707 1426 // Timestamp on 'timer' of start of full-power interval. We set this
mjr 98:4df3c0f7e707 1427 // to the current 'timer' timestamp when entering state 1.
mjr 98:4df3c0f7e707 1428 uint32_t t0;
mjr 98:4df3c0f7e707 1429
mjr 98:4df3c0f7e707 1430 // Current port state:
mjr 98:4df3c0f7e707 1431 //
mjr 98:4df3c0f7e707 1432 // 0 = off
mjr 99:8139b0c274f4 1433 // 1 = in initial minimum ON interval, logical port is on
mjr 99:8139b0c274f4 1434 // 2 = in initial minimum ON interval, logical port is off
mjr 99:8139b0c274f4 1435 // 3 = in interval between minimum and maximum ON times
mjr 99:8139b0c274f4 1436 // 4 = after the maximum ON interval
mjr 99:8139b0c274f4 1437 //
mjr 99:8139b0c274f4 1438 // The "logical" on/off state of the port is the state set by the
mjr 99:8139b0c274f4 1439 // client. The "physical" state is the state of the underlying port.
mjr 99:8139b0c274f4 1440 // The relationships between logical and physical port state, and the
mjr 99:8139b0c274f4 1441 // effects of updates by the client, are as follows:
mjr 99:8139b0c274f4 1442 //
mjr 99:8139b0c274f4 1443 // State | Logical | Physical | Client set on | Client set off
mjr 99:8139b0c274f4 1444 // -----------------------------------------------------------
mjr 99:8139b0c274f4 1445 // 0 | Off | Off | phys on, -> 1 | no effect
mjr 99:8139b0c274f4 1446 // 1 | On | On | no effect | -> 2
mjr 99:8139b0c274f4 1447 // 2 | Off | On | -> 1 | no effect
mjr 99:8139b0c274f4 1448 // 3 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1449 // 4 | On | On | no effect | phys off, -> 0
mjr 99:8139b0c274f4 1450 //
mjr 99:8139b0c274f4 1451 // The polling routine makes the following transitions when the current
mjr 99:8139b0c274f4 1452 // time limit expires:
mjr 99:8139b0c274f4 1453 //
mjr 99:8139b0c274f4 1454 // 1: at end of minimum ON, -> 3 (or 4 if max == infinity)
mjr 99:8139b0c274f4 1455 // 2: at end of minimum ON, port off, -> 0
mjr 99:8139b0c274f4 1456 // 3: at end of maximum ON, port off, -> 4
mjr 98:4df3c0f7e707 1457 //
mjr 98:4df3c0f7e707 1458 uint8_t state;
mjr 98:4df3c0f7e707 1459
mjr 99:8139b0c274f4 1460 // Configuration parameters byte. This encodes the minimum and maximum
mjr 99:8139b0c274f4 1461 // ON times.
mjr 99:8139b0c274f4 1462 uint8_t params;
mjr 98:4df3c0f7e707 1463
mjr 98:4df3c0f7e707 1464 // Timer. This is a shared timer for all of the minimum ON time ports.
mjr 98:4df3c0f7e707 1465 // When we transition from OFF to ON, we note the current time on this
mjr 98:4df3c0f7e707 1466 // timer to establish the start of our minimum ON period.
mjr 98:4df3c0f7e707 1467 static Timer timer;
mjr 98:4df3c0f7e707 1468
mjr 98:4df3c0f7e707 1469 // translaton table from timing parameter in config to minimum ON time
mjr 98:4df3c0f7e707 1470 static const uint32_t paramToTime_us[];
mjr 98:4df3c0f7e707 1471
mjr 99:8139b0c274f4 1472 // Figure the minimum ON time. The minimum ON time is given by the
mjr 99:8139b0c274f4 1473 // low-order 4 bits of the parameters byte, which serves as an index
mjr 99:8139b0c274f4 1474 // into our time table.
mjr 99:8139b0c274f4 1475 inline uint32_t minOnTime_us() const { return paramToTime_us[params & 0x0F]; }
mjr 99:8139b0c274f4 1476
mjr 99:8139b0c274f4 1477 // Figure the maximum ON time. The maximum time is the high 4 bits
mjr 99:8139b0c274f4 1478 // of the parameters byte. This is an index into our time table, but
mjr 99:8139b0c274f4 1479 // 0 has the special meaning "infinite".
mjr 99:8139b0c274f4 1480 inline uint32_t maxOnTime_us() const { return paramToTime_us[((params >> 4) & 0x0F)]; }
mjr 98:4df3c0f7e707 1481
mjr 98:4df3c0f7e707 1482 // Pending timer list. Whenever one of our ports transitions from OFF
mjr 98:4df3c0f7e707 1483 // to ON, we add it to this list. We scan this list in our polling
mjr 98:4df3c0f7e707 1484 // routine to find ports that have reached the ends of their initial
mjr 98:4df3c0f7e707 1485 // ON intervals.
mjr 99:8139b0c274f4 1486 static LwChimeLogicOut **pending;
mjr 98:4df3c0f7e707 1487 static uint8_t nPending;
mjr 98:4df3c0f7e707 1488 };
mjr 98:4df3c0f7e707 1489
mjr 98:4df3c0f7e707 1490 // Min Time Out statics
mjr 99:8139b0c274f4 1491 Timer LwChimeLogicOut::timer;
mjr 99:8139b0c274f4 1492 LwChimeLogicOut **LwChimeLogicOut::pending;
mjr 99:8139b0c274f4 1493 uint8_t LwChimeLogicOut::nPending;
mjr 99:8139b0c274f4 1494 const uint32_t LwChimeLogicOut::paramToTime_us[] = {
mjr 99:8139b0c274f4 1495 0, // for the max time, this means "infinite"
mjr 98:4df3c0f7e707 1496 1000,
mjr 98:4df3c0f7e707 1497 2000,
mjr 98:4df3c0f7e707 1498 5000,
mjr 98:4df3c0f7e707 1499 10000,
mjr 98:4df3c0f7e707 1500 20000,
mjr 98:4df3c0f7e707 1501 40000,
mjr 98:4df3c0f7e707 1502 80000,
mjr 98:4df3c0f7e707 1503 100000,
mjr 98:4df3c0f7e707 1504 200000,
mjr 98:4df3c0f7e707 1505 300000,
mjr 98:4df3c0f7e707 1506 400000,
mjr 98:4df3c0f7e707 1507 500000,
mjr 98:4df3c0f7e707 1508 600000,
mjr 98:4df3c0f7e707 1509 700000,
mjr 98:4df3c0f7e707 1510 800000
mjr 98:4df3c0f7e707 1511 };
mjr 89:c43cd923401c 1512
mjr 35:e959ffba78fd 1513 //
mjr 35:e959ffba78fd 1514 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 1515 // assignments set in config.h.
mjr 33:d832bcab089e 1516 //
mjr 35:e959ffba78fd 1517 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 1518 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 1519 {
mjr 35:e959ffba78fd 1520 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 1521 {
mjr 53:9b2611964afc 1522 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 1523 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 1524 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 1525 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 1526 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 1527 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 1528 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 1529 }
mjr 35:e959ffba78fd 1530 }
mjr 26:cb71c4af2912 1531
mjr 40:cc0d9814522b 1532 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 1533 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 1534 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 1535 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 1536 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 1537 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 1538 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 1539 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 1540 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 1541 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 1542 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 1543 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 1544 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 1545 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 1546 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 1547 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 1548 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 1549 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 1550 };
mjr 40:cc0d9814522b 1551
mjr 40:cc0d9814522b 1552 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 1553 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 1554 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 1555 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 1556 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 1557 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 1558 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 1559 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 1560 // are always 8 bits.
mjr 40:cc0d9814522b 1561 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 1562 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 1563 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 1564 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 1565 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 1566 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 1567 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 1568 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 1569 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 1570 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 1571 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 1572 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 1573 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 1574 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 1575 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 1576 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 1577 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 1578 };
mjr 40:cc0d9814522b 1579
mjr 26:cb71c4af2912 1580 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 1581 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 1582 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 1583 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 1584 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 1585 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 1586 {
mjr 26:cb71c4af2912 1587 public:
mjr 60:f38da020aa13 1588 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1589 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 1590 {
mjr 26:cb71c4af2912 1591 if (val != prv)
mjr 40:cc0d9814522b 1592 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 1593 }
mjr 60:f38da020aa13 1594 uint8_t idx;
mjr 40:cc0d9814522b 1595 uint8_t prv;
mjr 26:cb71c4af2912 1596 };
mjr 26:cb71c4af2912 1597
mjr 40:cc0d9814522b 1598 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 1599 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 1600 {
mjr 40:cc0d9814522b 1601 public:
mjr 60:f38da020aa13 1602 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1603 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 1604 {
mjr 40:cc0d9814522b 1605 if (val != prv)
mjr 40:cc0d9814522b 1606 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 1607 }
mjr 60:f38da020aa13 1608 uint8_t idx;
mjr 40:cc0d9814522b 1609 uint8_t prv;
mjr 40:cc0d9814522b 1610 };
mjr 40:cc0d9814522b 1611
mjr 87:8d35c74403af 1612 //
mjr 87:8d35c74403af 1613 // TLC59116 interface object
mjr 87:8d35c74403af 1614 //
mjr 87:8d35c74403af 1615 TLC59116 *tlc59116 = 0;
mjr 87:8d35c74403af 1616 void init_tlc59116(Config &cfg)
mjr 87:8d35c74403af 1617 {
mjr 87:8d35c74403af 1618 // Create the interface if any chips are enabled
mjr 87:8d35c74403af 1619 if (cfg.tlc59116.chipMask != 0)
mjr 87:8d35c74403af 1620 {
mjr 87:8d35c74403af 1621 // set up the interface
mjr 87:8d35c74403af 1622 tlc59116 = new TLC59116(
mjr 87:8d35c74403af 1623 wirePinName(cfg.tlc59116.sda),
mjr 87:8d35c74403af 1624 wirePinName(cfg.tlc59116.scl),
mjr 87:8d35c74403af 1625 wirePinName(cfg.tlc59116.reset));
mjr 87:8d35c74403af 1626
mjr 87:8d35c74403af 1627 // initialize the chips
mjr 87:8d35c74403af 1628 tlc59116->init();
mjr 87:8d35c74403af 1629 }
mjr 87:8d35c74403af 1630 }
mjr 87:8d35c74403af 1631
mjr 87:8d35c74403af 1632 // LwOut class for TLC59116 outputs. The 'addr' value in the constructor
mjr 87:8d35c74403af 1633 // is low 4 bits of the chip's I2C address; this is the part of the address
mjr 87:8d35c74403af 1634 // that's configurable per chip. 'port' is the output number on the chip
mjr 87:8d35c74403af 1635 // (0-15).
mjr 87:8d35c74403af 1636 //
mjr 87:8d35c74403af 1637 // Note that we don't need a separate gamma-corrected subclass for this
mjr 87:8d35c74403af 1638 // output type, since there's no loss of precision with the standard layered
mjr 87:8d35c74403af 1639 // gamma (it emits 8-bit values, and we take 8-bit inputs).
mjr 87:8d35c74403af 1640 class Lw59116Out: public LwOut
mjr 87:8d35c74403af 1641 {
mjr 87:8d35c74403af 1642 public:
mjr 87:8d35c74403af 1643 Lw59116Out(uint8_t addr, uint8_t port) : addr(addr), port(port) { prv = 0; }
mjr 87:8d35c74403af 1644 virtual void set(uint8_t val)
mjr 87:8d35c74403af 1645 {
mjr 87:8d35c74403af 1646 if (val != prv)
mjr 87:8d35c74403af 1647 tlc59116->set(addr, port, prv = val);
mjr 87:8d35c74403af 1648 }
mjr 87:8d35c74403af 1649
mjr 87:8d35c74403af 1650 protected:
mjr 87:8d35c74403af 1651 uint8_t addr;
mjr 87:8d35c74403af 1652 uint8_t port;
mjr 87:8d35c74403af 1653 uint8_t prv;
mjr 87:8d35c74403af 1654 };
mjr 87:8d35c74403af 1655
mjr 87:8d35c74403af 1656
mjr 87:8d35c74403af 1657 //
mjr 34:6b981a2afab7 1658 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 1659 // config.h.
mjr 87:8d35c74403af 1660 //
mjr 35:e959ffba78fd 1661 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 1662
mjr 35:e959ffba78fd 1663 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 1664 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 1665 {
mjr 35:e959ffba78fd 1666 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 1667 {
mjr 53:9b2611964afc 1668 hc595 = new HC595(
mjr 53:9b2611964afc 1669 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 1670 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 1671 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 1672 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 1673 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 1674 hc595->init();
mjr 35:e959ffba78fd 1675 hc595->update();
mjr 35:e959ffba78fd 1676 }
mjr 35:e959ffba78fd 1677 }
mjr 34:6b981a2afab7 1678
mjr 34:6b981a2afab7 1679 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 1680 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 1681 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 1682 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 1683 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 1684 class Lw595Out: public LwOut
mjr 33:d832bcab089e 1685 {
mjr 33:d832bcab089e 1686 public:
mjr 60:f38da020aa13 1687 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 1688 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 1689 {
mjr 34:6b981a2afab7 1690 if (val != prv)
mjr 40:cc0d9814522b 1691 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 1692 }
mjr 60:f38da020aa13 1693 uint8_t idx;
mjr 40:cc0d9814522b 1694 uint8_t prv;
mjr 33:d832bcab089e 1695 };
mjr 33:d832bcab089e 1696
mjr 26:cb71c4af2912 1697
mjr 40:cc0d9814522b 1698
mjr 64:ef7ca92dff36 1699 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 1700 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 1701 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 1702 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 1703 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 1704 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 1705 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 1706 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 1707 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 1708 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 1709 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 1710 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 1711 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 1712 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 1713 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 1714 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 1715 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 1716 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 1717 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 1718 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 1719 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 1720 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 1721 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 1722 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 1723 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 1724 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 1725 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 1726 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 1727 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 1728 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 1729 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 1730 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 1731 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 1732 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 1733 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 1734 };
mjr 26:cb71c4af2912 1735
mjr 64:ef7ca92dff36 1736
mjr 92:f264fbaa1be5 1737 // Conversion table for 8-bit DOF level to pulse width, with gamma correction
mjr 92:f264fbaa1be5 1738 // pre-calculated. The values are normalized duty cycles from 0.0 to 1.0.
mjr 92:f264fbaa1be5 1739 // Note that we could use the layered gamma output on top of the regular
mjr 92:f264fbaa1be5 1740 // LwPwmOut class for this instead of a separate table, but we get much better
mjr 92:f264fbaa1be5 1741 // precision with a dedicated table, because we apply gamma correction to the
mjr 92:f264fbaa1be5 1742 // actual duty cycle values (as 'float') rather than the 8-bit DOF values.
mjr 64:ef7ca92dff36 1743 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 1744 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 1745 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 1746 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 1747 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 1748 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 1749 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 1750 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 1751 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 1752 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 1753 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 1754 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 1755 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 1756 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 1757 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 1758 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 1759 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1760 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1761 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1762 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1763 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1764 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1765 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1766 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1767 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1768 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1769 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1770 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1771 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1772 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1773 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1774 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1775 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1776 };
mjr 64:ef7ca92dff36 1777
mjr 77:0b96f6867312 1778 // Polled-update PWM output list
mjr 74:822a92bc11d2 1779 //
mjr 77:0b96f6867312 1780 // This is a workaround for a KL25Z hardware bug/limitation. The bug (more
mjr 77:0b96f6867312 1781 // about this below) is that we can't write to a PWM output "value" register
mjr 77:0b96f6867312 1782 // more than once per PWM cycle; if we do, outputs after the first are lost.
mjr 77:0b96f6867312 1783 // The value register controls the duty cycle, so it's what you have to write
mjr 77:0b96f6867312 1784 // if you want to update the brightness of an output.
mjr 74:822a92bc11d2 1785 //
mjr 92:f264fbaa1be5 1786 // The symptom of the problem, if it's not worked around somehow, is that
mjr 92:f264fbaa1be5 1787 // an output will get "stuck" due to a missed write. This is especially
mjr 92:f264fbaa1be5 1788 // noticeable during a series of updates such as a fade. If the last
mjr 92:f264fbaa1be5 1789 // couple of updates in a fade are lost, the output will get stuck at some
mjr 92:f264fbaa1be5 1790 // value above or below the desired final value. The stuck setting will
mjr 92:f264fbaa1be5 1791 // persist until the output is deliberately changed again later.
mjr 92:f264fbaa1be5 1792 //
mjr 92:f264fbaa1be5 1793 // Our solution: Simply repeat all PWM updates periodically. This way, any
mjr 92:f264fbaa1be5 1794 // lost write will *eventually* take hold on one of the repeats. Repeats of
mjr 92:f264fbaa1be5 1795 // the same value won't change anything and thus won't be noticeable. We do
mjr 92:f264fbaa1be5 1796 // these periodic updates during the main loop, which makes them very low
mjr 92:f264fbaa1be5 1797 // overhead (there's no interrupt overhead; we just do them when convenient
mjr 92:f264fbaa1be5 1798 // in the main loop), and also makes them very frequent. The frequency
mjr 92:f264fbaa1be5 1799 // is crucial because it ensures that updates will never be lost for long
mjr 92:f264fbaa1be5 1800 // enough to become noticeable.
mjr 92:f264fbaa1be5 1801 //
mjr 92:f264fbaa1be5 1802 // The mbed library has its own, different solution to this bug, but the
mjr 92:f264fbaa1be5 1803 // mbed solution isn't really a solution at all because it creates a separate
mjr 100:1ff35c07217c 1804 // problem of its own. The mbed approach is to reset the TPM "count" register
mjr 92:f264fbaa1be5 1805 // on every value register write. The count reset truncates the current
mjr 92:f264fbaa1be5 1806 // PWM cycle, which bypasses the hardware problem. Remember, the hardware
mjr 92:f264fbaa1be5 1807 // problem is that you can only write once per cycle; the mbed "solution" gets
mjr 92:f264fbaa1be5 1808 // around that by making sure the cycle ends immediately after the write.
mjr 92:f264fbaa1be5 1809 // The problem with this approach is that the truncated cycle causes visible
mjr 92:f264fbaa1be5 1810 // flicker if the output is connected to an LED. This is particularly
mjr 92:f264fbaa1be5 1811 // noticeable during fades, when we're updating the value register repeatedly
mjr 92:f264fbaa1be5 1812 // and rapidly: an attempt to fade from fully on to fully off causes rapid
mjr 92:f264fbaa1be5 1813 // fluttering and flashing rather than a smooth brightness fade. That's why
mjr 92:f264fbaa1be5 1814 // I had to come up with something different - the mbed solution just trades
mjr 92:f264fbaa1be5 1815 // one annoying bug for another that's just as bad.
mjr 92:f264fbaa1be5 1816 //
mjr 92:f264fbaa1be5 1817 // The hardware bug, by the way, is a case of good intentions gone bad.
mjr 92:f264fbaa1be5 1818 // The whole point of the staging register is to make things easier for
mjr 92:f264fbaa1be5 1819 // us software writers. In most PWM hardware, software has to coordinate
mjr 92:f264fbaa1be5 1820 // with the PWM duty cycle when updating registers to avoid a glitch that
mjr 92:f264fbaa1be5 1821 // you'd get by scribbling to the duty cycle register mid-cycle. The
mjr 92:f264fbaa1be5 1822 // staging register solves this by letting the software write an update at
mjr 92:f264fbaa1be5 1823 // any time, knowing that the hardware will apply the update at exactly the
mjr 92:f264fbaa1be5 1824 // end of the cycle, ensuring glitch-free updates. It's a great design,
mjr 92:f264fbaa1be5 1825 // except that it doesn't quite work. The problem is that they implemented
mjr 92:f264fbaa1be5 1826 // this clever staging register as a one-element FIFO that refuses any more
mjr 92:f264fbaa1be5 1827 // writes when full. That is, writing a value to the FIFO fills it; once
mjr 92:f264fbaa1be5 1828 // full, it ignores writes until it gets emptied out. How's it emptied out?
mjr 92:f264fbaa1be5 1829 // By the hardware moving the staged value to the real register. Sadly, they
mjr 92:f264fbaa1be5 1830 // didn't provide any way for the software to clear the register, and no way
mjr 92:f264fbaa1be5 1831 // to even tell that it's full. So we don't have glitches on write, but we're
mjr 92:f264fbaa1be5 1832 // back to the original problem that the software has to be aware of the PWM
mjr 92:f264fbaa1be5 1833 // cycle timing, because the only way for the software to know that a write
mjr 92:f264fbaa1be5 1834 // actually worked is to know that it's been at least one PWM cycle since the
mjr 92:f264fbaa1be5 1835 // last write. That largely defeats the whole purpose of the staging register,
mjr 92:f264fbaa1be5 1836 // since the whole point was to free software writers of these timing
mjr 92:f264fbaa1be5 1837 // considerations. It's still an improvement over no staging register at
mjr 92:f264fbaa1be5 1838 // all, since we at least don't have to worry about glitches, but it leaves
mjr 92:f264fbaa1be5 1839 // us with this somewhat similar hassle.
mjr 74:822a92bc11d2 1840 //
mjr 77:0b96f6867312 1841 // So here we have our list of PWM outputs that need to be polled for updates.
mjr 77:0b96f6867312 1842 // The KL25Z hardware only has 10 PWM channels, so we only need a fixed set
mjr 77:0b96f6867312 1843 // of polled items.
mjr 74:822a92bc11d2 1844 static int numPolledPwm;
mjr 74:822a92bc11d2 1845 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1846
mjr 74:822a92bc11d2 1847 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1848 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1849 {
mjr 6:cc35eb643e8f 1850 public:
mjr 43:7a6364d82a41 1851 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1852 {
mjr 77:0b96f6867312 1853 // add myself to the list of polled outputs for periodic updates
mjr 77:0b96f6867312 1854 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1855 polledPwm[numPolledPwm++] = this;
mjr 93:177832c29041 1856
mjr 94:0476b3e2b996 1857 // IMPORTANT: Do not set the PWM period (frequency) here explicitly.
mjr 94:0476b3e2b996 1858 // We instead want to accept the current setting for the TPM unit
mjr 94:0476b3e2b996 1859 // we're assigned to. The KL25Z hardware can only set the period at
mjr 94:0476b3e2b996 1860 // the TPM unit level, not per channel, so if we changed the frequency
mjr 94:0476b3e2b996 1861 // here, we'd change it for everything attached to our TPM unit. LW
mjr 94:0476b3e2b996 1862 // outputs don't care about frequency other than that it's fast enough
mjr 94:0476b3e2b996 1863 // that attached LEDs won't flicker. Some other PWM users (IR remote,
mjr 94:0476b3e2b996 1864 // TLC5940) DO care about exact frequencies, because they use the PWM
mjr 94:0476b3e2b996 1865 // as a signal generator rather than merely for brightness control.
mjr 94:0476b3e2b996 1866 // If we changed the frequency here, we could clobber one of those
mjr 94:0476b3e2b996 1867 // carefully chosen frequencies and break the other subsystem. So
mjr 94:0476b3e2b996 1868 // we need to be the "free variable" here and accept whatever setting
mjr 94:0476b3e2b996 1869 // is currently on our assigned unit. To minimize flicker, the main()
mjr 94:0476b3e2b996 1870 // entrypoint sets a default PWM rate of 1kHz on all channels. All
mjr 94:0476b3e2b996 1871 // of the other subsystems that might set specific frequencies will
mjr 94:0476b3e2b996 1872 // set much high frequencies, so that should only be good for us.
mjr 94:0476b3e2b996 1873
mjr 94:0476b3e2b996 1874 // set the initial brightness value
mjr 77:0b96f6867312 1875 set(initVal);
mjr 43:7a6364d82a41 1876 }
mjr 74:822a92bc11d2 1877
mjr 40:cc0d9814522b 1878 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1879 {
mjr 77:0b96f6867312 1880 // save the new value
mjr 74:822a92bc11d2 1881 this->val = val;
mjr 77:0b96f6867312 1882
mjr 77:0b96f6867312 1883 // commit it to the hardware
mjr 77:0b96f6867312 1884 commit();
mjr 13:72dda449c3c0 1885 }
mjr 74:822a92bc11d2 1886
mjr 74:822a92bc11d2 1887 // handle periodic update polling
mjr 74:822a92bc11d2 1888 void poll()
mjr 74:822a92bc11d2 1889 {
mjr 77:0b96f6867312 1890 commit();
mjr 74:822a92bc11d2 1891 }
mjr 74:822a92bc11d2 1892
mjr 74:822a92bc11d2 1893 protected:
mjr 77:0b96f6867312 1894 virtual void commit()
mjr 74:822a92bc11d2 1895 {
mjr 74:822a92bc11d2 1896 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1897 p.glitchFreeWrite(dof_to_pwm[val]);
mjr 74:822a92bc11d2 1898 }
mjr 74:822a92bc11d2 1899
mjr 77:0b96f6867312 1900 NewPwmOut p;
mjr 77:0b96f6867312 1901 uint8_t val;
mjr 6:cc35eb643e8f 1902 };
mjr 26:cb71c4af2912 1903
mjr 74:822a92bc11d2 1904 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1905 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1906 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1907 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1908 {
mjr 64:ef7ca92dff36 1909 public:
mjr 64:ef7ca92dff36 1910 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1911 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1912 {
mjr 64:ef7ca92dff36 1913 }
mjr 74:822a92bc11d2 1914
mjr 74:822a92bc11d2 1915 protected:
mjr 77:0b96f6867312 1916 virtual void commit()
mjr 64:ef7ca92dff36 1917 {
mjr 74:822a92bc11d2 1918 // write the current value to the PWM controller if it's changed
mjr 77:0b96f6867312 1919 p.glitchFreeWrite(dof_to_gamma_pwm[val]);
mjr 64:ef7ca92dff36 1920 }
mjr 64:ef7ca92dff36 1921 };
mjr 64:ef7ca92dff36 1922
mjr 74:822a92bc11d2 1923 // poll the PWM outputs
mjr 74:822a92bc11d2 1924 Timer polledPwmTimer;
mjr 76:7f5912b6340e 1925 uint64_t polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1926 void pollPwmUpdates()
mjr 74:822a92bc11d2 1927 {
mjr 94:0476b3e2b996 1928 // If it's been long enough since the last update, do another update.
mjr 94:0476b3e2b996 1929 // Note that the time limit is fairly arbitrary: it has to be at least
mjr 94:0476b3e2b996 1930 // 1.5X the PWM period, so that we can be sure that at least one PWM
mjr 94:0476b3e2b996 1931 // period has elapsed since the last update, but there's no hard upper
mjr 94:0476b3e2b996 1932 // bound. Instead, it only has to be short enough that fades don't
mjr 94:0476b3e2b996 1933 // become noticeably chunky. The competing interest is that we don't
mjr 94:0476b3e2b996 1934 // want to do this more often than necessary to provide incremental
mjr 94:0476b3e2b996 1935 // benefit, because the polling adds overhead to the main loop and
mjr 94:0476b3e2b996 1936 // takes time away from other tasks we could be performing. The
mjr 94:0476b3e2b996 1937 // shortest time with practical benefit is probably around 50-60Hz,
mjr 94:0476b3e2b996 1938 // since that gives us "video rate" granularity in fades. Anything
mjr 94:0476b3e2b996 1939 // faster wouldn't probably make fades look any smoother to a human
mjr 94:0476b3e2b996 1940 // viewer.
mjr 94:0476b3e2b996 1941 if (polledPwmTimer.read_us() >= 15000)
mjr 74:822a92bc11d2 1942 {
mjr 74:822a92bc11d2 1943 // time the run for statistics collection
mjr 74:822a92bc11d2 1944 IF_DIAG(
mjr 74:822a92bc11d2 1945 Timer t;
mjr 74:822a92bc11d2 1946 t.start();
mjr 74:822a92bc11d2 1947 )
mjr 74:822a92bc11d2 1948
mjr 74:822a92bc11d2 1949 // poll each output
mjr 74:822a92bc11d2 1950 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1951 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1952
mjr 74:822a92bc11d2 1953 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1954 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1955
mjr 74:822a92bc11d2 1956 // collect statistics
mjr 74:822a92bc11d2 1957 IF_DIAG(
mjr 76:7f5912b6340e 1958 polledPwmTotalTime += t.read_us();
mjr 74:822a92bc11d2 1959 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1960 )
mjr 74:822a92bc11d2 1961 }
mjr 74:822a92bc11d2 1962 }
mjr 64:ef7ca92dff36 1963
mjr 26:cb71c4af2912 1964 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1965 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1966 {
mjr 6:cc35eb643e8f 1967 public:
mjr 43:7a6364d82a41 1968 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1969 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1970 {
mjr 13:72dda449c3c0 1971 if (val != prv)
mjr 40:cc0d9814522b 1972 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1973 }
mjr 6:cc35eb643e8f 1974 DigitalOut p;
mjr 40:cc0d9814522b 1975 uint8_t prv;
mjr 6:cc35eb643e8f 1976 };
mjr 26:cb71c4af2912 1977
mjr 29:582472d0bc57 1978 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1979 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1980 // port n (0-based).
mjr 35:e959ffba78fd 1981 //
mjr 35:e959ffba78fd 1982 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1983 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1984 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1985 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1986 // 74HC595 ports).
mjr 33:d832bcab089e 1987 static int numOutputs;
mjr 33:d832bcab089e 1988 static LwOut **lwPin;
mjr 33:d832bcab089e 1989
mjr 38:091e511ce8a0 1990 // create a single output pin
mjr 53:9b2611964afc 1991 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1992 {
mjr 38:091e511ce8a0 1993 // get this item's values
mjr 38:091e511ce8a0 1994 int typ = pc.typ;
mjr 38:091e511ce8a0 1995 int pin = pc.pin;
mjr 38:091e511ce8a0 1996 int flags = pc.flags;
mjr 40:cc0d9814522b 1997 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1998 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1999 int gamma = flags & PortFlagGamma;
mjr 89:c43cd923401c 2000 int flipperLogic = flags & PortFlagFlipperLogic;
mjr 99:8139b0c274f4 2001 int chimeLogic = flags & PortFlagChimeLogic;
mjr 89:c43cd923401c 2002
mjr 89:c43cd923401c 2003 // cancel gamma on flipper logic ports
mjr 89:c43cd923401c 2004 if (flipperLogic)
mjr 89:c43cd923401c 2005 gamma = false;
mjr 38:091e511ce8a0 2006
mjr 38:091e511ce8a0 2007 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 2008 LwOut *lwp;
mjr 38:091e511ce8a0 2009 switch (typ)
mjr 38:091e511ce8a0 2010 {
mjr 38:091e511ce8a0 2011 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 2012 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 2013 if (pin != 0)
mjr 64:ef7ca92dff36 2014 {
mjr 64:ef7ca92dff36 2015 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 2016 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 2017 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 2018 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 2019 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 2020 {
mjr 64:ef7ca92dff36 2021 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 2022 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 2023
mjr 64:ef7ca92dff36 2024 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 2025 gamma = false;
mjr 64:ef7ca92dff36 2026 }
mjr 64:ef7ca92dff36 2027 else
mjr 64:ef7ca92dff36 2028 {
mjr 64:ef7ca92dff36 2029 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 2030 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 2031 }
mjr 64:ef7ca92dff36 2032 }
mjr 48:058ace2aed1d 2033 else
mjr 48:058ace2aed1d 2034 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2035 break;
mjr 38:091e511ce8a0 2036
mjr 38:091e511ce8a0 2037 case PortTypeGPIODig:
mjr 38:091e511ce8a0 2038 // Digital GPIO port
mjr 48:058ace2aed1d 2039 if (pin != 0)
mjr 48:058ace2aed1d 2040 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 2041 else
mjr 48:058ace2aed1d 2042 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2043 break;
mjr 38:091e511ce8a0 2044
mjr 38:091e511ce8a0 2045 case PortTypeTLC5940:
mjr 38:091e511ce8a0 2046 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 2047 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 2048 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 2049 {
mjr 40:cc0d9814522b 2050 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 2051 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 2052 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 2053 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 2054 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 2055 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 2056 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 2057 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 2058 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 2059 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 2060 // for this unlikely case.
mjr 40:cc0d9814522b 2061 if (gamma && !activeLow)
mjr 40:cc0d9814522b 2062 {
mjr 40:cc0d9814522b 2063 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 2064 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 2065
mjr 40:cc0d9814522b 2066 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 2067 gamma = false;
mjr 40:cc0d9814522b 2068 }
mjr 40:cc0d9814522b 2069 else
mjr 40:cc0d9814522b 2070 {
mjr 40:cc0d9814522b 2071 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 2072 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 2073 }
mjr 40:cc0d9814522b 2074 }
mjr 38:091e511ce8a0 2075 else
mjr 40:cc0d9814522b 2076 {
mjr 40:cc0d9814522b 2077 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 2078 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 2079 }
mjr 38:091e511ce8a0 2080 break;
mjr 38:091e511ce8a0 2081
mjr 38:091e511ce8a0 2082 case PortType74HC595:
mjr 87:8d35c74403af 2083 // 74HC595 port (if we don't have an HC595 controller object, or it's not
mjr 87:8d35c74403af 2084 // a valid output number, create a virtual port)
mjr 38:091e511ce8a0 2085 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 2086 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 2087 else
mjr 38:091e511ce8a0 2088 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2089 break;
mjr 87:8d35c74403af 2090
mjr 87:8d35c74403af 2091 case PortTypeTLC59116:
mjr 87:8d35c74403af 2092 // TLC59116 port. The pin number in the config encodes the chip address
mjr 87:8d35c74403af 2093 // in the high 4 bits and the output number on the chip in the low 4 bits.
mjr 87:8d35c74403af 2094 // There's no gamma-corrected version of this output handler, so we don't
mjr 87:8d35c74403af 2095 // need to worry about that here; just use the layered gamma as needed.
mjr 87:8d35c74403af 2096 if (tlc59116 != 0)
mjr 87:8d35c74403af 2097 lwp = new Lw59116Out((pin >> 4) & 0x0F, pin & 0x0F);
mjr 87:8d35c74403af 2098 break;
mjr 38:091e511ce8a0 2099
mjr 38:091e511ce8a0 2100 case PortTypeVirtual:
mjr 43:7a6364d82a41 2101 case PortTypeDisabled:
mjr 38:091e511ce8a0 2102 default:
mjr 38:091e511ce8a0 2103 // virtual or unknown
mjr 38:091e511ce8a0 2104 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 2105 break;
mjr 38:091e511ce8a0 2106 }
mjr 38:091e511ce8a0 2107
mjr 40:cc0d9814522b 2108 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 2109 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 2110 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 2111 if (activeLow)
mjr 38:091e511ce8a0 2112 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 2113
mjr 89:c43cd923401c 2114 // Layer on Flipper Logic if desired
mjr 89:c43cd923401c 2115 if (flipperLogic)
mjr 89:c43cd923401c 2116 lwp = new LwFlipperLogicOut(lwp, pc.flipperLogic);
mjr 89:c43cd923401c 2117
mjr 99:8139b0c274f4 2118 // Layer on Chime Logic if desired. Note that Chime Logic and
mjr 99:8139b0c274f4 2119 // Flipper Logic are mutually exclusive, and Flipper Logic takes
mjr 99:8139b0c274f4 2120 // precedence, so ignore the Chime Logic bit if both are set.
mjr 99:8139b0c274f4 2121 if (chimeLogic && !flipperLogic)
mjr 99:8139b0c274f4 2122 lwp = new LwChimeLogicOut(lwp, pc.flipperLogic);
mjr 98:4df3c0f7e707 2123
mjr 89:c43cd923401c 2124 // If it's a noisemaker, layer on a night mode switch
mjr 40:cc0d9814522b 2125 if (noisy)
mjr 40:cc0d9814522b 2126 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 2127
mjr 40:cc0d9814522b 2128 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 2129 if (gamma)
mjr 40:cc0d9814522b 2130 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 2131
mjr 53:9b2611964afc 2132 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 2133 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 2134 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 2135 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 2136 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 2137
mjr 53:9b2611964afc 2138 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 2139 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 2140 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 2141
mjr 38:091e511ce8a0 2142 // turn it off initially
mjr 38:091e511ce8a0 2143 lwp->set(0);
mjr 38:091e511ce8a0 2144
mjr 38:091e511ce8a0 2145 // return the pin
mjr 38:091e511ce8a0 2146 return lwp;
mjr 38:091e511ce8a0 2147 }
mjr 38:091e511ce8a0 2148
mjr 6:cc35eb643e8f 2149 // initialize the output pin array
mjr 35:e959ffba78fd 2150 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 2151 {
mjr 99:8139b0c274f4 2152 // Initialize the Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 2153 LwFlipperLogicOut::classInit(cfg);
mjr 99:8139b0c274f4 2154 LwChimeLogicOut::classInit(cfg);
mjr 89:c43cd923401c 2155
mjr 35:e959ffba78fd 2156 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 2157 // total number of ports.
mjr 35:e959ffba78fd 2158 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 2159 int i;
mjr 35:e959ffba78fd 2160 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 2161 {
mjr 35:e959ffba78fd 2162 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 2163 {
mjr 35:e959ffba78fd 2164 numOutputs = i;
mjr 34:6b981a2afab7 2165 break;
mjr 34:6b981a2afab7 2166 }
mjr 33:d832bcab089e 2167 }
mjr 33:d832bcab089e 2168
mjr 73:4e8ce0b18915 2169 // allocate the pin array
mjr 73:4e8ce0b18915 2170 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 2171
mjr 73:4e8ce0b18915 2172 // Allocate the current brightness array
mjr 73:4e8ce0b18915 2173 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 2174
mjr 73:4e8ce0b18915 2175 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 2176 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2177 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 2178
mjr 73:4e8ce0b18915 2179 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 2180 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 2181 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 2182
mjr 73:4e8ce0b18915 2183 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 2184 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2185 wizSpeed[i] = 2;
mjr 33:d832bcab089e 2186
mjr 35:e959ffba78fd 2187 // create the pin interface object for each port
mjr 35:e959ffba78fd 2188 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 2189 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 2190 }
mjr 6:cc35eb643e8f 2191
mjr 76:7f5912b6340e 2192 // Translate an LedWiz brightness level (0..49) to a DOF brightness
mjr 76:7f5912b6340e 2193 // level (0..255). Note that brightness level 49 isn't actually valid,
mjr 76:7f5912b6340e 2194 // according to the LedWiz API documentation, but many clients use it
mjr 76:7f5912b6340e 2195 // anyway, and the real LedWiz accepts it and seems to treat it as
mjr 76:7f5912b6340e 2196 // equivalent to 48.
mjr 40:cc0d9814522b 2197 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 2198 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 2199 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 2200 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 2201 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 2202 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 2203 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 2204 255, 255
mjr 40:cc0d9814522b 2205 };
mjr 40:cc0d9814522b 2206
mjr 76:7f5912b6340e 2207 // Translate a DOF brightness level (0..255) to an LedWiz brightness
mjr 76:7f5912b6340e 2208 // level (1..48)
mjr 76:7f5912b6340e 2209 static const uint8_t dof_to_lw[] = {
mjr 76:7f5912b6340e 2210 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3,
mjr 76:7f5912b6340e 2211 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6,
mjr 76:7f5912b6340e 2212 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9,
mjr 76:7f5912b6340e 2213 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12,
mjr 76:7f5912b6340e 2214 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15,
mjr 76:7f5912b6340e 2215 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18,
mjr 76:7f5912b6340e 2216 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21,
mjr 76:7f5912b6340e 2217 21, 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24,
mjr 76:7f5912b6340e 2218 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27,
mjr 76:7f5912b6340e 2219 27, 27, 27, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 30,
mjr 76:7f5912b6340e 2220 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 33, 33, 33,
mjr 76:7f5912b6340e 2221 33, 33, 34, 34, 34, 34, 34, 34, 35, 35, 35, 35, 35, 36, 36, 36,
mjr 76:7f5912b6340e 2222 36, 36, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39,
mjr 76:7f5912b6340e 2223 39, 39, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 41, 42, 42, 42,
mjr 76:7f5912b6340e 2224 42, 42, 43, 43, 43, 43, 43, 43, 44, 44, 44, 44, 44, 45, 45, 45,
mjr 76:7f5912b6340e 2225 45, 45, 46, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48
mjr 76:7f5912b6340e 2226 };
mjr 76:7f5912b6340e 2227
mjr 74:822a92bc11d2 2228 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 2229 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 2230 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 2231 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 2232 //
mjr 74:822a92bc11d2 2233 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2234 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2235 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 2236 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 2237 //
mjr 74:822a92bc11d2 2238 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 2239 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 2240 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 2241 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 2242 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 2243 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 2244 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 2245 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 2246 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 2247 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 2248 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 2249 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 2250 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2251 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2252 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2253 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2254 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2255 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2256 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2257 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2258
mjr 74:822a92bc11d2 2259 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 2260 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2261 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2262 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2263 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2264 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2265 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2266 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2267 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2268 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2269 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2270 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2271 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2272 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2273 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2274 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2275 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 2276
mjr 74:822a92bc11d2 2277 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 2278 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2279 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2280 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2281 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2282 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2283 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2284 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2285 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2286 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 2287 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 2288 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 2289 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 2290 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 2291 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 2292 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 2293 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 2294
mjr 74:822a92bc11d2 2295 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 2296 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 2297 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 2298 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 2299 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 2300 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 2301 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 2302 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 2303 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 2304 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2305 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2306 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2307 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2308 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2309 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2310 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 2311 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 2312 };
mjr 74:822a92bc11d2 2313
mjr 74:822a92bc11d2 2314 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 2315 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 2316 Timer wizCycleTimer;
mjr 74:822a92bc11d2 2317
mjr 76:7f5912b6340e 2318 // timing statistics for wizPulse()
mjr 76:7f5912b6340e 2319 uint64_t wizPulseTotalTime, wizPulseRunCount;
mjr 76:7f5912b6340e 2320
mjr 76:7f5912b6340e 2321 // LedWiz flash timer pulse. The main loop calls this on each cycle
mjr 76:7f5912b6340e 2322 // to update outputs using LedWiz flash modes. We do one bank of 32
mjr 76:7f5912b6340e 2323 // outputs on each cycle.
mjr 29:582472d0bc57 2324 static void wizPulse()
mjr 29:582472d0bc57 2325 {
mjr 76:7f5912b6340e 2326 // current bank
mjr 76:7f5912b6340e 2327 static int wizPulseBank = 0;
mjr 76:7f5912b6340e 2328
mjr 76:7f5912b6340e 2329 // start a timer for statistics collection
mjr 76:7f5912b6340e 2330 IF_DIAG(
mjr 76:7f5912b6340e 2331 Timer t;
mjr 76:7f5912b6340e 2332 t.start();
mjr 76:7f5912b6340e 2333 )
mjr 76:7f5912b6340e 2334
mjr 76:7f5912b6340e 2335 // Update the current bank's cycle counter: figure the current
mjr 76:7f5912b6340e 2336 // phase of the LedWiz pulse cycle for this bank.
mjr 76:7f5912b6340e 2337 //
mjr 76:7f5912b6340e 2338 // The LedWiz speed setting gives the flash period in 0.25s units
mjr 76:7f5912b6340e 2339 // (speed 1 is a flash period of .25s, speed 7 is a period of 1.75s).
mjr 76:7f5912b6340e 2340 //
mjr 76:7f5912b6340e 2341 // What we're after here is the "phase", which is to say the point
mjr 76:7f5912b6340e 2342 // in the current cycle. If we assume that the cycle has been running
mjr 76:7f5912b6340e 2343 // continuously since some arbitrary time zero in the past, we can
mjr 76:7f5912b6340e 2344 // figure where we are in the current cycle by dividing the time since
mjr 76:7f5912b6340e 2345 // that zero by the cycle period and taking the remainder. E.g., if
mjr 76:7f5912b6340e 2346 // the cycle time is 5 seconds, and the time since t-zero is 17 seconds,
mjr 76:7f5912b6340e 2347 // we divide 17 by 5 to get a remainder of 2. That says we're 2 seconds
mjr 76:7f5912b6340e 2348 // into the current 5-second cycle, or 2/5 of the way through the
mjr 76:7f5912b6340e 2349 // current cycle.
mjr 76:7f5912b6340e 2350 //
mjr 76:7f5912b6340e 2351 // We do this calculation on every iteration of the main loop, so we
mjr 76:7f5912b6340e 2352 // want it to be very fast. To streamline it, we'll use some tricky
mjr 76:7f5912b6340e 2353 // integer arithmetic. The result will be the same as the straightforward
mjr 76:7f5912b6340e 2354 // remainder and fraction calculation we just explained, but we'll get
mjr 76:7f5912b6340e 2355 // there by less-than-obvious means.
mjr 76:7f5912b6340e 2356 //
mjr 76:7f5912b6340e 2357 // Rather than finding the phase as a continuous quantity or floating
mjr 76:7f5912b6340e 2358 // point number, we'll quantize it. We'll divide each cycle into 256
mjr 76:7f5912b6340e 2359 // time units, or quanta. Each quantum is 1/256 of the cycle length,
mjr 76:7f5912b6340e 2360 // so for a 1-second cycle (LedWiz speed 4), each quantum is 1/256 of
mjr 76:7f5912b6340e 2361 // a second, or about 3.9ms. If we express the time since t-zero in
mjr 76:7f5912b6340e 2362 // these units, the time period of one cycle is exactly 256 units, so
mjr 76:7f5912b6340e 2363 // we can calculate our point in the cycle by taking the remainder of
mjr 76:7f5912b6340e 2364 // the time (in our funny units) divided by 256. The special thing
mjr 76:7f5912b6340e 2365 // about making the cycle time equal to 256 units is that "x % 256"
mjr 76:7f5912b6340e 2366 // is exactly the same as "x & 255", which is a much faster operation
mjr 76:7f5912b6340e 2367 // than division on ARM M0+: this CPU has no hardware DIVIDE operation,
mjr 76:7f5912b6340e 2368 // so an integer division takes about 5us. The bit mask operation, in
mjr 76:7f5912b6340e 2369 // contrast, takes only about 60ns - about 100x faster. 5us doesn't
mjr 76:7f5912b6340e 2370 // sound like much, but we do this on every main loop, so every little
mjr 76:7f5912b6340e 2371 // bit counts.
mjr 76:7f5912b6340e 2372 //
mjr 76:7f5912b6340e 2373 // The snag is that our system timer gives us the elapsed time in
mjr 76:7f5912b6340e 2374 // microseconds. We still need to convert this to our special quanta
mjr 76:7f5912b6340e 2375 // of 256 units per cycle. The straightforward way to do that is by
mjr 76:7f5912b6340e 2376 // dividing by (microseconds per quantum). E.g., for LedWiz speed 4,
mjr 76:7f5912b6340e 2377 // we decided that our quantum was 1/256 of a second, or 3906us, so
mjr 76:7f5912b6340e 2378 // dividing the current system time in microseconds by 3906 will give
mjr 76:7f5912b6340e 2379 // us the time in our quantum units. But now we've just substituted
mjr 76:7f5912b6340e 2380 // one division for another!
mjr 76:7f5912b6340e 2381 //
mjr 76:7f5912b6340e 2382 // This is where our really tricky integer math comes in. Dividing
mjr 76:7f5912b6340e 2383 // by X is the same as multiplying by 1/X. In integer math, 1/3906
mjr 76:7f5912b6340e 2384 // is zero, so that won't work. But we can get around that by doing
mjr 76:7f5912b6340e 2385 // the integer math as "fixed point" arithmetic instead. It's still
mjr 76:7f5912b6340e 2386 // actually carried out as integer operations, but we'll scale our
mjr 76:7f5912b6340e 2387 // integers by a scaling factor, then take out the scaling factor
mjr 76:7f5912b6340e 2388 // later to get the final result. The scaling factor we'll use is
mjr 76:7f5912b6340e 2389 // 2^24. So we're going to calculate (time * 2^24/3906), then divide
mjr 76:7f5912b6340e 2390 // the result by 2^24 to get the final answer. I know it seems like
mjr 76:7f5912b6340e 2391 // we're substituting one division for another yet again, but this
mjr 76:7f5912b6340e 2392 // time's the charm, because dividing by 2^24 is a bit shift operation,
mjr 76:7f5912b6340e 2393 // which is another single-cycle operation on M0+. You might also
mjr 76:7f5912b6340e 2394 // wonder how all these tricks don't cause overflows or underflows
mjr 76:7f5912b6340e 2395 // or what not. Well, the multiply by 2^24/3906 will cause an
mjr 76:7f5912b6340e 2396 // overflow, but we don't care, because the overflow will all be in
mjr 76:7f5912b6340e 2397 // the high-order bits that we're going to discard in the final
mjr 76:7f5912b6340e 2398 // remainder calculation anyway.
mjr 76:7f5912b6340e 2399 //
mjr 76:7f5912b6340e 2400 // Each entry in the array below represents 2^24/N for the corresponding
mjr 76:7f5912b6340e 2401 // LedWiz speed, where N is the number of time quanta per cycle at that
mjr 76:7f5912b6340e 2402 // speed. The time quanta are chosen such that 256 quanta add up to
mjr 76:7f5912b6340e 2403 // approximately (LedWiz speed setting * 0.25s).
mjr 76:7f5912b6340e 2404 //
mjr 76:7f5912b6340e 2405 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 76:7f5912b6340e 2406 // to get the final result mod 256. But we don't have to actually
mjr 76:7f5912b6340e 2407 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 76:7f5912b6340e 2408 // point base (X in the narrative above). The final shift right by
mjr 76:7f5912b6340e 2409 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 76:7f5912b6340e 2410 // the result, since we started with 32.
mjr 76:7f5912b6340e 2411 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 76:7f5912b6340e 2412 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 76:7f5912b6340e 2413 };
mjr 76:7f5912b6340e 2414 int counter = ((wizCycleTimer.read_us() * inv_us_per_quantum[wizSpeed[wizPulseBank]]) >> 24);
mjr 76:7f5912b6340e 2415
mjr 76:7f5912b6340e 2416 // get the range of 32 output sin this bank
mjr 76:7f5912b6340e 2417 int fromPort = wizPulseBank*32;
mjr 76:7f5912b6340e 2418 int toPort = fromPort+32;
mjr 76:7f5912b6340e 2419 if (toPort > numOutputs)
mjr 76:7f5912b6340e 2420 toPort = numOutputs;
mjr 76:7f5912b6340e 2421
mjr 76:7f5912b6340e 2422 // update all outputs set to flashing values
mjr 76:7f5912b6340e 2423 for (int i = fromPort ; i < toPort ; ++i)
mjr 73:4e8ce0b18915 2424 {
mjr 76:7f5912b6340e 2425 // Update the port only if the LedWiz SBA switch for the port is on
mjr 76:7f5912b6340e 2426 // (wizOn[i]) AND the port is a PBA flash mode in the range 129..132.
mjr 76:7f5912b6340e 2427 // These modes and only these modes have the high bit (0x80) set, so
mjr 76:7f5912b6340e 2428 // we can test for them simply by testing the high bit.
mjr 76:7f5912b6340e 2429 if (wizOn[i])
mjr 29:582472d0bc57 2430 {
mjr 76:7f5912b6340e 2431 uint8_t val = wizVal[i];
mjr 76:7f5912b6340e 2432 if ((val & 0x80) != 0)
mjr 29:582472d0bc57 2433 {
mjr 76:7f5912b6340e 2434 // ook up the value for the mode at the cycle time
mjr 76:7f5912b6340e 2435 lwPin[i]->set(outLevel[i] = wizFlashLookup[((val-129) << 8) + counter]);
mjr 29:582472d0bc57 2436 }
mjr 29:582472d0bc57 2437 }
mjr 76:7f5912b6340e 2438 }
mjr 76:7f5912b6340e 2439
mjr 34:6b981a2afab7 2440 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 2441 if (hc595 != 0)
mjr 35:e959ffba78fd 2442 hc595->update();
mjr 76:7f5912b6340e 2443
mjr 76:7f5912b6340e 2444 // switch to the next bank
mjr 76:7f5912b6340e 2445 if (++wizPulseBank >= MAX_LW_BANKS)
mjr 76:7f5912b6340e 2446 wizPulseBank = 0;
mjr 76:7f5912b6340e 2447
mjr 76:7f5912b6340e 2448 // collect timing statistics
mjr 76:7f5912b6340e 2449 IF_DIAG(
mjr 76:7f5912b6340e 2450 wizPulseTotalTime += t.read_us();
mjr 76:7f5912b6340e 2451 wizPulseRunCount += 1;
mjr 76:7f5912b6340e 2452 )
mjr 1:d913e0afb2ac 2453 }
mjr 38:091e511ce8a0 2454
mjr 76:7f5912b6340e 2455 // Update a port to reflect its new LedWiz SBA+PBA setting.
mjr 76:7f5912b6340e 2456 static void updateLwPort(int port)
mjr 38:091e511ce8a0 2457 {
mjr 76:7f5912b6340e 2458 // check if the SBA switch is on or off
mjr 76:7f5912b6340e 2459 if (wizOn[port])
mjr 76:7f5912b6340e 2460 {
mjr 76:7f5912b6340e 2461 // It's on. If the port is a valid static brightness level,
mjr 76:7f5912b6340e 2462 // set the output port to match. Otherwise leave it as is:
mjr 76:7f5912b6340e 2463 // if it's a flashing mode, the flash mode pulse will update
mjr 76:7f5912b6340e 2464 // it on the next cycle.
mjr 76:7f5912b6340e 2465 int val = wizVal[port];
mjr 76:7f5912b6340e 2466 if (val <= 49)
mjr 76:7f5912b6340e 2467 lwPin[port]->set(outLevel[port] = lw_to_dof[val]);
mjr 76:7f5912b6340e 2468 }
mjr 76:7f5912b6340e 2469 else
mjr 76:7f5912b6340e 2470 {
mjr 76:7f5912b6340e 2471 // the port is off - set absolute brightness zero
mjr 76:7f5912b6340e 2472 lwPin[port]->set(outLevel[port] = 0);
mjr 76:7f5912b6340e 2473 }
mjr 73:4e8ce0b18915 2474 }
mjr 73:4e8ce0b18915 2475
mjr 73:4e8ce0b18915 2476 // Turn off all outputs and restore everything to the default LedWiz
mjr 92:f264fbaa1be5 2477 // state. This sets all outputs to LedWiz profile value 48 (full
mjr 92:f264fbaa1be5 2478 // brightness) and switch state Off, and sets the LedWiz flash rate
mjr 92:f264fbaa1be5 2479 // to 2. This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 2480 //
mjr 73:4e8ce0b18915 2481 void allOutputsOff()
mjr 73:4e8ce0b18915 2482 {
mjr 92:f264fbaa1be5 2483 // reset all outputs to OFF/48
mjr 73:4e8ce0b18915 2484 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 2485 {
mjr 73:4e8ce0b18915 2486 outLevel[i] = 0;
mjr 73:4e8ce0b18915 2487 wizOn[i] = 0;
mjr 73:4e8ce0b18915 2488 wizVal[i] = 48;
mjr 73:4e8ce0b18915 2489 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 2490 }
mjr 73:4e8ce0b18915 2491
mjr 73:4e8ce0b18915 2492 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 2493 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 2494 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 2495
mjr 73:4e8ce0b18915 2496 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 2497 if (hc595 != 0)
mjr 38:091e511ce8a0 2498 hc595->update();
mjr 38:091e511ce8a0 2499 }
mjr 38:091e511ce8a0 2500
mjr 74:822a92bc11d2 2501 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 2502 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 2503 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 2504 // address any port group.
mjr 74:822a92bc11d2 2505 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 2506 {
mjr 76:7f5912b6340e 2507 // update all on/off states in the group
mjr 74:822a92bc11d2 2508 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 2509 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 2510 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 2511 {
mjr 74:822a92bc11d2 2512 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 2513 if (bit == 0x100) {
mjr 74:822a92bc11d2 2514 bit = 1;
mjr 74:822a92bc11d2 2515 ++imsg;
mjr 74:822a92bc11d2 2516 }
mjr 74:822a92bc11d2 2517
mjr 74:822a92bc11d2 2518 // set the on/off state
mjr 76:7f5912b6340e 2519 bool on = wizOn[port] = ((data[imsg] & bit) != 0);
mjr 76:7f5912b6340e 2520
mjr 76:7f5912b6340e 2521 // set the output port brightness to match the new setting
mjr 76:7f5912b6340e 2522 updateLwPort(port);
mjr 74:822a92bc11d2 2523 }
mjr 74:822a92bc11d2 2524
mjr 74:822a92bc11d2 2525 // set the flash speed for the port group
mjr 74:822a92bc11d2 2526 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 2527 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 2528
mjr 76:7f5912b6340e 2529 // update 74HC959 outputs
mjr 76:7f5912b6340e 2530 if (hc595 != 0)
mjr 76:7f5912b6340e 2531 hc595->update();
mjr 74:822a92bc11d2 2532 }
mjr 74:822a92bc11d2 2533
mjr 74:822a92bc11d2 2534 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 2535 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 2536 {
mjr 74:822a92bc11d2 2537 // update each wizVal entry from the brightness data
mjr 76:7f5912b6340e 2538 for (int i = 0, port = basePort ; i < 8 && port < numOutputs ; ++i, ++port)
mjr 74:822a92bc11d2 2539 {
mjr 74:822a92bc11d2 2540 // get the value
mjr 74:822a92bc11d2 2541 uint8_t v = data[i];
mjr 74:822a92bc11d2 2542
mjr 74:822a92bc11d2 2543 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 2544 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 2545 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 2546 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 2547 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 2548 // as such.
mjr 74:822a92bc11d2 2549 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 2550 v = 48;
mjr 74:822a92bc11d2 2551
mjr 74:822a92bc11d2 2552 // store it
mjr 76:7f5912b6340e 2553 wizVal[port] = v;
mjr 76:7f5912b6340e 2554
mjr 76:7f5912b6340e 2555 // update the port
mjr 76:7f5912b6340e 2556 updateLwPort(port);
mjr 74:822a92bc11d2 2557 }
mjr 74:822a92bc11d2 2558
mjr 76:7f5912b6340e 2559 // update 74HC595 outputs
mjr 76:7f5912b6340e 2560 if (hc595 != 0)
mjr 76:7f5912b6340e 2561 hc595->update();
mjr 74:822a92bc11d2 2562 }
mjr 74:822a92bc11d2 2563
mjr 77:0b96f6867312 2564 // ---------------------------------------------------------------------------
mjr 77:0b96f6867312 2565 //
mjr 77:0b96f6867312 2566 // IR Remote Control transmitter & receiver
mjr 77:0b96f6867312 2567 //
mjr 77:0b96f6867312 2568
mjr 77:0b96f6867312 2569 // receiver
mjr 77:0b96f6867312 2570 IRReceiver *ir_rx;
mjr 77:0b96f6867312 2571
mjr 77:0b96f6867312 2572 // transmitter
mjr 77:0b96f6867312 2573 IRTransmitter *ir_tx;
mjr 77:0b96f6867312 2574
mjr 77:0b96f6867312 2575 // Mapping from IR commands slots in the configuration to "virtual button"
mjr 77:0b96f6867312 2576 // numbers on the IRTransmitter's "virtual remote". To minimize RAM usage,
mjr 77:0b96f6867312 2577 // we only create virtual buttons on the transmitter object for code slots
mjr 77:0b96f6867312 2578 // that are configured for transmission, which includes slots used for TV
mjr 77:0b96f6867312 2579 // ON commands and slots that can be triggered by button presses. This
mjr 77:0b96f6867312 2580 // means that virtual button numbers won't necessarily match the config
mjr 77:0b96f6867312 2581 // slot numbers. This table provides the mapping:
mjr 77:0b96f6867312 2582 // IRConfigSlotToVirtualButton[n] = ir_tx virtual button number for
mjr 77:0b96f6867312 2583 // configuration slot n
mjr 77:0b96f6867312 2584 uint8_t IRConfigSlotToVirtualButton[MAX_IR_CODES];
mjr 78:1e00b3fa11af 2585
mjr 78:1e00b3fa11af 2586 // IR transmitter virtual button number for ad hoc IR command. We allocate
mjr 78:1e00b3fa11af 2587 // one virtual button for sending ad hoc IR codes, such as through the USB
mjr 78:1e00b3fa11af 2588 // protocol.
mjr 78:1e00b3fa11af 2589 uint8_t IRAdHocBtn;
mjr 78:1e00b3fa11af 2590
mjr 78:1e00b3fa11af 2591 // Staging area for ad hoc IR commands. It takes multiple messages
mjr 78:1e00b3fa11af 2592 // to fill out an IR command, so we store the partial command here
mjr 78:1e00b3fa11af 2593 // while waiting for the rest.
mjr 78:1e00b3fa11af 2594 static struct
mjr 78:1e00b3fa11af 2595 {
mjr 78:1e00b3fa11af 2596 uint8_t protocol; // protocol ID
mjr 78:1e00b3fa11af 2597 uint64_t code; // code
mjr 78:1e00b3fa11af 2598 uint8_t dittos : 1; // using dittos?
mjr 78:1e00b3fa11af 2599 uint8_t ready : 1; // do we have a code ready to transmit?
mjr 78:1e00b3fa11af 2600 } IRAdHocCmd;
mjr 88:98bce687e6c0 2601
mjr 77:0b96f6867312 2602
mjr 77:0b96f6867312 2603 // IR mode timer. In normal mode, this is the time since the last
mjr 77:0b96f6867312 2604 // command received; we use this to handle commands with timed effects,
mjr 77:0b96f6867312 2605 // such as sending a key to the PC. In learning mode, this is the time
mjr 77:0b96f6867312 2606 // since we activated learning mode, which we use to automatically end
mjr 77:0b96f6867312 2607 // learning mode if a decodable command isn't received within a reasonable
mjr 77:0b96f6867312 2608 // amount of time.
mjr 77:0b96f6867312 2609 Timer IRTimer;
mjr 77:0b96f6867312 2610
mjr 77:0b96f6867312 2611 // IR Learning Mode. The PC enters learning mode via special function 65 12.
mjr 77:0b96f6867312 2612 // The states are:
mjr 77:0b96f6867312 2613 //
mjr 77:0b96f6867312 2614 // 0 -> normal operation (not in learning mode)
mjr 77:0b96f6867312 2615 // 1 -> learning mode; reading raw codes, no command read yet
mjr 77:0b96f6867312 2616 // 2 -> learning mode; command received, awaiting auto-repeat
mjr 77:0b96f6867312 2617 // 3 -> learning mode; done, command and repeat mode decoded
mjr 77:0b96f6867312 2618 //
mjr 77:0b96f6867312 2619 // When we enter learning mode, we reset IRTimer to keep track of how long
mjr 77:0b96f6867312 2620 // we've been in the mode. This allows the mode to time out if no code is
mjr 77:0b96f6867312 2621 // received within a reasonable time.
mjr 77:0b96f6867312 2622 uint8_t IRLearningMode = 0;
mjr 77:0b96f6867312 2623
mjr 77:0b96f6867312 2624 // Learning mode command received. This stores the first decoded command
mjr 77:0b96f6867312 2625 // when in learning mode. For some protocols, we can't just report the
mjr 77:0b96f6867312 2626 // first command we receive, because we need to wait for an auto-repeat to
mjr 77:0b96f6867312 2627 // determine what format the remote uses for repeats. This stores the first
mjr 77:0b96f6867312 2628 // command while we await a repeat. This is necessary for protocols that
mjr 77:0b96f6867312 2629 // have "dittos", since some remotes for such protocols use the dittos and
mjr 77:0b96f6867312 2630 // some don't; the only way to find out is to read a repeat code and see if
mjr 77:0b96f6867312 2631 // it's a ditto or just a repeat of the full code.
mjr 77:0b96f6867312 2632 IRCommand learnedIRCode;
mjr 77:0b96f6867312 2633
mjr 78:1e00b3fa11af 2634 // IR command received, as a config slot index, 1..MAX_IR_CODES.
mjr 77:0b96f6867312 2635 // When we receive a command that matches one of our programmed commands,
mjr 77:0b96f6867312 2636 // we note the slot here. We also reset the IR timer so that we know how
mjr 77:0b96f6867312 2637 // long it's been since the command came in. This lets us handle commands
mjr 77:0b96f6867312 2638 // with timed effects, such as PC key input. Note that this is a 1-based
mjr 77:0b96f6867312 2639 // index; 0 represents no command.
mjr 77:0b96f6867312 2640 uint8_t IRCommandIn = 0;
mjr 77:0b96f6867312 2641
mjr 77:0b96f6867312 2642 // "Toggle bit" of last command. Some IR protocols have a toggle bit
mjr 77:0b96f6867312 2643 // that distinguishes an auto-repeating key from a key being pressed
mjr 77:0b96f6867312 2644 // several times in a row. This records the toggle bit of the last
mjr 77:0b96f6867312 2645 // command we received.
mjr 77:0b96f6867312 2646 uint8_t lastIRToggle = 0;
mjr 77:0b96f6867312 2647
mjr 77:0b96f6867312 2648 // Are we in a gap between successive key presses? When we detect that a
mjr 77:0b96f6867312 2649 // key is being pressed multiple times rather than auto-repeated (which we
mjr 77:0b96f6867312 2650 // can detect via a toggle bit in some protocols), we'll briefly stop sending
mjr 77:0b96f6867312 2651 // the associated key to the PC, so that the PC likewise recognizes the
mjr 77:0b96f6867312 2652 // distinct key press.
mjr 77:0b96f6867312 2653 uint8_t IRKeyGap = false;
mjr 77:0b96f6867312 2654
mjr 78:1e00b3fa11af 2655
mjr 77:0b96f6867312 2656 // initialize
mjr 77:0b96f6867312 2657 void init_IR(Config &cfg, bool &kbKeys)
mjr 77:0b96f6867312 2658 {
mjr 77:0b96f6867312 2659 PinName pin;
mjr 77:0b96f6867312 2660
mjr 77:0b96f6867312 2661 // start the IR timer
mjr 77:0b96f6867312 2662 IRTimer.start();
mjr 77:0b96f6867312 2663
mjr 77:0b96f6867312 2664 // if there's a transmitter, set it up
mjr 77:0b96f6867312 2665 if ((pin = wirePinName(cfg.IR.emitter)) != NC)
mjr 77:0b96f6867312 2666 {
mjr 77:0b96f6867312 2667 // no virtual buttons yet
mjr 77:0b96f6867312 2668 int nVirtualButtons = 0;
mjr 77:0b96f6867312 2669 memset(IRConfigSlotToVirtualButton, 0xFF, sizeof(IRConfigSlotToVirtualButton));
mjr 77:0b96f6867312 2670
mjr 77:0b96f6867312 2671 // assign virtual buttons slots for TV ON codes
mjr 77:0b96f6867312 2672 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2673 {
mjr 77:0b96f6867312 2674 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 2675 IRConfigSlotToVirtualButton[i] = nVirtualButtons++;
mjr 77:0b96f6867312 2676 }
mjr 77:0b96f6867312 2677
mjr 77:0b96f6867312 2678 // assign virtual buttons for codes that can be triggered by
mjr 77:0b96f6867312 2679 // real button inputs
mjr 77:0b96f6867312 2680 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 77:0b96f6867312 2681 {
mjr 77:0b96f6867312 2682 // get the button
mjr 77:0b96f6867312 2683 ButtonCfg &b = cfg.button[i];
mjr 77:0b96f6867312 2684
mjr 77:0b96f6867312 2685 // check the unshifted button
mjr 77:0b96f6867312 2686 int c = b.IRCommand - 1;
mjr 77:0b96f6867312 2687 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2688 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2689 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2690
mjr 77:0b96f6867312 2691 // check the shifted button
mjr 77:0b96f6867312 2692 c = b.IRCommand2 - 1;
mjr 77:0b96f6867312 2693 if (c >= 0 && c < MAX_IR_CODES
mjr 77:0b96f6867312 2694 && IRConfigSlotToVirtualButton[c] == 0xFF)
mjr 77:0b96f6867312 2695 IRConfigSlotToVirtualButton[c] = nVirtualButtons++;
mjr 77:0b96f6867312 2696 }
mjr 77:0b96f6867312 2697
mjr 77:0b96f6867312 2698 // allocate an additional virtual button for transmitting ad hoc
mjr 77:0b96f6867312 2699 // codes, such as for the "send code" USB API function
mjr 78:1e00b3fa11af 2700 IRAdHocBtn = nVirtualButtons++;
mjr 77:0b96f6867312 2701
mjr 77:0b96f6867312 2702 // create the transmitter
mjr 77:0b96f6867312 2703 ir_tx = new IRTransmitter(pin, nVirtualButtons);
mjr 77:0b96f6867312 2704
mjr 77:0b96f6867312 2705 // program the commands into the virtual button slots
mjr 77:0b96f6867312 2706 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2707 {
mjr 77:0b96f6867312 2708 // if this slot is assigned to a virtual button, program it
mjr 77:0b96f6867312 2709 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 2710 if (vb != 0xFF)
mjr 77:0b96f6867312 2711 {
mjr 77:0b96f6867312 2712 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2713 uint64_t code = cb.code.lo | (uint64_t(cb.code.hi) << 32);
mjr 77:0b96f6867312 2714 bool dittos = (cb.flags & IRFlagDittos) != 0;
mjr 77:0b96f6867312 2715 ir_tx->programButton(vb, cb.protocol, dittos, code);
mjr 77:0b96f6867312 2716 }
mjr 77:0b96f6867312 2717 }
mjr 77:0b96f6867312 2718 }
mjr 77:0b96f6867312 2719
mjr 77:0b96f6867312 2720 // if there's a receiver, set it up
mjr 77:0b96f6867312 2721 if ((pin = wirePinName(cfg.IR.sensor)) != NC)
mjr 77:0b96f6867312 2722 {
mjr 77:0b96f6867312 2723 // create the receiver
mjr 77:0b96f6867312 2724 ir_rx = new IRReceiver(pin, 32);
mjr 77:0b96f6867312 2725
mjr 77:0b96f6867312 2726 // connect the transmitter (if any) to the receiver, so that
mjr 77:0b96f6867312 2727 // the receiver can suppress reception of our own transmissions
mjr 77:0b96f6867312 2728 ir_rx->setTransmitter(ir_tx);
mjr 77:0b96f6867312 2729
mjr 77:0b96f6867312 2730 // enable it
mjr 77:0b96f6867312 2731 ir_rx->enable();
mjr 77:0b96f6867312 2732
mjr 77:0b96f6867312 2733 // Check the IR command slots to see if any slots are configured
mjr 77:0b96f6867312 2734 // to send a keyboard key on receiving an IR command. If any are,
mjr 77:0b96f6867312 2735 // tell the caller that we need a USB keyboard interface.
mjr 77:0b96f6867312 2736 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 2737 {
mjr 77:0b96f6867312 2738 IRCommandCfg &cb = cfg.IRCommand[i];
mjr 77:0b96f6867312 2739 if (cb.protocol != 0
mjr 77:0b96f6867312 2740 && (cb.keytype == BtnTypeKey || cb.keytype == BtnTypeMedia))
mjr 77:0b96f6867312 2741 {
mjr 77:0b96f6867312 2742 kbKeys = true;
mjr 77:0b96f6867312 2743 break;
mjr 77:0b96f6867312 2744 }
mjr 77:0b96f6867312 2745 }
mjr 77:0b96f6867312 2746 }
mjr 77:0b96f6867312 2747 }
mjr 77:0b96f6867312 2748
mjr 77:0b96f6867312 2749 // Press or release a button with an assigned IR function. 'cmd'
mjr 77:0b96f6867312 2750 // is the command slot number (1..MAX_IR_CODES) assigned to the button.
mjr 77:0b96f6867312 2751 void IR_buttonChange(uint8_t cmd, bool pressed)
mjr 77:0b96f6867312 2752 {
mjr 77:0b96f6867312 2753 // only proceed if there's an IR transmitter attached
mjr 77:0b96f6867312 2754 if (ir_tx != 0)
mjr 77:0b96f6867312 2755 {
mjr 77:0b96f6867312 2756 // adjust the command slot to a zero-based index
mjr 77:0b96f6867312 2757 int slot = cmd - 1;
mjr 77:0b96f6867312 2758
mjr 77:0b96f6867312 2759 // press or release the virtual button
mjr 77:0b96f6867312 2760 ir_tx->pushButton(IRConfigSlotToVirtualButton[slot], pressed);
mjr 77:0b96f6867312 2761 }
mjr 77:0b96f6867312 2762 }
mjr 77:0b96f6867312 2763
mjr 78:1e00b3fa11af 2764 // Process IR input and output
mjr 77:0b96f6867312 2765 void process_IR(Config &cfg, USBJoystick &js)
mjr 77:0b96f6867312 2766 {
mjr 78:1e00b3fa11af 2767 // check for transmitter tasks, if there's a transmitter
mjr 78:1e00b3fa11af 2768 if (ir_tx != 0)
mjr 77:0b96f6867312 2769 {
mjr 78:1e00b3fa11af 2770 // If we're not currently sending, and an ad hoc IR command
mjr 78:1e00b3fa11af 2771 // is ready to send, send it.
mjr 78:1e00b3fa11af 2772 if (!ir_tx->isSending() && IRAdHocCmd.ready)
mjr 78:1e00b3fa11af 2773 {
mjr 78:1e00b3fa11af 2774 // program the command into the transmitter virtual button
mjr 78:1e00b3fa11af 2775 // that we reserved for ad hoc commands
mjr 78:1e00b3fa11af 2776 ir_tx->programButton(IRAdHocBtn, IRAdHocCmd.protocol,
mjr 78:1e00b3fa11af 2777 IRAdHocCmd.dittos, IRAdHocCmd.code);
mjr 78:1e00b3fa11af 2778
mjr 78:1e00b3fa11af 2779 // send the command - just pulse the button to send it once
mjr 78:1e00b3fa11af 2780 ir_tx->pushButton(IRAdHocBtn, true);
mjr 78:1e00b3fa11af 2781 ir_tx->pushButton(IRAdHocBtn, false);
mjr 78:1e00b3fa11af 2782
mjr 78:1e00b3fa11af 2783 // we've sent the command, so clear the 'ready' flag
mjr 78:1e00b3fa11af 2784 IRAdHocCmd.ready = false;
mjr 78:1e00b3fa11af 2785 }
mjr 77:0b96f6867312 2786 }
mjr 78:1e00b3fa11af 2787
mjr 78:1e00b3fa11af 2788 // check for receiver tasks, if there's a receiver
mjr 78:1e00b3fa11af 2789 if (ir_rx != 0)
mjr 77:0b96f6867312 2790 {
mjr 78:1e00b3fa11af 2791 // Time out any received command
mjr 78:1e00b3fa11af 2792 if (IRCommandIn != 0)
mjr 78:1e00b3fa11af 2793 {
mjr 80:94dc2946871b 2794 // Time out commands after 200ms without a repeat signal.
mjr 80:94dc2946871b 2795 // Time out the inter-key gap after 50ms.
mjr 78:1e00b3fa11af 2796 uint32_t t = IRTimer.read_us();
mjr 80:94dc2946871b 2797 if (t > 200000)
mjr 78:1e00b3fa11af 2798 IRCommandIn = 0;
mjr 80:94dc2946871b 2799 else if (t > 50000)
mjr 78:1e00b3fa11af 2800 IRKeyGap = false;
mjr 78:1e00b3fa11af 2801 }
mjr 78:1e00b3fa11af 2802
mjr 78:1e00b3fa11af 2803 // Check if we're in learning mode
mjr 78:1e00b3fa11af 2804 if (IRLearningMode != 0)
mjr 78:1e00b3fa11af 2805 {
mjr 78:1e00b3fa11af 2806 // Learning mode. Read raw inputs from the IR sensor and
mjr 78:1e00b3fa11af 2807 // forward them to the PC via USB reports, up to the report
mjr 78:1e00b3fa11af 2808 // limit.
mjr 78:1e00b3fa11af 2809 const int nmax = USBJoystick::maxRawIR;
mjr 78:1e00b3fa11af 2810 uint16_t raw[nmax];
mjr 78:1e00b3fa11af 2811 int n;
mjr 78:1e00b3fa11af 2812 for (n = 0 ; n < nmax && ir_rx->processOne(raw[n]) ; ++n) ;
mjr 77:0b96f6867312 2813
mjr 78:1e00b3fa11af 2814 // if we read any raw samples, report them
mjr 78:1e00b3fa11af 2815 if (n != 0)
mjr 78:1e00b3fa11af 2816 js.reportRawIR(n, raw);
mjr 77:0b96f6867312 2817
mjr 78:1e00b3fa11af 2818 // check for a command
mjr 78:1e00b3fa11af 2819 IRCommand c;
mjr 78:1e00b3fa11af 2820 if (ir_rx->readCommand(c))
mjr 78:1e00b3fa11af 2821 {
mjr 78:1e00b3fa11af 2822 // check the current learning state
mjr 78:1e00b3fa11af 2823 switch (IRLearningMode)
mjr 78:1e00b3fa11af 2824 {
mjr 78:1e00b3fa11af 2825 case 1:
mjr 78:1e00b3fa11af 2826 // Initial state, waiting for the first decoded command.
mjr 78:1e00b3fa11af 2827 // This is it.
mjr 78:1e00b3fa11af 2828 learnedIRCode = c;
mjr 78:1e00b3fa11af 2829
mjr 78:1e00b3fa11af 2830 // Check if we need additional information. If the
mjr 78:1e00b3fa11af 2831 // protocol supports dittos, we have to wait for a repeat
mjr 78:1e00b3fa11af 2832 // to see if the remote actually uses the dittos, since
mjr 78:1e00b3fa11af 2833 // some implementations of such protocols use the dittos
mjr 78:1e00b3fa11af 2834 // while others just send repeated full codes. Otherwise,
mjr 78:1e00b3fa11af 2835 // all we need is the initial code, so we're done.
mjr 78:1e00b3fa11af 2836 IRLearningMode = (c.hasDittos ? 2 : 3);
mjr 78:1e00b3fa11af 2837 break;
mjr 78:1e00b3fa11af 2838
mjr 78:1e00b3fa11af 2839 case 2:
mjr 78:1e00b3fa11af 2840 // Code received, awaiting auto-repeat information. If
mjr 78:1e00b3fa11af 2841 // the protocol has dittos, check to see if we got a ditto:
mjr 78:1e00b3fa11af 2842 //
mjr 78:1e00b3fa11af 2843 // - If we received a ditto in the same protocol as the
mjr 78:1e00b3fa11af 2844 // prior command, the remote uses dittos.
mjr 78:1e00b3fa11af 2845 //
mjr 78:1e00b3fa11af 2846 // - If we received a repeat of the prior command (not a
mjr 78:1e00b3fa11af 2847 // ditto, but a repeat of the full code), the remote
mjr 78:1e00b3fa11af 2848 // doesn't use dittos even though the protocol supports
mjr 78:1e00b3fa11af 2849 // them.
mjr 78:1e00b3fa11af 2850 //
mjr 78:1e00b3fa11af 2851 // - Otherwise, it's not an auto-repeat at all, so we
mjr 78:1e00b3fa11af 2852 // can't decide one way or the other on dittos: start
mjr 78:1e00b3fa11af 2853 // over.
mjr 78:1e00b3fa11af 2854 if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2855 && c.hasDittos
mjr 78:1e00b3fa11af 2856 && c.ditto)
mjr 78:1e00b3fa11af 2857 {
mjr 78:1e00b3fa11af 2858 // success - the remote uses dittos
mjr 78:1e00b3fa11af 2859 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2860 }
mjr 78:1e00b3fa11af 2861 else if (c.proId == learnedIRCode.proId
mjr 78:1e00b3fa11af 2862 && c.hasDittos
mjr 78:1e00b3fa11af 2863 && !c.ditto
mjr 78:1e00b3fa11af 2864 && c.code == learnedIRCode.code)
mjr 78:1e00b3fa11af 2865 {
mjr 78:1e00b3fa11af 2866 // success - it's a repeat of the last code, so
mjr 78:1e00b3fa11af 2867 // the remote doesn't use dittos even though the
mjr 78:1e00b3fa11af 2868 // protocol supports them
mjr 78:1e00b3fa11af 2869 learnedIRCode.hasDittos = false;
mjr 78:1e00b3fa11af 2870 IRLearningMode = 3;
mjr 78:1e00b3fa11af 2871 }
mjr 78:1e00b3fa11af 2872 else
mjr 78:1e00b3fa11af 2873 {
mjr 78:1e00b3fa11af 2874 // It's not a ditto and not a full repeat of the
mjr 78:1e00b3fa11af 2875 // last code, so it's either a new key, or some kind
mjr 78:1e00b3fa11af 2876 // of multi-code key encoding that we don't recognize.
mjr 78:1e00b3fa11af 2877 // We can't use this code, so start over.
mjr 78:1e00b3fa11af 2878 IRLearningMode = 1;
mjr 78:1e00b3fa11af 2879 }
mjr 78:1e00b3fa11af 2880 break;
mjr 78:1e00b3fa11af 2881 }
mjr 77:0b96f6867312 2882
mjr 78:1e00b3fa11af 2883 // If we ended in state 3, we've successfully decoded
mjr 78:1e00b3fa11af 2884 // the transmission. Report the decoded data and terminate
mjr 78:1e00b3fa11af 2885 // learning mode.
mjr 78:1e00b3fa11af 2886 if (IRLearningMode == 3)
mjr 77:0b96f6867312 2887 {
mjr 78:1e00b3fa11af 2888 // figure the flags:
mjr 78:1e00b3fa11af 2889 // 0x02 -> dittos
mjr 78:1e00b3fa11af 2890 uint8_t flags = 0;
mjr 78:1e00b3fa11af 2891 if (learnedIRCode.hasDittos)
mjr 78:1e00b3fa11af 2892 flags |= 0x02;
mjr 78:1e00b3fa11af 2893
mjr 78:1e00b3fa11af 2894 // report the code
mjr 78:1e00b3fa11af 2895 js.reportIRCode(learnedIRCode.proId, flags, learnedIRCode.code);
mjr 78:1e00b3fa11af 2896
mjr 78:1e00b3fa11af 2897 // exit learning mode
mjr 78:1e00b3fa11af 2898 IRLearningMode = 0;
mjr 77:0b96f6867312 2899 }
mjr 77:0b96f6867312 2900 }
mjr 77:0b96f6867312 2901
mjr 78:1e00b3fa11af 2902 // time out of IR learning mode if it's been too long
mjr 78:1e00b3fa11af 2903 if (IRLearningMode != 0 && IRTimer.read_us() > 10000000L)
mjr 77:0b96f6867312 2904 {
mjr 78:1e00b3fa11af 2905 // report the termination by sending a raw IR report with
mjr 78:1e00b3fa11af 2906 // zero data elements
mjr 78:1e00b3fa11af 2907 js.reportRawIR(0, 0);
mjr 78:1e00b3fa11af 2908
mjr 78:1e00b3fa11af 2909
mjr 78:1e00b3fa11af 2910 // cancel learning mode
mjr 77:0b96f6867312 2911 IRLearningMode = 0;
mjr 77:0b96f6867312 2912 }
mjr 77:0b96f6867312 2913 }
mjr 78:1e00b3fa11af 2914 else
mjr 77:0b96f6867312 2915 {
mjr 78:1e00b3fa11af 2916 // Not in learning mode. We don't care about the raw signals;
mjr 78:1e00b3fa11af 2917 // just run them through the protocol decoders.
mjr 78:1e00b3fa11af 2918 ir_rx->process();
mjr 78:1e00b3fa11af 2919
mjr 78:1e00b3fa11af 2920 // Check for decoded commands. Keep going until all commands
mjr 78:1e00b3fa11af 2921 // have been read.
mjr 78:1e00b3fa11af 2922 IRCommand c;
mjr 78:1e00b3fa11af 2923 while (ir_rx->readCommand(c))
mjr 77:0b96f6867312 2924 {
mjr 78:1e00b3fa11af 2925 // We received a decoded command. Determine if it's a repeat,
mjr 78:1e00b3fa11af 2926 // and if so, try to determine whether it's an auto-repeat (due
mjr 78:1e00b3fa11af 2927 // to the remote key being held down) or a distinct new press
mjr 78:1e00b3fa11af 2928 // on the same key as last time. The distinction is significant
mjr 78:1e00b3fa11af 2929 // because it affects the auto-repeat behavior of the PC key
mjr 78:1e00b3fa11af 2930 // input. An auto-repeat represents a key being held down on
mjr 78:1e00b3fa11af 2931 // the remote, which we want to translate to a (virtual) key
mjr 78:1e00b3fa11af 2932 // being held down on the PC keyboard; a distinct key press on
mjr 78:1e00b3fa11af 2933 // the remote translates to a distinct key press on the PC.
mjr 78:1e00b3fa11af 2934 //
mjr 78:1e00b3fa11af 2935 // It can only be a repeat if there's a prior command that
mjr 78:1e00b3fa11af 2936 // hasn't timed out yet, so start by checking for a previous
mjr 78:1e00b3fa11af 2937 // command.
mjr 78:1e00b3fa11af 2938 bool repeat = false, autoRepeat = false;
mjr 78:1e00b3fa11af 2939 if (IRCommandIn != 0)
mjr 77:0b96f6867312 2940 {
mjr 78:1e00b3fa11af 2941 // We have a command in progress. Check to see if the
mjr 78:1e00b3fa11af 2942 // new command is a repeat of the previous command. Check
mjr 78:1e00b3fa11af 2943 // first to see if it's a "ditto", which explicitly represents
mjr 78:1e00b3fa11af 2944 // an auto-repeat of the last command.
mjr 78:1e00b3fa11af 2945 IRCommandCfg &cmdcfg = cfg.IRCommand[IRCommandIn - 1];
mjr 78:1e00b3fa11af 2946 if (c.ditto)
mjr 78:1e00b3fa11af 2947 {
mjr 78:1e00b3fa11af 2948 // We received a ditto. Dittos are always auto-
mjr 78:1e00b3fa11af 2949 // repeats, so it's an auto-repeat as long as the
mjr 78:1e00b3fa11af 2950 // ditto is in the same protocol as the last command.
mjr 78:1e00b3fa11af 2951 // If the ditto is in a new protocol, the ditto can't
mjr 78:1e00b3fa11af 2952 // be for the last command we saw, because a ditto
mjr 78:1e00b3fa11af 2953 // never changes protocols from its antecedent. In
mjr 78:1e00b3fa11af 2954 // such a case, we must have missed the antecedent
mjr 78:1e00b3fa11af 2955 // command and thus don't know what's being repeated.
mjr 78:1e00b3fa11af 2956 repeat = autoRepeat = (c.proId == cmdcfg.protocol);
mjr 78:1e00b3fa11af 2957 }
mjr 78:1e00b3fa11af 2958 else
mjr 78:1e00b3fa11af 2959 {
mjr 78:1e00b3fa11af 2960 // It's not a ditto. The new command is a repeat if
mjr 78:1e00b3fa11af 2961 // it matches the protocol and command code of the
mjr 78:1e00b3fa11af 2962 // prior command.
mjr 78:1e00b3fa11af 2963 repeat = (c.proId == cmdcfg.protocol
mjr 78:1e00b3fa11af 2964 && uint32_t(c.code) == cmdcfg.code.lo
mjr 78:1e00b3fa11af 2965 && uint32_t(c.code >> 32) == cmdcfg.code.hi);
mjr 78:1e00b3fa11af 2966
mjr 78:1e00b3fa11af 2967 // If the command is a repeat, try to determine whether
mjr 78:1e00b3fa11af 2968 // it's an auto-repeat or a new press on the same key.
mjr 78:1e00b3fa11af 2969 // If the protocol uses dittos, it's definitely a new
mjr 78:1e00b3fa11af 2970 // key press, because an auto-repeat would have used a
mjr 78:1e00b3fa11af 2971 // ditto. For a protocol that doesn't use dittos, both
mjr 78:1e00b3fa11af 2972 // an auto-repeat and a new key press just send the key
mjr 78:1e00b3fa11af 2973 // code again, so we can't tell the difference based on
mjr 78:1e00b3fa11af 2974 // that alone. But if the protocol has a toggle bit, we
mjr 78:1e00b3fa11af 2975 // can tell by the toggle bit value: a new key press has
mjr 78:1e00b3fa11af 2976 // the opposite toggle value as the last key press, while
mjr 78:1e00b3fa11af 2977 // an auto-repeat has the same toggle. Note that if the
mjr 78:1e00b3fa11af 2978 // protocol doesn't use toggle bits, the toggle value
mjr 78:1e00b3fa11af 2979 // will always be the same, so we'll simply always treat
mjr 78:1e00b3fa11af 2980 // any repeat as an auto-repeat. Many protocols simply
mjr 78:1e00b3fa11af 2981 // provide no way to distinguish the two, so in such
mjr 78:1e00b3fa11af 2982 // cases it's consistent with the native implementations
mjr 78:1e00b3fa11af 2983 // to treat any repeat as an auto-repeat.
mjr 78:1e00b3fa11af 2984 autoRepeat =
mjr 78:1e00b3fa11af 2985 repeat
mjr 78:1e00b3fa11af 2986 && !(cmdcfg.flags & IRFlagDittos)
mjr 78:1e00b3fa11af 2987 && c.toggle == lastIRToggle;
mjr 78:1e00b3fa11af 2988 }
mjr 78:1e00b3fa11af 2989 }
mjr 78:1e00b3fa11af 2990
mjr 78:1e00b3fa11af 2991 // Check to see if it's a repeat of any kind
mjr 78:1e00b3fa11af 2992 if (repeat)
mjr 78:1e00b3fa11af 2993 {
mjr 78:1e00b3fa11af 2994 // It's a repeat. If it's not an auto-repeat, it's a
mjr 78:1e00b3fa11af 2995 // new distinct key press, so we need to send the PC a
mjr 78:1e00b3fa11af 2996 // momentary gap where we're not sending the same key,
mjr 78:1e00b3fa11af 2997 // so that the PC also recognizes this as a distinct
mjr 78:1e00b3fa11af 2998 // key press event.
mjr 78:1e00b3fa11af 2999 if (!autoRepeat)
mjr 78:1e00b3fa11af 3000 IRKeyGap = true;
mjr 78:1e00b3fa11af 3001
mjr 78:1e00b3fa11af 3002 // restart the key-up timer
mjr 78:1e00b3fa11af 3003 IRTimer.reset();
mjr 78:1e00b3fa11af 3004 }
mjr 78:1e00b3fa11af 3005 else if (c.ditto)
mjr 78:1e00b3fa11af 3006 {
mjr 78:1e00b3fa11af 3007 // It's a ditto, but not a repeat of the last command.
mjr 78:1e00b3fa11af 3008 // But a ditto doesn't contain any information of its own
mjr 78:1e00b3fa11af 3009 // on the command being repeated, so given that it's not
mjr 78:1e00b3fa11af 3010 // our last command, we can't infer what command the ditto
mjr 78:1e00b3fa11af 3011 // is for and thus can't make sense of it. We have to
mjr 78:1e00b3fa11af 3012 // simply ignore it and wait for the sender to start with
mjr 78:1e00b3fa11af 3013 // a full command for a new key press.
mjr 78:1e00b3fa11af 3014 IRCommandIn = 0;
mjr 77:0b96f6867312 3015 }
mjr 77:0b96f6867312 3016 else
mjr 77:0b96f6867312 3017 {
mjr 78:1e00b3fa11af 3018 // It's not a repeat, so the last command is no longer
mjr 78:1e00b3fa11af 3019 // in effect (regardless of whether we find a match for
mjr 78:1e00b3fa11af 3020 // the new command).
mjr 78:1e00b3fa11af 3021 IRCommandIn = 0;
mjr 77:0b96f6867312 3022
mjr 78:1e00b3fa11af 3023 // Check to see if we recognize the new command, by
mjr 78:1e00b3fa11af 3024 // searching for a match in our learned code list.
mjr 78:1e00b3fa11af 3025 for (int i = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 3026 {
mjr 78:1e00b3fa11af 3027 // if the protocol and command code from the code
mjr 78:1e00b3fa11af 3028 // list both match the input, it's a match
mjr 78:1e00b3fa11af 3029 IRCommandCfg &cmdcfg = cfg.IRCommand[i];
mjr 78:1e00b3fa11af 3030 if (cmdcfg.protocol == c.proId
mjr 78:1e00b3fa11af 3031 && cmdcfg.code.lo == uint32_t(c.code)
mjr 78:1e00b3fa11af 3032 && cmdcfg.code.hi == uint32_t(c.code >> 32))
mjr 78:1e00b3fa11af 3033 {
mjr 78:1e00b3fa11af 3034 // Found it! Make this the last command, and
mjr 78:1e00b3fa11af 3035 // remember the starting time.
mjr 78:1e00b3fa11af 3036 IRCommandIn = i + 1;
mjr 78:1e00b3fa11af 3037 lastIRToggle = c.toggle;
mjr 78:1e00b3fa11af 3038 IRTimer.reset();
mjr 78:1e00b3fa11af 3039
mjr 78:1e00b3fa11af 3040 // no need to keep searching
mjr 78:1e00b3fa11af 3041 break;
mjr 78:1e00b3fa11af 3042 }
mjr 77:0b96f6867312 3043 }
mjr 77:0b96f6867312 3044 }
mjr 77:0b96f6867312 3045 }
mjr 77:0b96f6867312 3046 }
mjr 77:0b96f6867312 3047 }
mjr 77:0b96f6867312 3048 }
mjr 77:0b96f6867312 3049
mjr 74:822a92bc11d2 3050
mjr 11:bd9da7088e6e 3051 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 3052 //
mjr 11:bd9da7088e6e 3053 // Button input
mjr 11:bd9da7088e6e 3054 //
mjr 11:bd9da7088e6e 3055
mjr 18:5e890ebd0023 3056 // button state
mjr 18:5e890ebd0023 3057 struct ButtonState
mjr 18:5e890ebd0023 3058 {
mjr 38:091e511ce8a0 3059 ButtonState()
mjr 38:091e511ce8a0 3060 {
mjr 53:9b2611964afc 3061 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 3062 virtState = 0;
mjr 53:9b2611964afc 3063 dbState = 0;
mjr 38:091e511ce8a0 3064 pulseState = 0;
mjr 53:9b2611964afc 3065 pulseTime = 0;
mjr 38:091e511ce8a0 3066 }
mjr 35:e959ffba78fd 3067
mjr 53:9b2611964afc 3068 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 3069 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 3070 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 3071 //
mjr 53:9b2611964afc 3072 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 3073 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 3074 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 3075 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 3076 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 3077 void virtPress(bool on)
mjr 53:9b2611964afc 3078 {
mjr 53:9b2611964afc 3079 // Increment or decrement the current state
mjr 53:9b2611964afc 3080 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 3081 }
mjr 53:9b2611964afc 3082
mjr 53:9b2611964afc 3083 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 3084 TinyDigitalIn di;
mjr 38:091e511ce8a0 3085
mjr 65:739875521aae 3086 // Time of last pulse state transition.
mjr 65:739875521aae 3087 //
mjr 65:739875521aae 3088 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 3089 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 3090 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 3091 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 3092 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 3093 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 3094 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 3095 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 3096 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 3097 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 3098 // This software system can't be fooled that way.)
mjr 65:739875521aae 3099 uint32_t pulseTime;
mjr 18:5e890ebd0023 3100
mjr 65:739875521aae 3101 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 3102 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 3103 uint8_t cfgIndex;
mjr 53:9b2611964afc 3104
mjr 53:9b2611964afc 3105 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 3106 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 3107 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 3108 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 3109 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 3110 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 3111 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 3112 // and physical source states.
mjr 53:9b2611964afc 3113 uint8_t virtState;
mjr 38:091e511ce8a0 3114
mjr 38:091e511ce8a0 3115 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 3116 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 3117 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 3118 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 3119 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 3120 uint8_t dbState;
mjr 38:091e511ce8a0 3121
mjr 65:739875521aae 3122 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 3123 uint8_t physState : 1;
mjr 65:739875521aae 3124
mjr 65:739875521aae 3125 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 3126 uint8_t logState : 1;
mjr 65:739875521aae 3127
mjr 79:682ae3171a08 3128 // Previous logical on/off state, when keys were last processed for USB
mjr 79:682ae3171a08 3129 // reports and local effects. This lets us detect edges (transitions)
mjr 79:682ae3171a08 3130 // in the logical state, for effects that are triggered when the state
mjr 79:682ae3171a08 3131 // changes rather than merely by the button being on or off.
mjr 65:739875521aae 3132 uint8_t prevLogState : 1;
mjr 65:739875521aae 3133
mjr 65:739875521aae 3134 // Pulse state
mjr 65:739875521aae 3135 //
mjr 65:739875521aae 3136 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 3137 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 3138 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 3139 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 3140 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 3141 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 3142 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 3143 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 3144 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 3145 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 3146 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 79:682ae3171a08 3147 // option bridges this gap by generating a toggle key event each time
mjr 65:739875521aae 3148 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 3149 //
mjr 38:091e511ce8a0 3150 // Pulse state:
mjr 38:091e511ce8a0 3151 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 3152 // 1 -> off
mjr 38:091e511ce8a0 3153 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 3154 // 3 -> on
mjr 38:091e511ce8a0 3155 // 4 -> transitioning on-off
mjr 65:739875521aae 3156 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 3157
mjr 65:739875521aae 3158 } __attribute__((packed));
mjr 65:739875521aae 3159
mjr 65:739875521aae 3160 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 3161 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 3162 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 3163
mjr 66:2e3583fbd2f4 3164 // Shift button state
mjr 66:2e3583fbd2f4 3165 struct
mjr 66:2e3583fbd2f4 3166 {
mjr 66:2e3583fbd2f4 3167 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 78:1e00b3fa11af 3168 uint8_t state; // current state, for "Key OR Shift" mode:
mjr 66:2e3583fbd2f4 3169 // 0 = not shifted
mjr 66:2e3583fbd2f4 3170 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 3171 // 2 = shift button down, key pressed
mjr 78:1e00b3fa11af 3172 // 3 = released, sending pulsed keystroke
mjr 78:1e00b3fa11af 3173 uint32_t pulseTime; // time remaining in pulsed keystroke (state 3)
mjr 66:2e3583fbd2f4 3174 }
mjr 66:2e3583fbd2f4 3175 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 3176
mjr 38:091e511ce8a0 3177 // Button data
mjr 38:091e511ce8a0 3178 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 3179
mjr 38:091e511ce8a0 3180 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 3181 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 3182 // modifier keys.
mjr 38:091e511ce8a0 3183 struct
mjr 38:091e511ce8a0 3184 {
mjr 38:091e511ce8a0 3185 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 3186 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 3187 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 3188 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 3189 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 3190
mjr 38:091e511ce8a0 3191 // Media key state
mjr 38:091e511ce8a0 3192 struct
mjr 38:091e511ce8a0 3193 {
mjr 38:091e511ce8a0 3194 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 3195 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 3196 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 3197
mjr 79:682ae3171a08 3198 // button scan interrupt timer
mjr 79:682ae3171a08 3199 Timeout scanButtonsTimeout;
mjr 38:091e511ce8a0 3200
mjr 38:091e511ce8a0 3201 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 3202 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 3203 void scanButtons()
mjr 38:091e511ce8a0 3204 {
mjr 79:682ae3171a08 3205 // schedule the next interrupt
mjr 79:682ae3171a08 3206 scanButtonsTimeout.attach_us(&scanButtons, 1000);
mjr 79:682ae3171a08 3207
mjr 38:091e511ce8a0 3208 // scan all button input pins
mjr 73:4e8ce0b18915 3209 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 3210 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 3211 {
mjr 73:4e8ce0b18915 3212 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 3213 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 3214 bs->dbState = db;
mjr 73:4e8ce0b18915 3215
mjr 73:4e8ce0b18915 3216 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 3217 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 3218 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 3219 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 3220 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 3221 db &= stable;
mjr 73:4e8ce0b18915 3222 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 3223 bs->physState = !db;
mjr 38:091e511ce8a0 3224 }
mjr 38:091e511ce8a0 3225 }
mjr 38:091e511ce8a0 3226
mjr 38:091e511ce8a0 3227 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 3228 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 3229 // in the physical button state.
mjr 38:091e511ce8a0 3230 Timer buttonTimer;
mjr 12:669df364a565 3231
mjr 65:739875521aae 3232 // Count a button during the initial setup scan
mjr 72:884207c0aab0 3233 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 3234 {
mjr 65:739875521aae 3235 // count it
mjr 65:739875521aae 3236 ++nButtons;
mjr 65:739875521aae 3237
mjr 67:c39e66c4e000 3238 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 3239 // keyboard interface
mjr 72:884207c0aab0 3240 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 3241 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 3242 kbKeys = true;
mjr 65:739875521aae 3243 }
mjr 65:739875521aae 3244
mjr 11:bd9da7088e6e 3245 // initialize the button inputs
mjr 35:e959ffba78fd 3246 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 3247 {
mjr 66:2e3583fbd2f4 3248 // presume no shift key
mjr 66:2e3583fbd2f4 3249 shiftButton.index = -1;
mjr 82:4f6209cb5c33 3250 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 3251
mjr 65:739875521aae 3252 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 3253 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 3254 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 3255 nButtons = 0;
mjr 65:739875521aae 3256 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3257 {
mjr 65:739875521aae 3258 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 3259 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 3260 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 3261 }
mjr 65:739875521aae 3262
mjr 65:739875521aae 3263 // Count virtual buttons
mjr 65:739875521aae 3264
mjr 65:739875521aae 3265 // ZB Launch
mjr 65:739875521aae 3266 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 3267 {
mjr 65:739875521aae 3268 // valid - remember the live button index
mjr 65:739875521aae 3269 zblButtonIndex = nButtons;
mjr 65:739875521aae 3270
mjr 65:739875521aae 3271 // count it
mjr 72:884207c0aab0 3272 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 3273 }
mjr 65:739875521aae 3274
mjr 65:739875521aae 3275 // Allocate the live button slots
mjr 65:739875521aae 3276 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 3277
mjr 65:739875521aae 3278 // Configure the physical inputs
mjr 65:739875521aae 3279 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 3280 {
mjr 65:739875521aae 3281 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 3282 if (pin != NC)
mjr 65:739875521aae 3283 {
mjr 65:739875521aae 3284 // point back to the config slot for the keyboard data
mjr 65:739875521aae 3285 bs->cfgIndex = i;
mjr 65:739875521aae 3286
mjr 65:739875521aae 3287 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 3288 bs->di.assignPin(pin);
mjr 65:739875521aae 3289
mjr 65:739875521aae 3290 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 3291 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 3292 bs->pulseState = 1;
mjr 65:739875521aae 3293
mjr 66:2e3583fbd2f4 3294 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 3295 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 3296 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 3297 // config slots are left unused.
mjr 78:1e00b3fa11af 3298 if (cfg.shiftButton.idx == i+1)
mjr 66:2e3583fbd2f4 3299 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 3300
mjr 65:739875521aae 3301 // advance to the next button
mjr 65:739875521aae 3302 ++bs;
mjr 65:739875521aae 3303 }
mjr 65:739875521aae 3304 }
mjr 65:739875521aae 3305
mjr 53:9b2611964afc 3306 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 3307 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 3308 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 3309 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 3310
mjr 53:9b2611964afc 3311 // ZB Launch Ball button
mjr 65:739875521aae 3312 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 3313 {
mjr 65:739875521aae 3314 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 3315 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 3316 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 3317 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 3318 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 3319 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 3320 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 3321 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 3322
mjr 66:2e3583fbd2f4 3323 // advance to the next button
mjr 65:739875521aae 3324 ++bs;
mjr 11:bd9da7088e6e 3325 }
mjr 12:669df364a565 3326
mjr 38:091e511ce8a0 3327 // start the button scan thread
mjr 79:682ae3171a08 3328 scanButtonsTimeout.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 3329
mjr 38:091e511ce8a0 3330 // start the button state transition timer
mjr 12:669df364a565 3331 buttonTimer.start();
mjr 11:bd9da7088e6e 3332 }
mjr 11:bd9da7088e6e 3333
mjr 67:c39e66c4e000 3334 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 3335 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 3336 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 3337 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 3338 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 3339 //
mjr 67:c39e66c4e000 3340 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 3341 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 3342 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 3343 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 3344 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 3345 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 3346 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 3347 //
mjr 67:c39e66c4e000 3348 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 3349 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 3350 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 3351 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 3352 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 3353 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 3354 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 3355 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 3356 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 3357 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 3358 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 3359 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 3360 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 3361 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 3362 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 3363 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 3364 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 77:0b96f6867312 3365 };
mjr 77:0b96f6867312 3366
mjr 77:0b96f6867312 3367 // Keyboard key/joystick button state. processButtons() uses this to
mjr 77:0b96f6867312 3368 // build the set of key presses to report to the PC based on the logical
mjr 77:0b96f6867312 3369 // states of the button iputs.
mjr 77:0b96f6867312 3370 struct KeyState
mjr 77:0b96f6867312 3371 {
mjr 77:0b96f6867312 3372 KeyState()
mjr 77:0b96f6867312 3373 {
mjr 77:0b96f6867312 3374 // zero all members
mjr 77:0b96f6867312 3375 memset(this, 0, sizeof(*this));
mjr 77:0b96f6867312 3376 }
mjr 77:0b96f6867312 3377
mjr 77:0b96f6867312 3378 // Keyboard media keys currently pressed. This is a bit vector in
mjr 77:0b96f6867312 3379 // the format used in our USB keyboard reports (see USBJoystick.cpp).
mjr 77:0b96f6867312 3380 uint8_t mediakeys;
mjr 77:0b96f6867312 3381
mjr 77:0b96f6867312 3382 // Keyboard modifier (shift) keys currently pressed. This is a bit
mjr 77:0b96f6867312 3383 // vector in the format used in our USB keyboard reports (see
mjr 77:0b96f6867312 3384 // USBJoystick.cpp).
mjr 77:0b96f6867312 3385 uint8_t modkeys;
mjr 77:0b96f6867312 3386
mjr 77:0b96f6867312 3387 // Regular keyboard keys currently pressed. Each element is a USB
mjr 77:0b96f6867312 3388 // key code, or 0 for empty slots. Note that the USB report format
mjr 77:0b96f6867312 3389 // theoretically allows a flexible size limit, but the Windows KB
mjr 77:0b96f6867312 3390 // drivers have a fixed limit of 6 simultaneous keys (and won't
mjr 77:0b96f6867312 3391 // accept reports with more), so there's no point in making this
mjr 77:0b96f6867312 3392 // flexible; we'll just use the fixed size dictated by Windows.
mjr 77:0b96f6867312 3393 uint8_t keys[7];
mjr 77:0b96f6867312 3394
mjr 77:0b96f6867312 3395 // number of valid entries in keys[] array
mjr 77:0b96f6867312 3396 int nkeys;
mjr 77:0b96f6867312 3397
mjr 77:0b96f6867312 3398 // Joystick buttons pressed, as a bit vector. Bit n (1 << n)
mjr 77:0b96f6867312 3399 // represents joystick button n, n in 0..31, with 0 meaning
mjr 77:0b96f6867312 3400 // unpressed and 1 meaning pressed.
mjr 77:0b96f6867312 3401 uint32_t js;
mjr 77:0b96f6867312 3402
mjr 77:0b96f6867312 3403
mjr 77:0b96f6867312 3404 // Add a key press. 'typ' is the button type code (ButtonTypeXxx),
mjr 77:0b96f6867312 3405 // and 'val' is the value (the meaning of which varies by type code).
mjr 77:0b96f6867312 3406 void addKey(uint8_t typ, uint8_t val)
mjr 77:0b96f6867312 3407 {
mjr 77:0b96f6867312 3408 // add the key according to the type
mjr 77:0b96f6867312 3409 switch (typ)
mjr 77:0b96f6867312 3410 {
mjr 77:0b96f6867312 3411 case BtnTypeJoystick:
mjr 77:0b96f6867312 3412 // joystick button
mjr 77:0b96f6867312 3413 js |= (1 << (val - 1));
mjr 77:0b96f6867312 3414 break;
mjr 77:0b96f6867312 3415
mjr 77:0b96f6867312 3416 case BtnTypeKey:
mjr 77:0b96f6867312 3417 // Keyboard key. The USB keyboard report encodes regular
mjr 77:0b96f6867312 3418 // keys and modifier keys separately, so we need to check
mjr 77:0b96f6867312 3419 // which type we have. Note that past versions mapped the
mjr 77:0b96f6867312 3420 // Keyboard Volume Up, Keyboard Volume Down, and Keyboard
mjr 77:0b96f6867312 3421 // Mute keys to the corresponding Media keys. We no longer
mjr 77:0b96f6867312 3422 // do this; instead, we have the separate BtnTypeMedia for
mjr 77:0b96f6867312 3423 // explicitly using media keys if desired.
mjr 77:0b96f6867312 3424 if (val >= 0xE0 && val <= 0xE7)
mjr 77:0b96f6867312 3425 {
mjr 77:0b96f6867312 3426 // It's a modifier key. These are represented in the USB
mjr 77:0b96f6867312 3427 // reports with a bit mask. We arrange the mask bits in
mjr 77:0b96f6867312 3428 // the same order as the scan codes, so we can figure the
mjr 77:0b96f6867312 3429 // appropriate bit with a simple shift.
mjr 77:0b96f6867312 3430 modkeys |= (1 << (val - 0xE0));
mjr 77:0b96f6867312 3431 }
mjr 77:0b96f6867312 3432 else
mjr 77:0b96f6867312 3433 {
mjr 77:0b96f6867312 3434 // It's a regular key. Make sure it's not already in the
mjr 77:0b96f6867312 3435 // list, and that the list isn't full. If neither of these
mjr 77:0b96f6867312 3436 // apply, add the key to the key array.
mjr 77:0b96f6867312 3437 if (nkeys < 7)
mjr 77:0b96f6867312 3438 {
mjr 77:0b96f6867312 3439 bool found = false;
mjr 77:0b96f6867312 3440 for (int i = 0 ; i < nkeys ; ++i)
mjr 77:0b96f6867312 3441 {
mjr 77:0b96f6867312 3442 if (keys[i] == val)
mjr 77:0b96f6867312 3443 {
mjr 77:0b96f6867312 3444 found = true;
mjr 77:0b96f6867312 3445 break;
mjr 77:0b96f6867312 3446 }
mjr 77:0b96f6867312 3447 }
mjr 77:0b96f6867312 3448 if (!found)
mjr 77:0b96f6867312 3449 keys[nkeys++] = val;
mjr 77:0b96f6867312 3450 }
mjr 77:0b96f6867312 3451 }
mjr 77:0b96f6867312 3452 break;
mjr 77:0b96f6867312 3453
mjr 77:0b96f6867312 3454 case BtnTypeMedia:
mjr 77:0b96f6867312 3455 // Media control key. The media keys are mapped in the USB
mjr 77:0b96f6867312 3456 // report to bits, whereas the key codes are specified in the
mjr 77:0b96f6867312 3457 // config with their USB usage numbers. E.g., the config val
mjr 77:0b96f6867312 3458 // for Media Next Track is 0xB5, but we encode this in the USB
mjr 77:0b96f6867312 3459 // report as bit 0x08. The mediaKeyMap[] table translates
mjr 77:0b96f6867312 3460 // from the USB usage number to the mask bit. If the key isn't
mjr 77:0b96f6867312 3461 // among the subset we support, the mapped bit will be zero, so
mjr 77:0b96f6867312 3462 // the "|=" will have no effect and the key will be ignored.
mjr 77:0b96f6867312 3463 mediakeys |= mediaKeyMap[val];
mjr 77:0b96f6867312 3464 break;
mjr 77:0b96f6867312 3465 }
mjr 77:0b96f6867312 3466 }
mjr 77:0b96f6867312 3467 };
mjr 67:c39e66c4e000 3468
mjr 67:c39e66c4e000 3469
mjr 38:091e511ce8a0 3470 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 3471 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 3472 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 3473 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 3474 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 3475 {
mjr 77:0b96f6867312 3476 // key state
mjr 77:0b96f6867312 3477 KeyState ks;
mjr 38:091e511ce8a0 3478
mjr 38:091e511ce8a0 3479 // calculate the time since the last run
mjr 53:9b2611964afc 3480 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 3481 buttonTimer.reset();
mjr 66:2e3583fbd2f4 3482
mjr 66:2e3583fbd2f4 3483 // check the shift button state
mjr 66:2e3583fbd2f4 3484 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 3485 {
mjr 78:1e00b3fa11af 3486 // get the shift button's physical state object
mjr 66:2e3583fbd2f4 3487 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 78:1e00b3fa11af 3488
mjr 78:1e00b3fa11af 3489 // figure what to do based on the shift button mode in the config
mjr 78:1e00b3fa11af 3490 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3491 {
mjr 66:2e3583fbd2f4 3492 case 0:
mjr 78:1e00b3fa11af 3493 default:
mjr 78:1e00b3fa11af 3494 // "Shift OR Key" mode. The shift button doesn't send its key
mjr 78:1e00b3fa11af 3495 // immediately when pressed. Instead, we wait to see what
mjr 78:1e00b3fa11af 3496 // happens while it's down. Check the current cycle state.
mjr 78:1e00b3fa11af 3497 switch (shiftButton.state)
mjr 78:1e00b3fa11af 3498 {
mjr 78:1e00b3fa11af 3499 case 0:
mjr 78:1e00b3fa11af 3500 // Not shifted. Check if the button is now down: if so,
mjr 78:1e00b3fa11af 3501 // switch to state 1 (shift button down, no key pressed yet).
mjr 78:1e00b3fa11af 3502 if (sbs->physState)
mjr 78:1e00b3fa11af 3503 shiftButton.state = 1;
mjr 78:1e00b3fa11af 3504 break;
mjr 78:1e00b3fa11af 3505
mjr 78:1e00b3fa11af 3506 case 1:
mjr 78:1e00b3fa11af 3507 // Shift button down, no key pressed yet. If the button is
mjr 78:1e00b3fa11af 3508 // now up, it counts as an ordinary button press instead of
mjr 78:1e00b3fa11af 3509 // a shift button press, since the shift function was never
mjr 78:1e00b3fa11af 3510 // used. Return to unshifted state and start a timed key
mjr 78:1e00b3fa11af 3511 // pulse event.
mjr 78:1e00b3fa11af 3512 if (!sbs->physState)
mjr 78:1e00b3fa11af 3513 {
mjr 78:1e00b3fa11af 3514 shiftButton.state = 3;
mjr 78:1e00b3fa11af 3515 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 78:1e00b3fa11af 3516 }
mjr 78:1e00b3fa11af 3517 break;
mjr 78:1e00b3fa11af 3518
mjr 78:1e00b3fa11af 3519 case 2:
mjr 78:1e00b3fa11af 3520 // Shift button down, other key was pressed. If the button is
mjr 78:1e00b3fa11af 3521 // now up, simply clear the shift state without sending a key
mjr 78:1e00b3fa11af 3522 // press for the shift button itself to the PC. The shift
mjr 78:1e00b3fa11af 3523 // function was used, so its ordinary key press function is
mjr 78:1e00b3fa11af 3524 // suppressed.
mjr 78:1e00b3fa11af 3525 if (!sbs->physState)
mjr 78:1e00b3fa11af 3526 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3527 break;
mjr 78:1e00b3fa11af 3528
mjr 78:1e00b3fa11af 3529 case 3:
mjr 78:1e00b3fa11af 3530 // Sending pulsed keystroke. Deduct the current time interval
mjr 78:1e00b3fa11af 3531 // from the remaining pulse timer. End the pulse if the time
mjr 78:1e00b3fa11af 3532 // has expired.
mjr 78:1e00b3fa11af 3533 if (shiftButton.pulseTime > dt)
mjr 78:1e00b3fa11af 3534 shiftButton.pulseTime -= dt;
mjr 78:1e00b3fa11af 3535 else
mjr 78:1e00b3fa11af 3536 shiftButton.state = 0;
mjr 78:1e00b3fa11af 3537 break;
mjr 78:1e00b3fa11af 3538 }
mjr 66:2e3583fbd2f4 3539 break;
mjr 66:2e3583fbd2f4 3540
mjr 66:2e3583fbd2f4 3541 case 1:
mjr 78:1e00b3fa11af 3542 // "Shift AND Key" mode. In this mode, the shift button acts
mjr 78:1e00b3fa11af 3543 // like any other button and sends its mapped key immediately.
mjr 78:1e00b3fa11af 3544 // The state cycle in this case simply matches the physical
mjr 78:1e00b3fa11af 3545 // state: ON -> cycle state 1, OFF -> cycle state 0.
mjr 78:1e00b3fa11af 3546 shiftButton.state = (sbs->physState ? 1 : 0);
mjr 66:2e3583fbd2f4 3547 break;
mjr 66:2e3583fbd2f4 3548 }
mjr 66:2e3583fbd2f4 3549 }
mjr 38:091e511ce8a0 3550
mjr 11:bd9da7088e6e 3551 // scan the button list
mjr 18:5e890ebd0023 3552 ButtonState *bs = buttonState;
mjr 65:739875521aae 3553 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 3554 {
mjr 77:0b96f6867312 3555 // get the config entry for the button
mjr 77:0b96f6867312 3556 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr 77:0b96f6867312 3557
mjr 66:2e3583fbd2f4 3558 // Check the button type:
mjr 66:2e3583fbd2f4 3559 // - shift button
mjr 66:2e3583fbd2f4 3560 // - pulsed button
mjr 66:2e3583fbd2f4 3561 // - regular button
mjr 66:2e3583fbd2f4 3562 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 3563 {
mjr 78:1e00b3fa11af 3564 // This is the shift button. The logical state handling
mjr 78:1e00b3fa11af 3565 // depends on the mode.
mjr 78:1e00b3fa11af 3566 switch (cfg.shiftButton.mode)
mjr 66:2e3583fbd2f4 3567 {
mjr 78:1e00b3fa11af 3568 case 0:
mjr 78:1e00b3fa11af 3569 default:
mjr 78:1e00b3fa11af 3570 // "Shift OR Key" mode. The logical state is ON only
mjr 78:1e00b3fa11af 3571 // during the timed pulse when the key is released, which
mjr 78:1e00b3fa11af 3572 // is signified by shift button state 3.
mjr 78:1e00b3fa11af 3573 bs->logState = (shiftButton.state == 3);
mjr 78:1e00b3fa11af 3574 break;
mjr 78:1e00b3fa11af 3575
mjr 78:1e00b3fa11af 3576 case 1:
mjr 78:1e00b3fa11af 3577 // "Shif AND Key" mode. The shift button acts like any
mjr 78:1e00b3fa11af 3578 // other button, so it's logically on when physically on.
mjr 78:1e00b3fa11af 3579 bs->logState = bs->physState;
mjr 78:1e00b3fa11af 3580 break;
mjr 66:2e3583fbd2f4 3581 }
mjr 66:2e3583fbd2f4 3582 }
mjr 66:2e3583fbd2f4 3583 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 3584 {
mjr 38:091e511ce8a0 3585 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 3586 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 3587 {
mjr 53:9b2611964afc 3588 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 3589 bs->pulseTime -= dt;
mjr 53:9b2611964afc 3590 }
mjr 53:9b2611964afc 3591 else
mjr 53:9b2611964afc 3592 {
mjr 53:9b2611964afc 3593 // pulse time expired - check for a state change
mjr 53:9b2611964afc 3594 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 3595 switch (bs->pulseState)
mjr 18:5e890ebd0023 3596 {
mjr 38:091e511ce8a0 3597 case 1:
mjr 38:091e511ce8a0 3598 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 3599 if (bs->physState)
mjr 53:9b2611964afc 3600 {
mjr 38:091e511ce8a0 3601 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3602 bs->pulseState = 2;
mjr 53:9b2611964afc 3603 bs->logState = 1;
mjr 38:091e511ce8a0 3604 }
mjr 38:091e511ce8a0 3605 break;
mjr 18:5e890ebd0023 3606
mjr 38:091e511ce8a0 3607 case 2:
mjr 38:091e511ce8a0 3608 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 3609 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 3610 // change in state in the logical button
mjr 38:091e511ce8a0 3611 bs->pulseState = 3;
mjr 38:091e511ce8a0 3612 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3613 bs->logState = 0;
mjr 38:091e511ce8a0 3614 break;
mjr 38:091e511ce8a0 3615
mjr 38:091e511ce8a0 3616 case 3:
mjr 38:091e511ce8a0 3617 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 3618 if (!bs->physState)
mjr 53:9b2611964afc 3619 {
mjr 38:091e511ce8a0 3620 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 3621 bs->pulseState = 4;
mjr 53:9b2611964afc 3622 bs->logState = 1;
mjr 38:091e511ce8a0 3623 }
mjr 38:091e511ce8a0 3624 break;
mjr 38:091e511ce8a0 3625
mjr 38:091e511ce8a0 3626 case 4:
mjr 38:091e511ce8a0 3627 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 3628 bs->pulseState = 1;
mjr 38:091e511ce8a0 3629 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 3630 bs->logState = 0;
mjr 38:091e511ce8a0 3631 break;
mjr 18:5e890ebd0023 3632 }
mjr 18:5e890ebd0023 3633 }
mjr 38:091e511ce8a0 3634 }
mjr 38:091e511ce8a0 3635 else
mjr 38:091e511ce8a0 3636 {
mjr 38:091e511ce8a0 3637 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 3638 bs->logState = bs->physState;
mjr 38:091e511ce8a0 3639 }
mjr 77:0b96f6867312 3640
mjr 77:0b96f6867312 3641 // Determine if we're going to use the shifted version of the
mjr 78:1e00b3fa11af 3642 // button. We're using the shifted version if...
mjr 78:1e00b3fa11af 3643 //
mjr 78:1e00b3fa11af 3644 // - the shift button is down, AND
mjr 78:1e00b3fa11af 3645 // - this button isn't itself the shift button, AND
mjr 78:1e00b3fa11af 3646 // - this button has some kind of shifted meaning
mjr 77:0b96f6867312 3647 //
mjr 78:1e00b3fa11af 3648 // A "shifted meaning" means that we have any of the following
mjr 78:1e00b3fa11af 3649 // assigned to the shifted version of the button: a key assignment,
mjr 78:1e00b3fa11af 3650 // (in typ2,key2), an IR command (in IRCommand2), or Night mode.
mjr 78:1e00b3fa11af 3651 //
mjr 78:1e00b3fa11af 3652 // The test for Night Mode is a bit tricky. The shifted version of
mjr 78:1e00b3fa11af 3653 // the button is the Night Mode toggle if the button matches the
mjr 78:1e00b3fa11af 3654 // Night Mode button index, AND its flags are set with "toggle mode
mjr 78:1e00b3fa11af 3655 // ON" (bit 0x02 is on) and "switch mode OFF" (bit 0x01 is off).
mjr 78:1e00b3fa11af 3656 // So (button flags) & 0x03 must equal 0x02.
mjr 77:0b96f6867312 3657 bool useShift =
mjr 77:0b96f6867312 3658 (shiftButton.state != 0
mjr 78:1e00b3fa11af 3659 && shiftButton.index != i
mjr 77:0b96f6867312 3660 && (bc->typ2 != BtnTypeNone
mjr 77:0b96f6867312 3661 || bc->IRCommand2 != 0
mjr 77:0b96f6867312 3662 || (cfg.nightMode.btn == i+1 && (cfg.nightMode.flags & 0x03) == 0x02)));
mjr 77:0b96f6867312 3663
mjr 77:0b96f6867312 3664 // If we're using the shift function, and no other button has used
mjr 77:0b96f6867312 3665 // the shift function yet (shift state 1: "shift button is down but
mjr 77:0b96f6867312 3666 // no one has used the shift function yet"), then we've "consumed"
mjr 77:0b96f6867312 3667 // the shift button press (so go to shift state 2: "shift button has
mjr 77:0b96f6867312 3668 // been used by some other button press that has a shifted meaning").
mjr 78:1e00b3fa11af 3669 if (useShift && shiftButton.state == 1 && bs->logState)
mjr 77:0b96f6867312 3670 shiftButton.state = 2;
mjr 35:e959ffba78fd 3671
mjr 38:091e511ce8a0 3672 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 3673 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 3674 {
mjr 77:0b96f6867312 3675 // check to see if this is the Night Mode button
mjr 53:9b2611964afc 3676 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 3677 {
mjr 77:0b96f6867312 3678 // Check the switch type in the config flags. If flag 0x01 is
mjr 77:0b96f6867312 3679 // set, it's a persistent on/off switch, so the night mode
mjr 77:0b96f6867312 3680 // state simply tracks the current state of the switch.
mjr 77:0b96f6867312 3681 // Otherwise, it's a momentary button, so each button push
mjr 77:0b96f6867312 3682 // (i.e., each transition from logical state OFF to ON) toggles
mjr 77:0b96f6867312 3683 // the night mode state.
mjr 77:0b96f6867312 3684 //
mjr 77:0b96f6867312 3685 // Note that the "shift" flag (0x02) has no effect in switch
mjr 77:0b96f6867312 3686 // mode. Shifting only works for toggle mode.
mjr 82:4f6209cb5c33 3687 if ((cfg.nightMode.flags & 0x01) != 0)
mjr 53:9b2611964afc 3688 {
mjr 77:0b96f6867312 3689 // It's an on/off switch. Night mode simply tracks the
mjr 77:0b96f6867312 3690 // current switch state.
mjr 53:9b2611964afc 3691 setNightMode(bs->logState);
mjr 53:9b2611964afc 3692 }
mjr 82:4f6209cb5c33 3693 else if (bs->logState)
mjr 53:9b2611964afc 3694 {
mjr 77:0b96f6867312 3695 // It's a momentary toggle switch. Toggle the night mode
mjr 77:0b96f6867312 3696 // state on each distinct press of the button: that is,
mjr 77:0b96f6867312 3697 // whenever the button's logical state transitions from
mjr 77:0b96f6867312 3698 // OFF to ON.
mjr 66:2e3583fbd2f4 3699 //
mjr 77:0b96f6867312 3700 // The "shift" flag (0x02) tells us whether night mode is
mjr 77:0b96f6867312 3701 // assigned to the shifted or unshifted version of the
mjr 77:0b96f6867312 3702 // button.
mjr 77:0b96f6867312 3703 bool pressed;
mjr 98:4df3c0f7e707 3704 if (shiftButton.index == i)
mjr 98:4df3c0f7e707 3705 {
mjr 98:4df3c0f7e707 3706 // This button is both the Shift button AND the Night
mjr 98:4df3c0f7e707 3707 // Mode button. This is a special case in that the
mjr 98:4df3c0f7e707 3708 // Shift status is irrelevant, because it's obviously
mjr 98:4df3c0f7e707 3709 // identical to the Night Mode status. So it doesn't
mjr 98:4df3c0f7e707 3710 // matter whether or not the Night Mode button has the
mjr 98:4df3c0f7e707 3711 // shifted flags; the raw button state is all that
mjr 98:4df3c0f7e707 3712 // counts in this case.
mjr 98:4df3c0f7e707 3713 pressed = true;
mjr 98:4df3c0f7e707 3714 }
mjr 98:4df3c0f7e707 3715 else if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 3716 {
mjr 77:0b96f6867312 3717 // Shift bit is set - night mode is assigned to the
mjr 77:0b96f6867312 3718 // shifted version of the button. This is a Night
mjr 77:0b96f6867312 3719 // Mode toggle only if the Shift button is pressed.
mjr 77:0b96f6867312 3720 pressed = (shiftButton.state != 0);
mjr 77:0b96f6867312 3721 }
mjr 77:0b96f6867312 3722 else
mjr 77:0b96f6867312 3723 {
mjr 77:0b96f6867312 3724 // No shift bit - night mode is assigned to the
mjr 77:0b96f6867312 3725 // regular unshifted button. The button press only
mjr 77:0b96f6867312 3726 // applies if the Shift button is NOT pressed.
mjr 77:0b96f6867312 3727 pressed = (shiftButton.state == 0);
mjr 66:2e3583fbd2f4 3728 }
mjr 66:2e3583fbd2f4 3729
mjr 66:2e3583fbd2f4 3730 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 3731 // toggle night mode
mjr 66:2e3583fbd2f4 3732 if (pressed)
mjr 53:9b2611964afc 3733 toggleNightMode();
mjr 53:9b2611964afc 3734 }
mjr 35:e959ffba78fd 3735 }
mjr 38:091e511ce8a0 3736
mjr 77:0b96f6867312 3737 // press or release IR virtual keys on key state changes
mjr 77:0b96f6867312 3738 uint8_t irc = useShift ? bc->IRCommand2 : bc->IRCommand;
mjr 77:0b96f6867312 3739 if (irc != 0)
mjr 77:0b96f6867312 3740 IR_buttonChange(irc, bs->logState);
mjr 77:0b96f6867312 3741
mjr 38:091e511ce8a0 3742 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 3743 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 3744 }
mjr 38:091e511ce8a0 3745
mjr 53:9b2611964afc 3746 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 3747 // key state list
mjr 53:9b2611964afc 3748 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 3749 {
mjr 70:9f58735a1732 3750 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 3751 // going to use the normal unshifted meaning.
mjr 77:0b96f6867312 3752 uint8_t typ, val;
mjr 77:0b96f6867312 3753 if (useShift)
mjr 66:2e3583fbd2f4 3754 {
mjr 77:0b96f6867312 3755 typ = bc->typ2;
mjr 77:0b96f6867312 3756 val = bc->val2;
mjr 66:2e3583fbd2f4 3757 }
mjr 77:0b96f6867312 3758 else
mjr 77:0b96f6867312 3759 {
mjr 77:0b96f6867312 3760 typ = bc->typ;
mjr 77:0b96f6867312 3761 val = bc->val;
mjr 77:0b96f6867312 3762 }
mjr 77:0b96f6867312 3763
mjr 70:9f58735a1732 3764 // We've decided on the meaning of the button, so process
mjr 70:9f58735a1732 3765 // the keyboard or joystick event.
mjr 77:0b96f6867312 3766 ks.addKey(typ, val);
mjr 18:5e890ebd0023 3767 }
mjr 11:bd9da7088e6e 3768 }
mjr 77:0b96f6867312 3769
mjr 77:0b96f6867312 3770 // If an IR input command is in effect, add the IR command's
mjr 77:0b96f6867312 3771 // assigned key, if any. If we're in an IR key gap, don't include
mjr 77:0b96f6867312 3772 // the IR key.
mjr 77:0b96f6867312 3773 if (IRCommandIn != 0 && !IRKeyGap)
mjr 77:0b96f6867312 3774 {
mjr 77:0b96f6867312 3775 IRCommandCfg &irc = cfg.IRCommand[IRCommandIn - 1];
mjr 77:0b96f6867312 3776 ks.addKey(irc.keytype, irc.keycode);
mjr 77:0b96f6867312 3777 }
mjr 77:0b96f6867312 3778
mjr 77:0b96f6867312 3779 // We're finished building the new key state. Update the global
mjr 77:0b96f6867312 3780 // key state variables to reflect the new state.
mjr 77:0b96f6867312 3781
mjr 77:0b96f6867312 3782 // set the new joystick buttons (no need to check for changes, as we
mjr 77:0b96f6867312 3783 // report these on every joystick report whether they changed or not)
mjr 77:0b96f6867312 3784 jsButtons = ks.js;
mjr 77:0b96f6867312 3785
mjr 77:0b96f6867312 3786 // check for keyboard key changes (we only send keyboard reports when
mjr 77:0b96f6867312 3787 // something changes)
mjr 77:0b96f6867312 3788 if (kbState.data[0] != ks.modkeys
mjr 77:0b96f6867312 3789 || kbState.nkeys != ks.nkeys
mjr 77:0b96f6867312 3790 || memcmp(ks.keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 3791 {
mjr 35:e959ffba78fd 3792 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3793 kbState.changed = true;
mjr 77:0b96f6867312 3794 kbState.data[0] = ks.modkeys;
mjr 77:0b96f6867312 3795 if (ks.nkeys <= 6) {
mjr 35:e959ffba78fd 3796 // 6 or fewer simultaneous keys - report the key codes
mjr 77:0b96f6867312 3797 kbState.nkeys = ks.nkeys;
mjr 77:0b96f6867312 3798 memcpy(&kbState.data[2], ks.keys, 6);
mjr 35:e959ffba78fd 3799 }
mjr 35:e959ffba78fd 3800 else {
mjr 35:e959ffba78fd 3801 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 3802 kbState.nkeys = 6;
mjr 35:e959ffba78fd 3803 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 3804 }
mjr 35:e959ffba78fd 3805 }
mjr 35:e959ffba78fd 3806
mjr 77:0b96f6867312 3807 // check for media key changes (we only send media key reports when
mjr 77:0b96f6867312 3808 // something changes)
mjr 77:0b96f6867312 3809 if (mediaState.data != ks.mediakeys)
mjr 35:e959ffba78fd 3810 {
mjr 77:0b96f6867312 3811 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 3812 mediaState.changed = true;
mjr 77:0b96f6867312 3813 mediaState.data = ks.mediakeys;
mjr 35:e959ffba78fd 3814 }
mjr 11:bd9da7088e6e 3815 }
mjr 11:bd9da7088e6e 3816
mjr 73:4e8ce0b18915 3817 // Send a button status report
mjr 73:4e8ce0b18915 3818 void reportButtonStatus(USBJoystick &js)
mjr 73:4e8ce0b18915 3819 {
mjr 73:4e8ce0b18915 3820 // start with all buttons off
mjr 73:4e8ce0b18915 3821 uint8_t state[(MAX_BUTTONS+7)/8];
mjr 73:4e8ce0b18915 3822 memset(state, 0, sizeof(state));
mjr 73:4e8ce0b18915 3823
mjr 73:4e8ce0b18915 3824 // pack the button states into bytes, one bit per button
mjr 73:4e8ce0b18915 3825 ButtonState *bs = buttonState;
mjr 73:4e8ce0b18915 3826 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 73:4e8ce0b18915 3827 {
mjr 73:4e8ce0b18915 3828 // get the physical state
mjr 73:4e8ce0b18915 3829 int b = bs->physState;
mjr 73:4e8ce0b18915 3830
mjr 73:4e8ce0b18915 3831 // pack it into the appropriate bit
mjr 73:4e8ce0b18915 3832 int idx = bs->cfgIndex;
mjr 73:4e8ce0b18915 3833 int si = idx / 8;
mjr 73:4e8ce0b18915 3834 int shift = idx & 0x07;
mjr 73:4e8ce0b18915 3835 state[si] |= b << shift;
mjr 73:4e8ce0b18915 3836 }
mjr 73:4e8ce0b18915 3837
mjr 73:4e8ce0b18915 3838 // send the report
mjr 73:4e8ce0b18915 3839 js.reportButtonStatus(MAX_BUTTONS, state);
mjr 73:4e8ce0b18915 3840 }
mjr 73:4e8ce0b18915 3841
mjr 5:a70c0bce770d 3842 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 3843 //
mjr 5:a70c0bce770d 3844 // Customization joystick subbclass
mjr 5:a70c0bce770d 3845 //
mjr 5:a70c0bce770d 3846
mjr 5:a70c0bce770d 3847 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 3848 {
mjr 5:a70c0bce770d 3849 public:
mjr 35:e959ffba78fd 3850 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 90:aa4e571da8e8 3851 bool waitForConnect, bool enableJoystick, int axisFormat, bool useKB)
mjr 90:aa4e571da8e8 3852 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, axisFormat, useKB)
mjr 5:a70c0bce770d 3853 {
mjr 54:fd77a6b2f76c 3854 sleeping_ = false;
mjr 54:fd77a6b2f76c 3855 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 3856 timer_.start();
mjr 54:fd77a6b2f76c 3857 }
mjr 54:fd77a6b2f76c 3858
mjr 54:fd77a6b2f76c 3859 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 3860 void diagFlash()
mjr 54:fd77a6b2f76c 3861 {
mjr 54:fd77a6b2f76c 3862 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 3863 {
mjr 54:fd77a6b2f76c 3864 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 3865 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 3866 {
mjr 54:fd77a6b2f76c 3867 // short red flash
mjr 54:fd77a6b2f76c 3868 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 3869 wait_us(50000);
mjr 54:fd77a6b2f76c 3870 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 3871 wait_us(50000);
mjr 54:fd77a6b2f76c 3872 }
mjr 54:fd77a6b2f76c 3873 }
mjr 5:a70c0bce770d 3874 }
mjr 5:a70c0bce770d 3875
mjr 5:a70c0bce770d 3876 // are we connected?
mjr 5:a70c0bce770d 3877 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 3878
mjr 54:fd77a6b2f76c 3879 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 3880 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 3881 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 3882 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 3883 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 3884
mjr 54:fd77a6b2f76c 3885 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 3886 //
mjr 54:fd77a6b2f76c 3887 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 3888 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 3889 // other way.
mjr 54:fd77a6b2f76c 3890 //
mjr 54:fd77a6b2f76c 3891 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 3892 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 3893 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 3894 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 3895 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 3896 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 3897 //
mjr 54:fd77a6b2f76c 3898 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 3899 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 3900 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 3901 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 3902 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 3903 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 3904 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 3905 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 3906 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 3907 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 3908 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 3909 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 3910 // is effectively dead.
mjr 54:fd77a6b2f76c 3911 //
mjr 54:fd77a6b2f76c 3912 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 3913 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 3914 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 3915 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 3916 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 3917 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 3918 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 3919 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 3920 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 3921 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 3922 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 3923 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 3924 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 3925 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 3926 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 3927 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 3928 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 3929 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 3930 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 3931 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 3932 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 3933 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 3934 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 3935 // a disconnect.
mjr 54:fd77a6b2f76c 3936 //
mjr 54:fd77a6b2f76c 3937 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 3938 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 3939 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 3940 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 3941 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 3942 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 3943 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 3944 //
mjr 54:fd77a6b2f76c 3945 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 3946 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 3947 //
mjr 54:fd77a6b2f76c 3948 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 3949 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 3950 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 3951 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 3952 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 3953 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 3954 // has been plugged in and initiates the logical connection setup.
mjr 74:822a92bc11d2 3955 // We have to remain disconnected for some minimum interval before
mjr 74:822a92bc11d2 3956 // the host notices; the exact minimum is unclear, but 5ms seems
mjr 74:822a92bc11d2 3957 // reliable in practice.
mjr 54:fd77a6b2f76c 3958 //
mjr 54:fd77a6b2f76c 3959 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 3960 //
mjr 54:fd77a6b2f76c 3961 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 3962 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 3963 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 3964 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 3965 // return.
mjr 54:fd77a6b2f76c 3966 //
mjr 54:fd77a6b2f76c 3967 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 3968 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 3969 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 3970 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 3971 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 3972 //
mjr 54:fd77a6b2f76c 3973 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 3974 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 3975 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 3976 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 3977 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 3978 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 3979 //
mjr 54:fd77a6b2f76c 3980 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 3981 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 3982 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 3983 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 3984 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 3985 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 3986 // freezes over.
mjr 54:fd77a6b2f76c 3987 //
mjr 54:fd77a6b2f76c 3988 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 3989 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 3990 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 3991 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 3992 // less than second with this code in place.
mjr 54:fd77a6b2f76c 3993 void recoverConnection()
mjr 54:fd77a6b2f76c 3994 {
mjr 54:fd77a6b2f76c 3995 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 3996 if (reconnectPending_)
mjr 54:fd77a6b2f76c 3997 {
mjr 54:fd77a6b2f76c 3998 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 3999 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 4000 {
mjr 54:fd77a6b2f76c 4001 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 4002 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 4003 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 4004 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 4005 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 4006 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 4007 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 4008 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 4009 __disable_irq();
mjr 54:fd77a6b2f76c 4010 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 4011 {
mjr 54:fd77a6b2f76c 4012 connect(false);
mjr 54:fd77a6b2f76c 4013 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 4014 done = true;
mjr 54:fd77a6b2f76c 4015 }
mjr 54:fd77a6b2f76c 4016 __enable_irq();
mjr 54:fd77a6b2f76c 4017 }
mjr 54:fd77a6b2f76c 4018 }
mjr 54:fd77a6b2f76c 4019 }
mjr 5:a70c0bce770d 4020
mjr 5:a70c0bce770d 4021 protected:
mjr 54:fd77a6b2f76c 4022 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 4023 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 4024 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 4025 //
mjr 54:fd77a6b2f76c 4026 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 4027 //
mjr 54:fd77a6b2f76c 4028 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 4029 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 4030 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 4031 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 4032 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 4033 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 4034 {
mjr 54:fd77a6b2f76c 4035 // note the new state
mjr 54:fd77a6b2f76c 4036 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 4037
mjr 54:fd77a6b2f76c 4038 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 4039 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 4040 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 4041 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 4042 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 4043 {
mjr 54:fd77a6b2f76c 4044 disconnect();
mjr 54:fd77a6b2f76c 4045 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 4046 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 4047 }
mjr 54:fd77a6b2f76c 4048 }
mjr 54:fd77a6b2f76c 4049
mjr 54:fd77a6b2f76c 4050 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 4051 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 4052
mjr 54:fd77a6b2f76c 4053 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 4054 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 4055
mjr 54:fd77a6b2f76c 4056 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 4057 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 4058
mjr 54:fd77a6b2f76c 4059 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 4060 Timer timer_;
mjr 5:a70c0bce770d 4061 };
mjr 5:a70c0bce770d 4062
mjr 5:a70c0bce770d 4063 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4064 //
mjr 5:a70c0bce770d 4065 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 4066 //
mjr 5:a70c0bce770d 4067
mjr 5:a70c0bce770d 4068 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 4069 //
mjr 5:a70c0bce770d 4070 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 4071 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 4072 // automatic calibration.
mjr 5:a70c0bce770d 4073 //
mjr 77:0b96f6867312 4074 // We collect data at the device's maximum rate of 800kHz (one sample
mjr 77:0b96f6867312 4075 // every 1.25ms). To keep up with the high data rate, we use the
mjr 77:0b96f6867312 4076 // device's internal FIFO, and drain the FIFO by polling on each
mjr 77:0b96f6867312 4077 // iteration of our main application loop. In the past, we used an
mjr 77:0b96f6867312 4078 // interrupt handler to read the device immediately on the arrival of
mjr 77:0b96f6867312 4079 // each sample, but this created too much latency for the IR remote
mjr 77:0b96f6867312 4080 // receiver, due to the relatively long time it takes to transfer the
mjr 77:0b96f6867312 4081 // accelerometer readings via I2C. The device's on-board FIFO can
mjr 77:0b96f6867312 4082 // store up to 32 samples, which gives us up to about 40ms between
mjr 77:0b96f6867312 4083 // polling iterations before the buffer overflows. Our main loop runs
mjr 77:0b96f6867312 4084 // in under 2ms, so we can easily keep the FIFO far from overflowing.
mjr 77:0b96f6867312 4085 //
mjr 77:0b96f6867312 4086 // The MMA8451Q has three range modes, +/- 2G, 4G, and 8G. The ADC
mjr 77:0b96f6867312 4087 // sample is the same bit width (14 bits) in all modes, so the higher
mjr 77:0b96f6867312 4088 // dynamic range modes trade physical precision for range. For our
mjr 77:0b96f6867312 4089 // purposes, precision is more important than range, so we use the
mjr 77:0b96f6867312 4090 // +/-2G mode. Further, our joystick range is calibrated for only
mjr 77:0b96f6867312 4091 // +/-1G. This was unintentional on my part; I didn't look at the
mjr 77:0b96f6867312 4092 // MMA8451Q library closely enough to realize it was normalizing to
mjr 77:0b96f6867312 4093 // actual "G" units, and assumed that it was normalizing to a -1..+1
mjr 77:0b96f6867312 4094 // scale. In practice, a +/-1G scale seems perfectly adequate for
mjr 77:0b96f6867312 4095 // virtual pinball use, so I'm sticking with that range for now. But
mjr 77:0b96f6867312 4096 // there might be some benefit in renormalizing to a +/-2G range, in
mjr 77:0b96f6867312 4097 // that it would allow for higher dynamic range for very hard nudges.
mjr 77:0b96f6867312 4098 // Everyone would have to tweak their nudge sensitivity in VP if I
mjr 77:0b96f6867312 4099 // made that change, though, so I'm keeping it as is for now; it would
mjr 77:0b96f6867312 4100 // be best to make it a config option ("accelerometer high dynamic range")
mjr 77:0b96f6867312 4101 // rather than change it across the board.
mjr 5:a70c0bce770d 4102 //
mjr 6:cc35eb643e8f 4103 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 4104 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 4105 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 4106 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 4107 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 4108 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 4109 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 4110 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 4111 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 4112 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 4113 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 4114 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 4115 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 4116 // of nudging, say).
mjr 5:a70c0bce770d 4117 //
mjr 5:a70c0bce770d 4118
mjr 17:ab3cec0c8bf4 4119 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 4120 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 4121
mjr 17:ab3cec0c8bf4 4122 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 4123 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 4124 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 4125
mjr 17:ab3cec0c8bf4 4126 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 4127 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 4128 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 4129 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 4130
mjr 17:ab3cec0c8bf4 4131
mjr 6:cc35eb643e8f 4132 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 4133 struct AccHist
mjr 5:a70c0bce770d 4134 {
mjr 77:0b96f6867312 4135 AccHist() { x = y = dsq = 0; xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4136 void set(int x, int y, AccHist *prv)
mjr 6:cc35eb643e8f 4137 {
mjr 6:cc35eb643e8f 4138 // save the raw position
mjr 6:cc35eb643e8f 4139 this->x = x;
mjr 6:cc35eb643e8f 4140 this->y = y;
mjr 77:0b96f6867312 4141 this->dsq = distanceSquared(prv);
mjr 6:cc35eb643e8f 4142 }
mjr 6:cc35eb643e8f 4143
mjr 6:cc35eb643e8f 4144 // reading for this entry
mjr 77:0b96f6867312 4145 int x, y;
mjr 77:0b96f6867312 4146
mjr 77:0b96f6867312 4147 // (distance from previous entry) squared
mjr 77:0b96f6867312 4148 int dsq;
mjr 5:a70c0bce770d 4149
mjr 6:cc35eb643e8f 4150 // total and count of samples averaged over this period
mjr 77:0b96f6867312 4151 int xtot, ytot;
mjr 6:cc35eb643e8f 4152 int cnt;
mjr 6:cc35eb643e8f 4153
mjr 77:0b96f6867312 4154 void clearAvg() { xtot = ytot = 0; cnt = 0; }
mjr 77:0b96f6867312 4155 void addAvg(int x, int y) { xtot += x; ytot += y; ++cnt; }
mjr 77:0b96f6867312 4156 int xAvg() const { return xtot/cnt; }
mjr 77:0b96f6867312 4157 int yAvg() const { return ytot/cnt; }
mjr 77:0b96f6867312 4158
mjr 77:0b96f6867312 4159 int distanceSquared(AccHist *p)
mjr 77:0b96f6867312 4160 { return square(p->x - x) + square(p->y - y); }
mjr 5:a70c0bce770d 4161 };
mjr 5:a70c0bce770d 4162
mjr 5:a70c0bce770d 4163 // accelerometer wrapper class
mjr 3:3514575d4f86 4164 class Accel
mjr 3:3514575d4f86 4165 {
mjr 3:3514575d4f86 4166 public:
mjr 78:1e00b3fa11af 4167 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin,
mjr 78:1e00b3fa11af 4168 int range, int autoCenterMode)
mjr 77:0b96f6867312 4169 : mma_(sda, scl, i2cAddr)
mjr 3:3514575d4f86 4170 {
mjr 5:a70c0bce770d 4171 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 4172 irqPin_ = irqPin;
mjr 77:0b96f6867312 4173
mjr 77:0b96f6867312 4174 // remember the range
mjr 77:0b96f6867312 4175 range_ = range;
mjr 78:1e00b3fa11af 4176
mjr 78:1e00b3fa11af 4177 // set the auto-centering mode
mjr 78:1e00b3fa11af 4178 setAutoCenterMode(autoCenterMode);
mjr 78:1e00b3fa11af 4179
mjr 78:1e00b3fa11af 4180 // no manual centering request has been received
mjr 78:1e00b3fa11af 4181 manualCenterRequest_ = false;
mjr 5:a70c0bce770d 4182
mjr 5:a70c0bce770d 4183 // reset and initialize
mjr 5:a70c0bce770d 4184 reset();
mjr 5:a70c0bce770d 4185 }
mjr 5:a70c0bce770d 4186
mjr 78:1e00b3fa11af 4187 // Request manual centering. This applies the trailing average
mjr 78:1e00b3fa11af 4188 // of recent measurements and applies it as the new center point
mjr 78:1e00b3fa11af 4189 // as soon as we have enough data.
mjr 78:1e00b3fa11af 4190 void manualCenterRequest() { manualCenterRequest_ = true; }
mjr 78:1e00b3fa11af 4191
mjr 78:1e00b3fa11af 4192 // set the auto-centering mode
mjr 78:1e00b3fa11af 4193 void setAutoCenterMode(int mode)
mjr 78:1e00b3fa11af 4194 {
mjr 78:1e00b3fa11af 4195 // remember the mode
mjr 78:1e00b3fa11af 4196 autoCenterMode_ = mode;
mjr 78:1e00b3fa11af 4197
mjr 78:1e00b3fa11af 4198 // Set the time between checks. We check 5 times over the course
mjr 78:1e00b3fa11af 4199 // of the centering time, so the check interval is 1/5 of the total.
mjr 78:1e00b3fa11af 4200 if (mode == 0)
mjr 78:1e00b3fa11af 4201 {
mjr 78:1e00b3fa11af 4202 // mode 0 is the old default of 5 seconds, so check every 1s
mjr 78:1e00b3fa11af 4203 autoCenterCheckTime_ = 1000000;
mjr 78:1e00b3fa11af 4204 }
mjr 78:1e00b3fa11af 4205 else if (mode <= 60)
mjr 78:1e00b3fa11af 4206 {
mjr 78:1e00b3fa11af 4207 // mode 1-60 means reset after 'mode' seconds; the check
mjr 78:1e00b3fa11af 4208 // interval is 1/5 of this
mjr 78:1e00b3fa11af 4209 autoCenterCheckTime_ = mode*200000;
mjr 78:1e00b3fa11af 4210 }
mjr 78:1e00b3fa11af 4211 else
mjr 78:1e00b3fa11af 4212 {
mjr 78:1e00b3fa11af 4213 // Auto-centering is off, but still gather statistics to apply
mjr 78:1e00b3fa11af 4214 // when we get a manual centering request. The check interval
mjr 78:1e00b3fa11af 4215 // in this case is 1/5 of the total time for the trailing average
mjr 78:1e00b3fa11af 4216 // we apply for the manual centering. We want this to be long
mjr 78:1e00b3fa11af 4217 // enough to smooth out the data, but short enough that it only
mjr 78:1e00b3fa11af 4218 // includes recent data.
mjr 78:1e00b3fa11af 4219 autoCenterCheckTime_ = 500000;
mjr 78:1e00b3fa11af 4220 }
mjr 78:1e00b3fa11af 4221 }
mjr 78:1e00b3fa11af 4222
mjr 5:a70c0bce770d 4223 void reset()
mjr 5:a70c0bce770d 4224 {
mjr 6:cc35eb643e8f 4225 // clear the center point
mjr 77:0b96f6867312 4226 cx_ = cy_ = 0;
mjr 6:cc35eb643e8f 4227
mjr 77:0b96f6867312 4228 // start the auto-centering timer
mjr 5:a70c0bce770d 4229 tCenter_.start();
mjr 5:a70c0bce770d 4230 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 4231
mjr 5:a70c0bce770d 4232 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 4233 mma_.init();
mjr 77:0b96f6867312 4234
mjr 77:0b96f6867312 4235 // set the range
mjr 77:0b96f6867312 4236 mma_.setRange(
mjr 77:0b96f6867312 4237 range_ == AccelRange4G ? 4 :
mjr 77:0b96f6867312 4238 range_ == AccelRange8G ? 8 :
mjr 77:0b96f6867312 4239 2);
mjr 6:cc35eb643e8f 4240
mjr 77:0b96f6867312 4241 // set the average accumulators to zero
mjr 77:0b96f6867312 4242 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4243 nSum_ = 0;
mjr 3:3514575d4f86 4244
mjr 3:3514575d4f86 4245 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 4246 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 4247 }
mjr 3:3514575d4f86 4248
mjr 77:0b96f6867312 4249 void poll()
mjr 76:7f5912b6340e 4250 {
mjr 77:0b96f6867312 4251 // read samples until we clear the FIFO
mjr 77:0b96f6867312 4252 while (mma_.getFIFOCount() != 0)
mjr 77:0b96f6867312 4253 {
mjr 77:0b96f6867312 4254 int x, y, z;
mjr 77:0b96f6867312 4255 mma_.getAccXYZ(x, y, z);
mjr 77:0b96f6867312 4256
mjr 77:0b96f6867312 4257 // add the new reading to the running total for averaging
mjr 77:0b96f6867312 4258 xSum_ += (x - cx_);
mjr 77:0b96f6867312 4259 ySum_ += (y - cy_);
mjr 77:0b96f6867312 4260 ++nSum_;
mjr 77:0b96f6867312 4261
mjr 77:0b96f6867312 4262 // store the updates
mjr 77:0b96f6867312 4263 ax_ = x;
mjr 77:0b96f6867312 4264 ay_ = y;
mjr 77:0b96f6867312 4265 az_ = z;
mjr 77:0b96f6867312 4266 }
mjr 76:7f5912b6340e 4267 }
mjr 77:0b96f6867312 4268
mjr 9:fd65b0a94720 4269 void get(int &x, int &y)
mjr 3:3514575d4f86 4270 {
mjr 77:0b96f6867312 4271 // read the shared data and store locally for calculations
mjr 77:0b96f6867312 4272 int ax = ax_, ay = ay_;
mjr 77:0b96f6867312 4273 int xSum = xSum_, ySum = ySum_;
mjr 77:0b96f6867312 4274 int nSum = nSum_;
mjr 6:cc35eb643e8f 4275
mjr 77:0b96f6867312 4276 // reset the average accumulators for the next run
mjr 77:0b96f6867312 4277 xSum_ = ySum_ = 0;
mjr 77:0b96f6867312 4278 nSum_ = 0;
mjr 77:0b96f6867312 4279
mjr 77:0b96f6867312 4280 // add this sample to the current calibration interval's running total
mjr 77:0b96f6867312 4281 AccHist *p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4282 p->addAvg(ax, ay);
mjr 77:0b96f6867312 4283
mjr 78:1e00b3fa11af 4284 // If we're in auto-centering mode, check for auto-centering
mjr 78:1e00b3fa11af 4285 // at intervals of 1/5 of the overall time. If we're not in
mjr 78:1e00b3fa11af 4286 // auto-centering mode, check anyway at one-second intervals
mjr 78:1e00b3fa11af 4287 // so that we gather averages for manual centering requests.
mjr 78:1e00b3fa11af 4288 if (tCenter_.read_us() > autoCenterCheckTime_)
mjr 77:0b96f6867312 4289 {
mjr 77:0b96f6867312 4290 // add the latest raw sample to the history list
mjr 77:0b96f6867312 4291 AccHist *prv = p;
mjr 77:0b96f6867312 4292 iAccPrv_ = (iAccPrv_ + 1);
mjr 77:0b96f6867312 4293 if (iAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4294 iAccPrv_ = 0;
mjr 77:0b96f6867312 4295 p = accPrv_ + iAccPrv_;
mjr 77:0b96f6867312 4296 p->set(ax, ay, prv);
mjr 77:0b96f6867312 4297
mjr 78:1e00b3fa11af 4298 // if we have a full complement, check for auto-centering
mjr 77:0b96f6867312 4299 if (nAccPrv_ >= maxAccPrv)
mjr 77:0b96f6867312 4300 {
mjr 78:1e00b3fa11af 4301 // Center if:
mjr 78:1e00b3fa11af 4302 //
mjr 78:1e00b3fa11af 4303 // - Auto-centering is on, and we've been stable over the
mjr 78:1e00b3fa11af 4304 // whole sample period at our spot-check points
mjr 78:1e00b3fa11af 4305 //
mjr 78:1e00b3fa11af 4306 // - A manual centering request is pending
mjr 78:1e00b3fa11af 4307 //
mjr 77:0b96f6867312 4308 static const int accTol = 164*164; // 1% of range, squared
mjr 77:0b96f6867312 4309 AccHist *p0 = accPrv_;
mjr 78:1e00b3fa11af 4310 if (manualCenterRequest_
mjr 78:1e00b3fa11af 4311 || (autoCenterMode_ <= 60
mjr 78:1e00b3fa11af 4312 && p0[0].dsq < accTol
mjr 78:1e00b3fa11af 4313 && p0[1].dsq < accTol
mjr 78:1e00b3fa11af 4314 && p0[2].dsq < accTol
mjr 78:1e00b3fa11af 4315 && p0[3].dsq < accTol
mjr 78:1e00b3fa11af 4316 && p0[4].dsq < accTol))
mjr 77:0b96f6867312 4317 {
mjr 77:0b96f6867312 4318 // Figure the new calibration point as the average of
mjr 77:0b96f6867312 4319 // the samples over the rest period
mjr 77:0b96f6867312 4320 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5;
mjr 77:0b96f6867312 4321 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5;
mjr 78:1e00b3fa11af 4322
mjr 78:1e00b3fa11af 4323 // clear any pending manual centering request
mjr 78:1e00b3fa11af 4324 manualCenterRequest_ = false;
mjr 77:0b96f6867312 4325 }
mjr 77:0b96f6867312 4326 }
mjr 77:0b96f6867312 4327 else
mjr 77:0b96f6867312 4328 {
mjr 77:0b96f6867312 4329 // not enough samples yet; just up the count
mjr 77:0b96f6867312 4330 ++nAccPrv_;
mjr 77:0b96f6867312 4331 }
mjr 6:cc35eb643e8f 4332
mjr 77:0b96f6867312 4333 // clear the new item's running totals
mjr 77:0b96f6867312 4334 p->clearAvg();
mjr 5:a70c0bce770d 4335
mjr 77:0b96f6867312 4336 // reset the timer
mjr 77:0b96f6867312 4337 tCenter_.reset();
mjr 77:0b96f6867312 4338 }
mjr 5:a70c0bce770d 4339
mjr 77:0b96f6867312 4340 // report our integrated velocity reading in x,y
mjr 77:0b96f6867312 4341 x = rawToReport(xSum/nSum);
mjr 77:0b96f6867312 4342 y = rawToReport(ySum/nSum);
mjr 5:a70c0bce770d 4343
mjr 6:cc35eb643e8f 4344 #ifdef DEBUG_PRINTF
mjr 77:0b96f6867312 4345 if (x != 0 || y != 0)
mjr 77:0b96f6867312 4346 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 4347 #endif
mjr 77:0b96f6867312 4348 }
mjr 29:582472d0bc57 4349
mjr 3:3514575d4f86 4350 private:
mjr 6:cc35eb643e8f 4351 // adjust a raw acceleration figure to a usb report value
mjr 77:0b96f6867312 4352 int rawToReport(int v)
mjr 5:a70c0bce770d 4353 {
mjr 77:0b96f6867312 4354 // Scale to the joystick report range. The accelerometer
mjr 77:0b96f6867312 4355 // readings use the native 14-bit signed integer representation,
mjr 77:0b96f6867312 4356 // so their scale is 2^13.
mjr 77:0b96f6867312 4357 //
mjr 77:0b96f6867312 4358 // The 1G range is special: it uses the 2G native hardware range,
mjr 77:0b96f6867312 4359 // but rescales the result to a 1G range for the joystick reports.
mjr 77:0b96f6867312 4360 // So for that mode, we divide by 4096 rather than 8192. All of
mjr 77:0b96f6867312 4361 // the other modes map use the hardware scaling directly.
mjr 77:0b96f6867312 4362 int i = v*JOYMAX;
mjr 77:0b96f6867312 4363 i = (range_ == AccelRange1G ? i/4096 : i/8192);
mjr 5:a70c0bce770d 4364
mjr 6:cc35eb643e8f 4365 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 4366 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 4367 static const int filter[] = {
mjr 6:cc35eb643e8f 4368 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 4369 0,
mjr 6:cc35eb643e8f 4370 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 4371 };
mjr 6:cc35eb643e8f 4372 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 4373 }
mjr 5:a70c0bce770d 4374
mjr 3:3514575d4f86 4375 // underlying accelerometer object
mjr 3:3514575d4f86 4376 MMA8451Q mma_;
mjr 3:3514575d4f86 4377
mjr 77:0b96f6867312 4378 // last raw acceleration readings, on the device's signed 14-bit
mjr 77:0b96f6867312 4379 // scale -8192..+8191
mjr 77:0b96f6867312 4380 int ax_, ay_, az_;
mjr 77:0b96f6867312 4381
mjr 77:0b96f6867312 4382 // running sum of readings since last get()
mjr 77:0b96f6867312 4383 int xSum_, ySum_;
mjr 77:0b96f6867312 4384
mjr 77:0b96f6867312 4385 // number of readings since last get()
mjr 77:0b96f6867312 4386 int nSum_;
mjr 6:cc35eb643e8f 4387
mjr 6:cc35eb643e8f 4388 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 4389 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 4390 // at rest.
mjr 77:0b96f6867312 4391 int cx_, cy_;
mjr 77:0b96f6867312 4392
mjr 77:0b96f6867312 4393 // range (AccelRangeXxx value, from config.h)
mjr 77:0b96f6867312 4394 uint8_t range_;
mjr 78:1e00b3fa11af 4395
mjr 78:1e00b3fa11af 4396 // auto-center mode:
mjr 78:1e00b3fa11af 4397 // 0 = default of 5-second auto-centering
mjr 78:1e00b3fa11af 4398 // 1-60 = auto-center after this many seconds
mjr 78:1e00b3fa11af 4399 // 255 = auto-centering off (manual centering only)
mjr 78:1e00b3fa11af 4400 uint8_t autoCenterMode_;
mjr 78:1e00b3fa11af 4401
mjr 78:1e00b3fa11af 4402 // flag: a manual centering request is pending
mjr 78:1e00b3fa11af 4403 bool manualCenterRequest_;
mjr 78:1e00b3fa11af 4404
mjr 78:1e00b3fa11af 4405 // time in us between auto-centering incremental checks
mjr 78:1e00b3fa11af 4406 uint32_t autoCenterCheckTime_;
mjr 78:1e00b3fa11af 4407
mjr 77:0b96f6867312 4408 // atuo-centering timer
mjr 5:a70c0bce770d 4409 Timer tCenter_;
mjr 6:cc35eb643e8f 4410
mjr 6:cc35eb643e8f 4411 // Auto-centering history. This is a separate history list that
mjr 77:0b96f6867312 4412 // records results spaced out sparsely over time, so that we can
mjr 6:cc35eb643e8f 4413 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 4414 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 4415 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 4416 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 4417 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 4418 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 4419 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 4420 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 4421 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 4422 // accelerometer measurement bias (e.g., from temperature changes).
mjr 78:1e00b3fa11af 4423 uint8_t iAccPrv_, nAccPrv_;
mjr 78:1e00b3fa11af 4424 static const uint8_t maxAccPrv = 5;
mjr 6:cc35eb643e8f 4425 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 4426
mjr 5:a70c0bce770d 4427 // interurupt pin name
mjr 5:a70c0bce770d 4428 PinName irqPin_;
mjr 3:3514575d4f86 4429 };
mjr 3:3514575d4f86 4430
mjr 5:a70c0bce770d 4431 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 4432 //
mjr 14:df700b22ca08 4433 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 4434 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 4435 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 4436 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 4437 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 4438 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 4439 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 4440 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 4441 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 4442 //
mjr 14:df700b22ca08 4443 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 4444 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 4445 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 4446 //
mjr 5:a70c0bce770d 4447 void clear_i2c()
mjr 5:a70c0bce770d 4448 {
mjr 38:091e511ce8a0 4449 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 4450 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 4451 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 4452
mjr 5:a70c0bce770d 4453 // clock the SCL 9 times
mjr 5:a70c0bce770d 4454 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 4455 {
mjr 5:a70c0bce770d 4456 scl = 1;
mjr 5:a70c0bce770d 4457 wait_us(20);
mjr 5:a70c0bce770d 4458 scl = 0;
mjr 5:a70c0bce770d 4459 wait_us(20);
mjr 5:a70c0bce770d 4460 }
mjr 5:a70c0bce770d 4461 }
mjr 76:7f5912b6340e 4462
mjr 76:7f5912b6340e 4463
mjr 14:df700b22ca08 4464 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 4465 //
mjr 33:d832bcab089e 4466 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 4467 // for a given interval before allowing an update.
mjr 33:d832bcab089e 4468 //
mjr 33:d832bcab089e 4469 class Debouncer
mjr 33:d832bcab089e 4470 {
mjr 33:d832bcab089e 4471 public:
mjr 33:d832bcab089e 4472 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 4473 {
mjr 33:d832bcab089e 4474 t.start();
mjr 33:d832bcab089e 4475 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 4476 this->tmin = tmin;
mjr 33:d832bcab089e 4477 }
mjr 33:d832bcab089e 4478
mjr 33:d832bcab089e 4479 // Get the current stable value
mjr 33:d832bcab089e 4480 bool val() const { return stable; }
mjr 33:d832bcab089e 4481
mjr 33:d832bcab089e 4482 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 4483 // input device.
mjr 33:d832bcab089e 4484 void sampleIn(bool val)
mjr 33:d832bcab089e 4485 {
mjr 33:d832bcab089e 4486 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 4487 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 4488 // on the sample reader.
mjr 33:d832bcab089e 4489 if (val != prv)
mjr 33:d832bcab089e 4490 {
mjr 33:d832bcab089e 4491 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 4492 t.reset();
mjr 33:d832bcab089e 4493
mjr 33:d832bcab089e 4494 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 4495 prv = val;
mjr 33:d832bcab089e 4496 }
mjr 33:d832bcab089e 4497 else if (val != stable)
mjr 33:d832bcab089e 4498 {
mjr 33:d832bcab089e 4499 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 4500 // and different from the stable value. This means that
mjr 33:d832bcab089e 4501 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 4502 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 4503 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 4504 if (t.read() > tmin)
mjr 33:d832bcab089e 4505 stable = val;
mjr 33:d832bcab089e 4506 }
mjr 33:d832bcab089e 4507 }
mjr 33:d832bcab089e 4508
mjr 33:d832bcab089e 4509 private:
mjr 33:d832bcab089e 4510 // current stable value
mjr 33:d832bcab089e 4511 bool stable;
mjr 33:d832bcab089e 4512
mjr 33:d832bcab089e 4513 // last raw sample value
mjr 33:d832bcab089e 4514 bool prv;
mjr 33:d832bcab089e 4515
mjr 33:d832bcab089e 4516 // elapsed time since last raw input change
mjr 33:d832bcab089e 4517 Timer t;
mjr 33:d832bcab089e 4518
mjr 33:d832bcab089e 4519 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 4520 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 4521 float tmin;
mjr 33:d832bcab089e 4522 };
mjr 33:d832bcab089e 4523
mjr 33:d832bcab089e 4524
mjr 33:d832bcab089e 4525 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 4526 //
mjr 33:d832bcab089e 4527 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 4528 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 4529 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 4530 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 4531 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 4532 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 4533 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 4534 //
mjr 33:d832bcab089e 4535 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 4536 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 4537 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 4538 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 4539 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 4540 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 4541 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 4542 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 4543 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 4544 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 4545 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 4546 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 4547 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 4548 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 4549 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 4550 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 4551 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 4552 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 4553 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 4554 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 4555 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 4556 //
mjr 40:cc0d9814522b 4557 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 4558 // of tricky but likely scenarios:
mjr 33:d832bcab089e 4559 //
mjr 33:d832bcab089e 4560 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 4561 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 4562 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 4563 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 4564 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 4565 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 4566 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 4567 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 4568 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 4569 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 4570 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 4571 //
mjr 33:d832bcab089e 4572 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 4573 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 4574 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 4575 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 4576 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 4577 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 4578 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 4579 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 4580 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 4581 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 4582 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 4583 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 4584 // first check.
mjr 33:d832bcab089e 4585 //
mjr 33:d832bcab089e 4586 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 4587 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 4588 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 4589 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 4590 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 4591 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 4592 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 4593 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 4594 //
mjr 33:d832bcab089e 4595
mjr 77:0b96f6867312 4596 // Current PSU2 power state:
mjr 33:d832bcab089e 4597 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 4598 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 4599 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 4600 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 4601 // 5 -> TV relay on
mjr 77:0b96f6867312 4602 // 6 -> sending IR signals designed as TV ON signals
mjr 73:4e8ce0b18915 4603 uint8_t psu2_state = 1;
mjr 73:4e8ce0b18915 4604
mjr 73:4e8ce0b18915 4605 // TV relay state. The TV relay can be controlled by the power-on
mjr 73:4e8ce0b18915 4606 // timer and directly from the PC (via USB commands), so keep a
mjr 73:4e8ce0b18915 4607 // separate state for each:
mjr 73:4e8ce0b18915 4608 // 0x01 -> turned on by power-on timer
mjr 73:4e8ce0b18915 4609 // 0x02 -> turned on by USB command
mjr 73:4e8ce0b18915 4610 uint8_t tv_relay_state = 0x00;
mjr 73:4e8ce0b18915 4611 const uint8_t TV_RELAY_POWERON = 0x01;
mjr 73:4e8ce0b18915 4612 const uint8_t TV_RELAY_USB = 0x02;
mjr 73:4e8ce0b18915 4613
mjr 79:682ae3171a08 4614 // pulse timer for manual TV relay pulses
mjr 79:682ae3171a08 4615 Timer tvRelayManualTimer;
mjr 79:682ae3171a08 4616
mjr 77:0b96f6867312 4617 // TV ON IR command state. When the main PSU2 power state reaches
mjr 77:0b96f6867312 4618 // the IR phase, we use this sub-state counter to send the TV ON
mjr 77:0b96f6867312 4619 // IR signals. We initialize to state 0 when the main state counter
mjr 77:0b96f6867312 4620 // reaches the IR step. In state 0, we start transmitting the first
mjr 77:0b96f6867312 4621 // (lowest numbered) IR command slot marked as containing a TV ON
mjr 77:0b96f6867312 4622 // code, and advance to state 1. In state 1, we check to see if
mjr 77:0b96f6867312 4623 // the transmitter is still sending; if so, we do nothing, if so
mjr 77:0b96f6867312 4624 // we start transmitting the second TV ON code and advance to state
mjr 77:0b96f6867312 4625 // 2. Continue until we run out of TV ON IR codes, at which point
mjr 77:0b96f6867312 4626 // we advance to the next main psu2_state step.
mjr 77:0b96f6867312 4627 uint8_t tvon_ir_state = 0;
mjr 77:0b96f6867312 4628
mjr 77:0b96f6867312 4629 // TV ON switch relay control output pin
mjr 73:4e8ce0b18915 4630 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 4631
mjr 35:e959ffba78fd 4632 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 4633 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 4634 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 4635
mjr 73:4e8ce0b18915 4636 // Apply the current TV relay state
mjr 73:4e8ce0b18915 4637 void tvRelayUpdate(uint8_t bit, bool state)
mjr 73:4e8ce0b18915 4638 {
mjr 73:4e8ce0b18915 4639 // update the state
mjr 73:4e8ce0b18915 4640 if (state)
mjr 73:4e8ce0b18915 4641 tv_relay_state |= bit;
mjr 73:4e8ce0b18915 4642 else
mjr 73:4e8ce0b18915 4643 tv_relay_state &= ~bit;
mjr 73:4e8ce0b18915 4644
mjr 73:4e8ce0b18915 4645 // set the relay GPIO to the new state
mjr 73:4e8ce0b18915 4646 if (tv_relay != 0)
mjr 73:4e8ce0b18915 4647 tv_relay->write(tv_relay_state != 0);
mjr 73:4e8ce0b18915 4648 }
mjr 35:e959ffba78fd 4649
mjr 86:e30a1f60f783 4650 // Does the current power status allow a reboot? We shouldn't reboot
mjr 86:e30a1f60f783 4651 // in certain power states, because some states are purely internal:
mjr 86:e30a1f60f783 4652 // we can't get enough information from the external power sensor to
mjr 86:e30a1f60f783 4653 // return to the same state later. Code that performs discretionary
mjr 86:e30a1f60f783 4654 // reboots should always check here first, and delay any reboot until
mjr 86:e30a1f60f783 4655 // we say it's okay.
mjr 86:e30a1f60f783 4656 static inline bool powerStatusAllowsReboot()
mjr 86:e30a1f60f783 4657 {
mjr 86:e30a1f60f783 4658 // The only safe state for rebooting is state 1, idle/default.
mjr 86:e30a1f60f783 4659 // In other states, we can't reboot, because the external sensor
mjr 86:e30a1f60f783 4660 // and latch circuit doesn't give us enough information to return
mjr 86:e30a1f60f783 4661 // to the same state later.
mjr 86:e30a1f60f783 4662 return psu2_state == 1;
mjr 86:e30a1f60f783 4663 }
mjr 86:e30a1f60f783 4664
mjr 77:0b96f6867312 4665 // PSU2 Status update routine. The main loop calls this from time
mjr 77:0b96f6867312 4666 // to time to update the power sensing state and carry out TV ON
mjr 77:0b96f6867312 4667 // functions.
mjr 77:0b96f6867312 4668 Timer powerStatusTimer;
mjr 77:0b96f6867312 4669 uint32_t tv_delay_time_us;
mjr 77:0b96f6867312 4670 void powerStatusUpdate(Config &cfg)
mjr 33:d832bcab089e 4671 {
mjr 79:682ae3171a08 4672 // If the manual relay pulse timer is past the pulse time, end the
mjr 79:682ae3171a08 4673 // manual pulse. The timer only runs when a pulse is active, so
mjr 79:682ae3171a08 4674 // it'll never read as past the time limit if a pulse isn't on.
mjr 79:682ae3171a08 4675 if (tvRelayManualTimer.read_us() > 250000)
mjr 79:682ae3171a08 4676 {
mjr 79:682ae3171a08 4677 // turn off the relay and disable the timer
mjr 79:682ae3171a08 4678 tvRelayUpdate(TV_RELAY_USB, false);
mjr 79:682ae3171a08 4679 tvRelayManualTimer.stop();
mjr 79:682ae3171a08 4680 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4681 }
mjr 79:682ae3171a08 4682
mjr 77:0b96f6867312 4683 // Only update every 1/4 second or so. Note that if the PSU2
mjr 77:0b96f6867312 4684 // circuit isn't configured, the initialization routine won't
mjr 77:0b96f6867312 4685 // start the timer, so it'll always read zero and we'll always
mjr 77:0b96f6867312 4686 // skip this whole routine.
mjr 77:0b96f6867312 4687 if (powerStatusTimer.read_us() < 250000)
mjr 77:0b96f6867312 4688 return;
mjr 77:0b96f6867312 4689
mjr 77:0b96f6867312 4690 // reset the update timer for next time
mjr 77:0b96f6867312 4691 powerStatusTimer.reset();
mjr 77:0b96f6867312 4692
mjr 77:0b96f6867312 4693 // TV ON timer. We start this timer when we detect a change
mjr 77:0b96f6867312 4694 // in the PSU2 status from OFF to ON. When the timer reaches
mjr 77:0b96f6867312 4695 // the configured TV ON delay time, and the PSU2 power is still
mjr 77:0b96f6867312 4696 // on, we'll trigger the TV ON relay and send the TV ON IR codes.
mjr 35:e959ffba78fd 4697 static Timer tv_timer;
mjr 35:e959ffba78fd 4698
mjr 33:d832bcab089e 4699 // Check our internal state
mjr 33:d832bcab089e 4700 switch (psu2_state)
mjr 33:d832bcab089e 4701 {
mjr 33:d832bcab089e 4702 case 1:
mjr 33:d832bcab089e 4703 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 4704 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 4705 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 4706 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 4707 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 4708 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 4709 {
mjr 33:d832bcab089e 4710 // switch to OFF state
mjr 33:d832bcab089e 4711 psu2_state = 2;
mjr 33:d832bcab089e 4712
mjr 33:d832bcab089e 4713 // try setting the latch
mjr 35:e959ffba78fd 4714 psu2_status_set->write(1);
mjr 33:d832bcab089e 4715 }
mjr 77:0b96f6867312 4716 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4717 break;
mjr 33:d832bcab089e 4718
mjr 33:d832bcab089e 4719 case 2:
mjr 33:d832bcab089e 4720 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 4721 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 4722 psu2_status_set->write(0);
mjr 33:d832bcab089e 4723 psu2_state = 3;
mjr 77:0b96f6867312 4724 powerTimerDiagState = 0;
mjr 33:d832bcab089e 4725 break;
mjr 33:d832bcab089e 4726
mjr 33:d832bcab089e 4727 case 3:
mjr 33:d832bcab089e 4728 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 4729 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 4730 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 4731 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 4732 if (psu2_status_sense->read())
mjr 33:d832bcab089e 4733 {
mjr 33:d832bcab089e 4734 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 4735 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 4736 tv_timer.reset();
mjr 33:d832bcab089e 4737 tv_timer.start();
mjr 33:d832bcab089e 4738 psu2_state = 4;
mjr 73:4e8ce0b18915 4739
mjr 73:4e8ce0b18915 4740 // start the power timer diagnostic flashes
mjr 73:4e8ce0b18915 4741 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4742 }
mjr 33:d832bcab089e 4743 else
mjr 33:d832bcab089e 4744 {
mjr 33:d832bcab089e 4745 // The latch didn't stick, so PSU2 was still off at
mjr 87:8d35c74403af 4746 // our last check. Return to idle state.
mjr 87:8d35c74403af 4747 psu2_state = 1;
mjr 33:d832bcab089e 4748 }
mjr 33:d832bcab089e 4749 break;
mjr 33:d832bcab089e 4750
mjr 33:d832bcab089e 4751 case 4:
mjr 77:0b96f6867312 4752 // TV timer countdown in progress. The latch has to stay on during
mjr 77:0b96f6867312 4753 // the countdown; if the latch turns off, PSU2 power must have gone
mjr 77:0b96f6867312 4754 // off again before the countdown finished.
mjr 77:0b96f6867312 4755 if (!psu2_status_sense->read())
mjr 77:0b96f6867312 4756 {
mjr 77:0b96f6867312 4757 // power is off - start a new check cycle
mjr 77:0b96f6867312 4758 psu2_status_set->write(1);
mjr 77:0b96f6867312 4759 psu2_state = 2;
mjr 77:0b96f6867312 4760 break;
mjr 77:0b96f6867312 4761 }
mjr 77:0b96f6867312 4762
mjr 77:0b96f6867312 4763 // Flash the power time diagnostic every two cycles
mjr 77:0b96f6867312 4764 powerTimerDiagState = (powerTimerDiagState + 1) & 0x03;
mjr 77:0b96f6867312 4765
mjr 77:0b96f6867312 4766 // if we've reached the delay time, pulse the relay
mjr 77:0b96f6867312 4767 if (tv_timer.read_us() >= tv_delay_time_us)
mjr 33:d832bcab089e 4768 {
mjr 33:d832bcab089e 4769 // turn on the relay for one timer interval
mjr 73:4e8ce0b18915 4770 tvRelayUpdate(TV_RELAY_POWERON, true);
mjr 33:d832bcab089e 4771 psu2_state = 5;
mjr 77:0b96f6867312 4772
mjr 77:0b96f6867312 4773 // show solid blue on the diagnostic LED while the relay is on
mjr 77:0b96f6867312 4774 powerTimerDiagState = 2;
mjr 33:d832bcab089e 4775 }
mjr 33:d832bcab089e 4776 break;
mjr 33:d832bcab089e 4777
mjr 33:d832bcab089e 4778 case 5:
mjr 33:d832bcab089e 4779 // TV timer relay on. We pulse this for one interval, so
mjr 77:0b96f6867312 4780 // it's now time to turn it off.
mjr 73:4e8ce0b18915 4781 tvRelayUpdate(TV_RELAY_POWERON, false);
mjr 77:0b96f6867312 4782
mjr 77:0b96f6867312 4783 // Proceed to sending any TV ON IR commands
mjr 77:0b96f6867312 4784 psu2_state = 6;
mjr 77:0b96f6867312 4785 tvon_ir_state = 0;
mjr 77:0b96f6867312 4786
mjr 77:0b96f6867312 4787 // diagnostic LEDs off for now
mjr 77:0b96f6867312 4788 powerTimerDiagState = 0;
mjr 77:0b96f6867312 4789 break;
mjr 77:0b96f6867312 4790
mjr 77:0b96f6867312 4791 case 6:
mjr 77:0b96f6867312 4792 // Sending TV ON IR signals. Start with the assumption that
mjr 77:0b96f6867312 4793 // we have no IR work to do, in which case we're done with the
mjr 77:0b96f6867312 4794 // whole TV ON sequence. So by default return to state 1.
mjr 33:d832bcab089e 4795 psu2_state = 1;
mjr 77:0b96f6867312 4796 powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 4797
mjr 77:0b96f6867312 4798 // If we have an IR emitter, check for TV ON IR commands
mjr 77:0b96f6867312 4799 if (ir_tx != 0)
mjr 77:0b96f6867312 4800 {
mjr 77:0b96f6867312 4801 // check to see if the last transmission is still in progress
mjr 77:0b96f6867312 4802 if (ir_tx->isSending())
mjr 77:0b96f6867312 4803 {
mjr 77:0b96f6867312 4804 // We're still sending the last transmission. Stay in
mjr 77:0b96f6867312 4805 // state 6.
mjr 77:0b96f6867312 4806 psu2_state = 6;
mjr 77:0b96f6867312 4807 powerTimerDiagState = 4;
mjr 77:0b96f6867312 4808 break;
mjr 77:0b96f6867312 4809 }
mjr 77:0b96f6867312 4810
mjr 77:0b96f6867312 4811 // The last transmission is done, so check for a new one.
mjr 77:0b96f6867312 4812 // Look for the Nth TV ON IR slot, where N is our state
mjr 77:0b96f6867312 4813 // number.
mjr 77:0b96f6867312 4814 for (int i = 0, n = 0 ; i < MAX_IR_CODES ; ++i)
mjr 77:0b96f6867312 4815 {
mjr 77:0b96f6867312 4816 // is this a TV ON command?
mjr 77:0b96f6867312 4817 if ((cfg.IRCommand[i].flags & IRFlagTVON) != 0)
mjr 77:0b96f6867312 4818 {
mjr 77:0b96f6867312 4819 // It's a TV ON command - check if it's the one we're
mjr 109:310ac82cbbee 4820 // looking for. We can match any code starting at the
mjr 109:310ac82cbbee 4821 // current state. (We ignore codes BEFORE the current
mjr 109:310ac82cbbee 4822 // state, because we've already processed them on past
mjr 109:310ac82cbbee 4823 // iterations.)
mjr 109:310ac82cbbee 4824 if (n >= tvon_ir_state)
mjr 77:0b96f6867312 4825 {
mjr 77:0b96f6867312 4826 // It's the one. Start transmitting it by
mjr 77:0b96f6867312 4827 // pushing its virtual button.
mjr 77:0b96f6867312 4828 int vb = IRConfigSlotToVirtualButton[i];
mjr 77:0b96f6867312 4829 ir_tx->pushButton(vb, true);
mjr 77:0b96f6867312 4830
mjr 77:0b96f6867312 4831 // Pushing the button starts transmission, and once
mjr 88:98bce687e6c0 4832 // started, the transmission runs to completion even
mjr 88:98bce687e6c0 4833 // if the button is no longer pushed. So we can
mjr 88:98bce687e6c0 4834 // immediately un-push the button, since we only need
mjr 88:98bce687e6c0 4835 // to send the code once.
mjr 77:0b96f6867312 4836 ir_tx->pushButton(vb, false);
mjr 77:0b96f6867312 4837
mjr 77:0b96f6867312 4838 // Advance to the next TV ON IR state, where we'll
mjr 77:0b96f6867312 4839 // await the end of this transmission and move on to
mjr 77:0b96f6867312 4840 // the next one.
mjr 77:0b96f6867312 4841 psu2_state = 6;
mjr 77:0b96f6867312 4842 tvon_ir_state++;
mjr 77:0b96f6867312 4843 break;
mjr 77:0b96f6867312 4844 }
mjr 77:0b96f6867312 4845
mjr 77:0b96f6867312 4846 // it's not ours - count it and keep looking
mjr 77:0b96f6867312 4847 ++n;
mjr 77:0b96f6867312 4848 }
mjr 77:0b96f6867312 4849 }
mjr 77:0b96f6867312 4850 }
mjr 33:d832bcab089e 4851 break;
mjr 33:d832bcab089e 4852 }
mjr 77:0b96f6867312 4853
mjr 77:0b96f6867312 4854 // update the diagnostic LEDs
mjr 77:0b96f6867312 4855 diagLED();
mjr 33:d832bcab089e 4856 }
mjr 33:d832bcab089e 4857
mjr 77:0b96f6867312 4858 // Start the power status timer. If the status sense circuit is enabled
mjr 77:0b96f6867312 4859 // in the configuration, we'll set up the pin connections and start the
mjr 77:0b96f6867312 4860 // timer for our periodic status checks. Does nothing if any of the pins
mjr 77:0b96f6867312 4861 // are configured as NC.
mjr 77:0b96f6867312 4862 void startPowerStatusTimer(Config &cfg)
mjr 35:e959ffba78fd 4863 {
mjr 55:4db125cd11a0 4864 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 4865 // time is nonzero
mjr 77:0b96f6867312 4866 powerStatusTimer.reset();
mjr 77:0b96f6867312 4867 if (cfg.TVON.statusPin != 0xFF
mjr 77:0b96f6867312 4868 && cfg.TVON.latchPin != 0xFF)
mjr 35:e959ffba78fd 4869 {
mjr 77:0b96f6867312 4870 // set up the power sensing circuit connections
mjr 53:9b2611964afc 4871 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 4872 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 77:0b96f6867312 4873
mjr 77:0b96f6867312 4874 // if there's a TV ON relay, set up its control pin
mjr 77:0b96f6867312 4875 if (cfg.TVON.relayPin != 0xFF)
mjr 77:0b96f6867312 4876 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 77:0b96f6867312 4877
mjr 77:0b96f6867312 4878 // Set the TV ON delay time. We store the time internally in
mjr 77:0b96f6867312 4879 // microseconds, but the configuration stores it in units of
mjr 77:0b96f6867312 4880 // 1/100 second = 10ms = 10000us.
mjr 77:0b96f6867312 4881 tv_delay_time_us = cfg.TVON.delayTime * 10000;;
mjr 77:0b96f6867312 4882
mjr 77:0b96f6867312 4883 // Start the TV timer
mjr 77:0b96f6867312 4884 powerStatusTimer.start();
mjr 35:e959ffba78fd 4885 }
mjr 35:e959ffba78fd 4886 }
mjr 35:e959ffba78fd 4887
mjr 73:4e8ce0b18915 4888 // Operate the TV ON relay. This allows manual control of the relay
mjr 73:4e8ce0b18915 4889 // from the PC. See protocol message 65 submessage 11.
mjr 73:4e8ce0b18915 4890 //
mjr 73:4e8ce0b18915 4891 // Mode:
mjr 73:4e8ce0b18915 4892 // 0 = turn relay off
mjr 73:4e8ce0b18915 4893 // 1 = turn relay on
mjr 73:4e8ce0b18915 4894 // 2 = pulse relay
mjr 73:4e8ce0b18915 4895 void TVRelay(int mode)
mjr 73:4e8ce0b18915 4896 {
mjr 73:4e8ce0b18915 4897 // if there's no TV relay control pin, ignore this
mjr 73:4e8ce0b18915 4898 if (tv_relay == 0)
mjr 73:4e8ce0b18915 4899 return;
mjr 73:4e8ce0b18915 4900
mjr 73:4e8ce0b18915 4901 switch (mode)
mjr 73:4e8ce0b18915 4902 {
mjr 73:4e8ce0b18915 4903 case 0:
mjr 73:4e8ce0b18915 4904 // relay off
mjr 73:4e8ce0b18915 4905 tvRelayUpdate(TV_RELAY_USB, false);
mjr 73:4e8ce0b18915 4906 break;
mjr 73:4e8ce0b18915 4907
mjr 73:4e8ce0b18915 4908 case 1:
mjr 73:4e8ce0b18915 4909 // relay on
mjr 73:4e8ce0b18915 4910 tvRelayUpdate(TV_RELAY_USB, true);
mjr 73:4e8ce0b18915 4911 break;
mjr 73:4e8ce0b18915 4912
mjr 73:4e8ce0b18915 4913 case 2:
mjr 79:682ae3171a08 4914 // Turn the relay on and reset the manual TV pulse timer
mjr 73:4e8ce0b18915 4915 tvRelayUpdate(TV_RELAY_USB, true);
mjr 79:682ae3171a08 4916 tvRelayManualTimer.reset();
mjr 79:682ae3171a08 4917 tvRelayManualTimer.start();
mjr 73:4e8ce0b18915 4918 break;
mjr 73:4e8ce0b18915 4919 }
mjr 73:4e8ce0b18915 4920 }
mjr 73:4e8ce0b18915 4921
mjr 73:4e8ce0b18915 4922
mjr 35:e959ffba78fd 4923 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 4924 //
mjr 35:e959ffba78fd 4925 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 4926 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 4927 //
mjr 35:e959ffba78fd 4928 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 4929 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 4930 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 4931 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 4932 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 4933 // again each time the firmware is updated.
mjr 35:e959ffba78fd 4934 //
mjr 35:e959ffba78fd 4935 NVM nvm;
mjr 35:e959ffba78fd 4936
mjr 86:e30a1f60f783 4937 // Save Config followup time, in seconds. After a successful save,
mjr 86:e30a1f60f783 4938 // we leave the success flag on in the status for this interval. At
mjr 86:e30a1f60f783 4939 // the end of the interval, we reboot the device if requested.
mjr 86:e30a1f60f783 4940 uint8_t saveConfigFollowupTime;
mjr 86:e30a1f60f783 4941
mjr 86:e30a1f60f783 4942 // is a reboot pending at the end of the config save followup interval?
mjr 86:e30a1f60f783 4943 uint8_t saveConfigRebootPending;
mjr 77:0b96f6867312 4944
mjr 79:682ae3171a08 4945 // status flag for successful config save - set to 0x40 on success
mjr 79:682ae3171a08 4946 uint8_t saveConfigSucceededFlag;
mjr 79:682ae3171a08 4947
mjr 86:e30a1f60f783 4948 // Timer for configuration change followup timer
mjr 86:e30a1f60f783 4949 ExtTimer saveConfigFollowupTimer;
mjr 86:e30a1f60f783 4950
mjr 86:e30a1f60f783 4951
mjr 35:e959ffba78fd 4952 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 4953 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 4954
mjr 35:e959ffba78fd 4955 // flash memory controller interface
mjr 35:e959ffba78fd 4956 FreescaleIAP iap;
mjr 35:e959ffba78fd 4957
mjr 79:682ae3171a08 4958 // figure the flash address for the config data
mjr 79:682ae3171a08 4959 const NVM *configFlashAddr()
mjr 76:7f5912b6340e 4960 {
mjr 79:682ae3171a08 4961 // figure the number of sectors we need, rounding up
mjr 79:682ae3171a08 4962 int nSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 79:682ae3171a08 4963
mjr 79:682ae3171a08 4964 // figure the total size required from the number of sectors
mjr 79:682ae3171a08 4965 int reservedSize = nSectors * SECTOR_SIZE;
mjr 79:682ae3171a08 4966
mjr 79:682ae3171a08 4967 // locate it at the top of memory
mjr 79:682ae3171a08 4968 uint32_t addr = iap.flashSize() - reservedSize;
mjr 79:682ae3171a08 4969
mjr 79:682ae3171a08 4970 // return it as a read-only NVM pointer
mjr 79:682ae3171a08 4971 return (const NVM *)addr;
mjr 35:e959ffba78fd 4972 }
mjr 35:e959ffba78fd 4973
mjr 76:7f5912b6340e 4974 // Load the config from flash. Returns true if a valid non-default
mjr 76:7f5912b6340e 4975 // configuration was loaded, false if we not. If we return false,
mjr 76:7f5912b6340e 4976 // we load the factory defaults, so the configuration object is valid
mjr 76:7f5912b6340e 4977 // in either case.
mjr 76:7f5912b6340e 4978 bool loadConfigFromFlash()
mjr 35:e959ffba78fd 4979 {
mjr 35:e959ffba78fd 4980 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 4981 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 4982 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 4983 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 4984 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 4985 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 4986 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 4987 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 4988 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 4989 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 4990 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 4991 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 4992 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 4993 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 4994 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 4995 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 4996
mjr 35:e959ffba78fd 4997 // Figure how many sectors we need for our structure
mjr 79:682ae3171a08 4998 const NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 4999
mjr 35:e959ffba78fd 5000 // if the flash is valid, load it; otherwise initialize to defaults
mjr 76:7f5912b6340e 5001 bool nvm_valid = flash->valid();
mjr 76:7f5912b6340e 5002 if (nvm_valid)
mjr 35:e959ffba78fd 5003 {
mjr 35:e959ffba78fd 5004 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 5005 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 5006 }
mjr 35:e959ffba78fd 5007 else
mjr 35:e959ffba78fd 5008 {
mjr 76:7f5912b6340e 5009 // flash is invalid - load factory settings into RAM structure
mjr 35:e959ffba78fd 5010 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 5011 }
mjr 76:7f5912b6340e 5012
mjr 76:7f5912b6340e 5013 // tell the caller what happened
mjr 76:7f5912b6340e 5014 return nvm_valid;
mjr 35:e959ffba78fd 5015 }
mjr 35:e959ffba78fd 5016
mjr 86:e30a1f60f783 5017 // Save the config. Returns true on success, false on failure.
mjr 86:e30a1f60f783 5018 // 'tFollowup' is the follow-up time in seconds. If the write is
mjr 86:e30a1f60f783 5019 // successful, we'll turn on the success flag in the status reports
mjr 86:e30a1f60f783 5020 // and leave it on for this interval. If 'reboot' is true, we'll
mjr 86:e30a1f60f783 5021 // also schedule a reboot at the end of the followup interval.
mjr 86:e30a1f60f783 5022 bool saveConfigToFlash(int tFollowup, bool reboot)
mjr 33:d832bcab089e 5023 {
mjr 76:7f5912b6340e 5024 // get the config block location in the flash memory
mjr 77:0b96f6867312 5025 uint32_t addr = uint32_t(configFlashAddr());
mjr 79:682ae3171a08 5026
mjr 101:755f44622abc 5027 // save the data
mjr 101:755f44622abc 5028 bool ok = nvm.save(iap, addr);
mjr 101:755f44622abc 5029
mjr 101:755f44622abc 5030 // if the save succeeded, do post-save work
mjr 101:755f44622abc 5031 if (ok)
mjr 86:e30a1f60f783 5032 {
mjr 86:e30a1f60f783 5033 // success - report the successful save in the status flags
mjr 86:e30a1f60f783 5034 saveConfigSucceededFlag = 0x40;
mjr 86:e30a1f60f783 5035
mjr 86:e30a1f60f783 5036 // start the followup timer
mjr 87:8d35c74403af 5037 saveConfigFollowupTime = tFollowup;
mjr 87:8d35c74403af 5038 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 5039 saveConfigFollowupTimer.start();
mjr 86:e30a1f60f783 5040
mjr 86:e30a1f60f783 5041 // if a reboot is pending, flag it
mjr 86:e30a1f60f783 5042 saveConfigRebootPending = reboot;
mjr 86:e30a1f60f783 5043 }
mjr 101:755f44622abc 5044
mjr 101:755f44622abc 5045 // return the success indication
mjr 101:755f44622abc 5046 return ok;
mjr 76:7f5912b6340e 5047 }
mjr 76:7f5912b6340e 5048
mjr 76:7f5912b6340e 5049 // ---------------------------------------------------------------------------
mjr 76:7f5912b6340e 5050 //
mjr 76:7f5912b6340e 5051 // Host-loaded configuration. The Flash NVM block above is designed to be
mjr 76:7f5912b6340e 5052 // stored from within the firmware; in contrast, the host-loaded config is
mjr 76:7f5912b6340e 5053 // stored by the host, by patching the firwmare binary (.bin) file before
mjr 76:7f5912b6340e 5054 // downloading it to the device.
mjr 76:7f5912b6340e 5055 //
mjr 100:1ff35c07217c 5056 // Ideally, we'd use the host-loaded memory for all configuration updates
mjr 100:1ff35c07217c 5057 // from the host - that is, any time the host wants to update config settings,
mjr 100:1ff35c07217c 5058 // such as via user input in the config tool. In the past, I wanted to do
mjr 100:1ff35c07217c 5059 // it this way because it seemed to be unreliable to write flash memory via
mjr 100:1ff35c07217c 5060 // the device. But that turned out to be due to a bug in the mbed Ticker
mjr 100:1ff35c07217c 5061 // code (of all things!), which we've fixed - since then, flash writing on
mjr 100:1ff35c07217c 5062 // the device has been bulletproof. Even so, doing host-to-device flash
mjr 100:1ff35c07217c 5063 // writing for config updates would be nice just for the sake of speed, as
mjr 100:1ff35c07217c 5064 // the alternative is that we send the variables one at a time by USB, which
mjr 100:1ff35c07217c 5065 // takes noticeable time when reprogramming the whole config set. But
mjr 100:1ff35c07217c 5066 // there's no way to accomplish a single-sector flash write via OpenSDA; you
mjr 100:1ff35c07217c 5067 // can only rewrite the entire flash memory as a unit.
mjr 100:1ff35c07217c 5068 //
mjr 100:1ff35c07217c 5069 // We can at least use this approach to do a fast configuration restore
mjr 100:1ff35c07217c 5070 // when downloading new firmware. In that case, we're rewriting all of
mjr 100:1ff35c07217c 5071 // flash memory anyway, so we might as well include the config data.
mjr 76:7f5912b6340e 5072 //
mjr 76:7f5912b6340e 5073 // The memory here is stored using the same format as the USB "Set Config
mjr 76:7f5912b6340e 5074 // Variable" command. These messages are 8 bytes long and start with a
mjr 76:7f5912b6340e 5075 // byte value 66, followed by the variable ID, followed by the variable
mjr 76:7f5912b6340e 5076 // value data in a format defined separately for each variable. To load
mjr 76:7f5912b6340e 5077 // the data, we'll start at the first byte after the signature, and
mjr 76:7f5912b6340e 5078 // interpret each 8-byte block as a type 66 message. If the first byte
mjr 76:7f5912b6340e 5079 // of a block is not 66, we'll take it as the end of the data.
mjr 76:7f5912b6340e 5080 //
mjr 76:7f5912b6340e 5081 // We provide a block of storage here big enough for 1,024 variables.
mjr 76:7f5912b6340e 5082 // The header consists of a 30-byte signature followed by two bytes giving
mjr 76:7f5912b6340e 5083 // the available space in the area, in this case 8192 == 0x0200. The
mjr 76:7f5912b6340e 5084 // length is little-endian. Note that the linker will implicitly zero
mjr 76:7f5912b6340e 5085 // the rest of the block, so if the host doesn't populate it, we'll see
mjr 76:7f5912b6340e 5086 // that it's empty by virtue of not containing the required '66' byte
mjr 76:7f5912b6340e 5087 // prefix for the first 8-byte variable block.
mjr 76:7f5912b6340e 5088 static const uint8_t hostLoadedConfig[8192+32]
mjr 76:7f5912b6340e 5089 __attribute__ ((aligned(SECTOR_SIZE))) =
mjr 76:7f5912b6340e 5090 "///Pinscape.HostLoadedConfig//\0\040"; // 30 byte signature + 2 byte length
mjr 76:7f5912b6340e 5091
mjr 76:7f5912b6340e 5092 // Get a pointer to the first byte of the configuration data
mjr 76:7f5912b6340e 5093 const uint8_t *getHostLoadedConfigData()
mjr 76:7f5912b6340e 5094 {
mjr 76:7f5912b6340e 5095 // the first configuration variable byte immediately follows the
mjr 76:7f5912b6340e 5096 // 32-byte signature header
mjr 76:7f5912b6340e 5097 return hostLoadedConfig + 32;
mjr 76:7f5912b6340e 5098 };
mjr 76:7f5912b6340e 5099
mjr 76:7f5912b6340e 5100 // forward reference to config var store function
mjr 76:7f5912b6340e 5101 void configVarSet(const uint8_t *);
mjr 76:7f5912b6340e 5102
mjr 76:7f5912b6340e 5103 // Load the host-loaded configuration data into the active (RAM)
mjr 76:7f5912b6340e 5104 // configuration object.
mjr 76:7f5912b6340e 5105 void loadHostLoadedConfig()
mjr 76:7f5912b6340e 5106 {
mjr 76:7f5912b6340e 5107 // Start at the first configuration variable. Each variable
mjr 76:7f5912b6340e 5108 // block is in the format of a Set Config Variable command in
mjr 76:7f5912b6340e 5109 // the USB protocol, so each block starts with a byte value of
mjr 76:7f5912b6340e 5110 // 66 and is 8 bytes long. Continue as long as we find valid
mjr 76:7f5912b6340e 5111 // variable blocks, or reach end end of the block.
mjr 76:7f5912b6340e 5112 const uint8_t *start = getHostLoadedConfigData();
mjr 76:7f5912b6340e 5113 const uint8_t *end = hostLoadedConfig + sizeof(hostLoadedConfig);
mjr 76:7f5912b6340e 5114 for (const uint8_t *p = getHostLoadedConfigData() ; start < end && *p == 66 ; p += 8)
mjr 76:7f5912b6340e 5115 {
mjr 76:7f5912b6340e 5116 // load this variable
mjr 76:7f5912b6340e 5117 configVarSet(p);
mjr 76:7f5912b6340e 5118 }
mjr 35:e959ffba78fd 5119 }
mjr 35:e959ffba78fd 5120
mjr 35:e959ffba78fd 5121 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5122 //
mjr 55:4db125cd11a0 5123 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 5124 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 5125 //
mjr 55:4db125cd11a0 5126 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 5127 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 5128 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 101:755f44622abc 5129 uint8_t tReportPlungerStat; // timestamp of most recent plunger status request
mjr 55:4db125cd11a0 5130
mjr 55:4db125cd11a0 5131
mjr 55:4db125cd11a0 5132 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 5133 //
mjr 40:cc0d9814522b 5134 // Night mode setting updates
mjr 40:cc0d9814522b 5135 //
mjr 38:091e511ce8a0 5136
mjr 38:091e511ce8a0 5137 // Turn night mode on or off
mjr 38:091e511ce8a0 5138 static void setNightMode(bool on)
mjr 38:091e511ce8a0 5139 {
mjr 77:0b96f6867312 5140 // Set the new night mode flag in the noisy output class. Note
mjr 77:0b96f6867312 5141 // that we use the status report bit flag value 0x02 when on, so
mjr 77:0b96f6867312 5142 // that we can just '|' this into the overall status bits.
mjr 77:0b96f6867312 5143 nightMode = on ? 0x02 : 0x00;
mjr 55:4db125cd11a0 5144
mjr 40:cc0d9814522b 5145 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 5146 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 5147 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 5148 lwPin[port]->set(nightMode ? 255 : 0);
mjr 76:7f5912b6340e 5149
mjr 76:7f5912b6340e 5150 // Reset all outputs at their current value, so that the underlying
mjr 76:7f5912b6340e 5151 // physical outputs get turned on or off as appropriate for the night
mjr 76:7f5912b6340e 5152 // mode change.
mjr 76:7f5912b6340e 5153 for (int i = 0 ; i < numOutputs ; ++i)
mjr 76:7f5912b6340e 5154 lwPin[i]->set(outLevel[i]);
mjr 76:7f5912b6340e 5155
mjr 76:7f5912b6340e 5156 // update 74HC595 outputs
mjr 76:7f5912b6340e 5157 if (hc595 != 0)
mjr 76:7f5912b6340e 5158 hc595->update();
mjr 38:091e511ce8a0 5159 }
mjr 38:091e511ce8a0 5160
mjr 38:091e511ce8a0 5161 // Toggle night mode
mjr 38:091e511ce8a0 5162 static void toggleNightMode()
mjr 38:091e511ce8a0 5163 {
mjr 53:9b2611964afc 5164 setNightMode(!nightMode);
mjr 38:091e511ce8a0 5165 }
mjr 38:091e511ce8a0 5166
mjr 38:091e511ce8a0 5167
mjr 38:091e511ce8a0 5168 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 5169 //
mjr 35:e959ffba78fd 5170 // Plunger Sensor
mjr 35:e959ffba78fd 5171 //
mjr 35:e959ffba78fd 5172
mjr 35:e959ffba78fd 5173 // the plunger sensor interface object
mjr 35:e959ffba78fd 5174 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 5175
mjr 76:7f5912b6340e 5176
mjr 35:e959ffba78fd 5177 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 5178 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 5179 void createPlunger()
mjr 35:e959ffba78fd 5180 {
mjr 35:e959ffba78fd 5181 // create the new sensor object according to the type
mjr 35:e959ffba78fd 5182 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 5183 {
mjr 82:4f6209cb5c33 5184 case PlungerType_TSL1410R:
mjr 82:4f6209cb5c33 5185 // TSL1410R, shadow edge detector
mjr 35:e959ffba78fd 5186 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5187 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 5188 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5189 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5190 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5191 break;
mjr 35:e959ffba78fd 5192
mjr 82:4f6209cb5c33 5193 case PlungerType_TSL1412S:
mjr 82:4f6209cb5c33 5194 // TSL1412S, shadow edge detector
mjr 82:4f6209cb5c33 5195 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 5196 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 5197 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 5198 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5199 wirePinName(cfg.plunger.sensorPin[2]));
mjr 35:e959ffba78fd 5200 break;
mjr 35:e959ffba78fd 5201
mjr 35:e959ffba78fd 5202 case PlungerType_Pot:
mjr 82:4f6209cb5c33 5203 // Potentiometer (or any other sensor with a linear analog voltage
mjr 82:4f6209cb5c33 5204 // reading as the proxy for the position)
mjr 82:4f6209cb5c33 5205 // pins are: AO (analog in)
mjr 53:9b2611964afc 5206 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 5207 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 5208 break;
mjr 82:4f6209cb5c33 5209
mjr 82:4f6209cb5c33 5210 case PlungerType_OptQuad:
mjr 82:4f6209cb5c33 5211 // Optical quadrature sensor, AEDR8300-K or similar. The -K is
mjr 82:4f6209cb5c33 5212 // designed for a 75 LPI scale, which translates to 300 pulses/inch.
mjr 82:4f6209cb5c33 5213 // Pins are: CHA, CHB (quadrature pulse inputs).
mjr 82:4f6209cb5c33 5214 plungerSensor = new PlungerSensorQuad(
mjr 82:4f6209cb5c33 5215 300,
mjr 82:4f6209cb5c33 5216 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5217 wirePinName(cfg.plunger.sensorPin[1]));
mjr 82:4f6209cb5c33 5218 break;
mjr 82:4f6209cb5c33 5219
mjr 82:4f6209cb5c33 5220 case PlungerType_TSL1401CL:
mjr 82:4f6209cb5c33 5221 // TSL1401CL, absolute position encoder with bar code scale
mjr 82:4f6209cb5c33 5222 // pins are: SI, CLOCK, AO
mjr 82:4f6209cb5c33 5223 plungerSensor = new PlungerSensorTSL1401CL(
mjr 82:4f6209cb5c33 5224 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5225 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5226 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5227 break;
mjr 82:4f6209cb5c33 5228
mjr 82:4f6209cb5c33 5229 case PlungerType_VL6180X:
mjr 82:4f6209cb5c33 5230 // VL6180X time-of-flight IR distance sensor
mjr 111:42dc75fbe623 5231 // pins are: SDA, SCL, GPIO0/CE
mjr 82:4f6209cb5c33 5232 plungerSensor = new PlungerSensorVL6180X(
mjr 82:4f6209cb5c33 5233 wirePinName(cfg.plunger.sensorPin[0]),
mjr 82:4f6209cb5c33 5234 wirePinName(cfg.plunger.sensorPin[1]),
mjr 82:4f6209cb5c33 5235 wirePinName(cfg.plunger.sensorPin[2]));
mjr 82:4f6209cb5c33 5236 break;
mjr 82:4f6209cb5c33 5237
mjr 100:1ff35c07217c 5238 case PlungerType_AEAT6012:
mjr 100:1ff35c07217c 5239 // Broadcom AEAT-6012-A06 magnetic rotary encoder
mjr 100:1ff35c07217c 5240 // pins are: CS (chip select, dig out), CLK (dig out), DO (data, dig in)
mjr 100:1ff35c07217c 5241 plungerSensor = new PlungerSensorAEAT601X<12>(
mjr 100:1ff35c07217c 5242 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5243 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5244 wirePinName(cfg.plunger.sensorPin[2]));
mjr 100:1ff35c07217c 5245 break;
mjr 100:1ff35c07217c 5246
mjr 100:1ff35c07217c 5247 case PlungerType_TCD1103:
mjr 100:1ff35c07217c 5248 // Toshiba TCD1103GFG linear CCD, optical edge detection, with
mjr 100:1ff35c07217c 5249 // inverted logic gates.
mjr 100:1ff35c07217c 5250 //
mjr 100:1ff35c07217c 5251 // Pins are: fM (master clock, PWM), OS (sample data, analog in),
mjr 100:1ff35c07217c 5252 // ICG (integration clear gate, dig out), SH (shift gate, dig out)
mjr 100:1ff35c07217c 5253 plungerSensor = new PlungerSensorTCD1103<true>(
mjr 100:1ff35c07217c 5254 wirePinName(cfg.plunger.sensorPin[0]),
mjr 100:1ff35c07217c 5255 wirePinName(cfg.plunger.sensorPin[1]),
mjr 100:1ff35c07217c 5256 wirePinName(cfg.plunger.sensorPin[2]),
mjr 100:1ff35c07217c 5257 wirePinName(cfg.plunger.sensorPin[3]));
mjr 100:1ff35c07217c 5258 break;
mjr 100:1ff35c07217c 5259
mjr 111:42dc75fbe623 5260 case PlungerType_VCNL4010:
mjr 111:42dc75fbe623 5261 // VCNL4010 IR proximity sensor pins are: SDA, SCL
mjr 111:42dc75fbe623 5262 plungerSensor = new PlungerSensorVCNL4010(
mjr 111:42dc75fbe623 5263 wirePinName(cfg.plunger.sensorPin[0]),
mjr 111:42dc75fbe623 5264 wirePinName(cfg.plunger.sensorPin[1]));
mjr 111:42dc75fbe623 5265 break;
mjr 111:42dc75fbe623 5266
mjr 35:e959ffba78fd 5267 case PlungerType_None:
mjr 35:e959ffba78fd 5268 default:
mjr 35:e959ffba78fd 5269 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 5270 break;
mjr 35:e959ffba78fd 5271 }
mjr 100:1ff35c07217c 5272
mjr 100:1ff35c07217c 5273 // initialize the plunger from the saved configuration
mjr 100:1ff35c07217c 5274 plungerSensor->restoreCalibration(cfg);
mjr 86:e30a1f60f783 5275
mjr 87:8d35c74403af 5276 // initialize the config variables affecting the plunger
mjr 87:8d35c74403af 5277 plungerSensor->onConfigChange(19, cfg);
mjr 87:8d35c74403af 5278 plungerSensor->onConfigChange(20, cfg);
mjr 33:d832bcab089e 5279 }
mjr 33:d832bcab089e 5280
mjr 52:8298b2a73eb2 5281 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 5282 bool plungerCalMode;
mjr 52:8298b2a73eb2 5283
mjr 48:058ace2aed1d 5284 // Plunger reader
mjr 51:57eb311faafa 5285 //
mjr 51:57eb311faafa 5286 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 5287 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 5288 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 5289 //
mjr 51:57eb311faafa 5290 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 5291 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 5292 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 5293 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa 5294 // real physical position that we're reading from the sensor, and instead
mjr 51:57eb311faafa 5295 // report a synthetic series of positions that depicts an idealized
mjr 51:57eb311faafa 5296 // firing motion.
mjr 51:57eb311faafa 5297 //
mjr 51:57eb311faafa 5298 // The point of the synthetic reports is to correct for distortions
mjr 51:57eb311faafa 5299 // created by the joystick interface conventions used by VP and other
mjr 51:57eb311faafa 5300 // PC pinball emulators. The convention they use is simply to have the
mjr 51:57eb311faafa 5301 // plunger device report the instantaneous position of the real plunger.
mjr 51:57eb311faafa 5302 // The PC software polls this reported position periodically, and moves
mjr 51:57eb311faafa 5303 // the on-screen virtual plunger in sync with the real plunger. This
mjr 51:57eb311faafa 5304 // works fine for human-scale motion when the user is manually moving
mjr 51:57eb311faafa 5305 // the plunger. But it doesn't work for the high speed motion of a
mjr 51:57eb311faafa 5306 // release. The plunger simply moves too fast. VP polls in about 10ms
mjr 51:57eb311faafa 5307 // intervals; the plunger takes about 50ms to travel from fully
mjr 51:57eb311faafa 5308 // retracted to the park position when released. The low sampling
mjr 51:57eb311faafa 5309 // rate relative to the rate of change of the sampled data creates
mjr 51:57eb311faafa 5310 // a classic digital aliasing effect.
mjr 51:57eb311faafa 5311 //
mjr 51:57eb311faafa 5312 // The synthetic reporting scheme compensates for the interface
mjr 51:57eb311faafa 5313 // distortions by essentially changing to a coarse enough timescale
mjr 51:57eb311faafa 5314 // that VP can reliably interpret the readings. Conceptually, there
mjr 51:57eb311faafa 5315 // are three steps involved in doing this. First, we analyze the
mjr 51:57eb311faafa 5316 // actual sensor data to detect and characterize the release motion.
mjr 51:57eb311faafa 5317 // Second, once we think we have a release in progress, we fit the
mjr 51:57eb311faafa 5318 // data to a mathematical model of the release. The model we use is
mjr 51:57eb311faafa 5319 // dead simple: we consider the release to have one parameter, namely
mjr 51:57eb311faafa 5320 // the retraction distance at the moment the user lets go. This is an
mjr 51:57eb311faafa 5321 // excellent proxy in the real physical system for the final speed
mjr 51:57eb311faafa 5322 // when the plunger hits the ball, and it also happens to match how
mjr 51:57eb311faafa 5323 // VP models it internally. Third, we construct synthetic reports
mjr 51:57eb311faafa 5324 // that will make VP's internal state match our model. This is also
mjr 51:57eb311faafa 5325 // pretty simple: we just need to send VP the maximum retraction
mjr 51:57eb311faafa 5326 // distance for long enough to be sure that it polls it at least
mjr 51:57eb311faafa 5327 // once, and then send it the park position for long enough to
mjr 51:57eb311faafa 5328 // ensure that VP will complete the same firing motion. The
mjr 51:57eb311faafa 5329 // immediate jump from the maximum point to the zero point will
mjr 51:57eb311faafa 5330 // cause VP to move its simulation model plunger forward from the
mjr 51:57eb311faafa 5331 // starting point at its natural spring acceleration rate, which
mjr 51:57eb311faafa 5332 // is exactly what the real plunger just did.
mjr 51:57eb311faafa 5333 //
mjr 48:058ace2aed1d 5334 class PlungerReader
mjr 48:058ace2aed1d 5335 {
mjr 48:058ace2aed1d 5336 public:
mjr 48:058ace2aed1d 5337 PlungerReader()
mjr 48:058ace2aed1d 5338 {
mjr 48:058ace2aed1d 5339 // not in a firing event yet
mjr 48:058ace2aed1d 5340 firing = 0;
mjr 48:058ace2aed1d 5341 }
mjr 76:7f5912b6340e 5342
mjr 48:058ace2aed1d 5343 // Collect a reading from the plunger sensor. The main loop calls
mjr 48:058ace2aed1d 5344 // this frequently to read the current raw position data from the
mjr 48:058ace2aed1d 5345 // sensor. We analyze the raw data to produce the calibrated
mjr 48:058ace2aed1d 5346 // position that we report to the PC via the joystick interface.
mjr 48:058ace2aed1d 5347 void read()
mjr 48:058ace2aed1d 5348 {
mjr 76:7f5912b6340e 5349 // if the sensor is busy, skip the reading on this round
mjr 76:7f5912b6340e 5350 if (!plungerSensor->ready())
mjr 76:7f5912b6340e 5351 return;
mjr 76:7f5912b6340e 5352
mjr 48:058ace2aed1d 5353 // Read a sample from the sensor
mjr 48:058ace2aed1d 5354 PlungerReading r;
mjr 48:058ace2aed1d 5355 if (plungerSensor->read(r))
mjr 48:058ace2aed1d 5356 {
mjr 53:9b2611964afc 5357 // check for calibration mode
mjr 53:9b2611964afc 5358 if (plungerCalMode)
mjr 53:9b2611964afc 5359 {
mjr 53:9b2611964afc 5360 // Calibration mode. Adjust the calibration bounds to fit
mjr 53:9b2611964afc 5361 // the value. If this value is beyond the current min or max,
mjr 53:9b2611964afc 5362 // expand the envelope to include this new value.
mjr 53:9b2611964afc 5363 if (r.pos > cfg.plunger.cal.max)
mjr 53:9b2611964afc 5364 cfg.plunger.cal.max = r.pos;
mjr 53:9b2611964afc 5365 if (r.pos < cfg.plunger.cal.min)
mjr 53:9b2611964afc 5366 cfg.plunger.cal.min = r.pos;
mjr 76:7f5912b6340e 5367
mjr 76:7f5912b6340e 5368 // update our cached calibration data
mjr 76:7f5912b6340e 5369 onUpdateCal();
mjr 50:40015764bbe6 5370
mjr 53:9b2611964afc 5371 // If we're in calibration state 0, we're waiting for the
mjr 53:9b2611964afc 5372 // plunger to come to rest at the park position so that we
mjr 53:9b2611964afc 5373 // can take a sample of the park position. Check to see if
mjr 53:9b2611964afc 5374 // we've been at rest for a minimum interval.
mjr 53:9b2611964afc 5375 if (calState == 0)
mjr 53:9b2611964afc 5376 {
mjr 53:9b2611964afc 5377 if (abs(r.pos - calZeroStart.pos) < 65535/3/50)
mjr 53:9b2611964afc 5378 {
mjr 53:9b2611964afc 5379 // we're close enough - make sure we've been here long enough
mjr 53:9b2611964afc 5380 if (uint32_t(r.t - calZeroStart.t) > 100000UL)
mjr 53:9b2611964afc 5381 {
mjr 53:9b2611964afc 5382 // we've been at rest long enough - count it
mjr 53:9b2611964afc 5383 calZeroPosSum += r.pos;
mjr 53:9b2611964afc 5384 calZeroPosN += 1;
mjr 53:9b2611964afc 5385
mjr 53:9b2611964afc 5386 // update the zero position from the new average
mjr 53:9b2611964afc 5387 cfg.plunger.cal.zero = uint16_t(calZeroPosSum / calZeroPosN);
mjr 76:7f5912b6340e 5388 onUpdateCal();
mjr 53:9b2611964afc 5389
mjr 53:9b2611964afc 5390 // switch to calibration state 1 - at rest
mjr 53:9b2611964afc 5391 calState = 1;
mjr 53:9b2611964afc 5392 }
mjr 53:9b2611964afc 5393 }
mjr 53:9b2611964afc 5394 else
mjr 53:9b2611964afc 5395 {
mjr 53:9b2611964afc 5396 // we're not close to the last position - start again here
mjr 53:9b2611964afc 5397 calZeroStart = r;
mjr 53:9b2611964afc 5398 }
mjr 53:9b2611964afc 5399 }
mjr 53:9b2611964afc 5400
mjr 53:9b2611964afc 5401 // Rescale to the joystick range, and adjust for the current
mjr 53:9b2611964afc 5402 // park position, but don't calibrate. We don't know the maximum
mjr 53:9b2611964afc 5403 // point yet, so we can't calibrate the range.
mjr 53:9b2611964afc 5404 r.pos = int(
mjr 53:9b2611964afc 5405 (long(r.pos - cfg.plunger.cal.zero) * JOYMAX)
mjr 53:9b2611964afc 5406 / (65535 - cfg.plunger.cal.zero));
mjr 53:9b2611964afc 5407 }
mjr 53:9b2611964afc 5408 else
mjr 53:9b2611964afc 5409 {
mjr 53:9b2611964afc 5410 // Not in calibration mode. Apply the existing calibration and
mjr 53:9b2611964afc 5411 // rescale to the joystick range.
mjr 76:7f5912b6340e 5412 r.pos = applyCal(r.pos);
mjr 53:9b2611964afc 5413
mjr 53:9b2611964afc 5414 // limit the result to the valid joystick range
mjr 53:9b2611964afc 5415 if (r.pos > JOYMAX)
mjr 53:9b2611964afc 5416 r.pos = JOYMAX;
mjr 53:9b2611964afc 5417 else if (r.pos < -JOYMAX)
mjr 53:9b2611964afc 5418 r.pos = -JOYMAX;
mjr 53:9b2611964afc 5419 }
mjr 50:40015764bbe6 5420
mjr 87:8d35c74403af 5421 // Look for a firing event - the user releasing the plunger and
mjr 87:8d35c74403af 5422 // allowing it to shoot forward at full speed. Wait at least 5ms
mjr 87:8d35c74403af 5423 // between samples for this, to help distinguish random motion
mjr 87:8d35c74403af 5424 // from the rapid motion of a firing event.
mjr 50:40015764bbe6 5425 //
mjr 87:8d35c74403af 5426 // There's a trade-off in the choice of minimum sampling interval.
mjr 87:8d35c74403af 5427 // The longer we wait, the more certain we can be of the trend.
mjr 87:8d35c74403af 5428 // But if we wait too long, the user will perceive a delay. We
mjr 87:8d35c74403af 5429 // also want to sample frequently enough to see the release motion
mjr 87:8d35c74403af 5430 // at intermediate steps along the way, so the sampling has to be
mjr 87:8d35c74403af 5431 // considerably faster than the whole travel time, which is about
mjr 87:8d35c74403af 5432 // 25-50ms.
mjr 87:8d35c74403af 5433 if (uint32_t(r.t - prv.t) < 5000UL)
mjr 87:8d35c74403af 5434 return;
mjr 87:8d35c74403af 5435
mjr 87:8d35c74403af 5436 // assume that we'll report this reading as-is
mjr 87:8d35c74403af 5437 z = r.pos;
mjr 87:8d35c74403af 5438
mjr 87:8d35c74403af 5439 // Firing event detection.
mjr 87:8d35c74403af 5440 //
mjr 87:8d35c74403af 5441 // A "firing event" is when the player releases the plunger from
mjr 87:8d35c74403af 5442 // a retracted position, allowing it to shoot forward under the
mjr 87:8d35c74403af 5443 // spring tension.
mjr 50:40015764bbe6 5444 //
mjr 87:8d35c74403af 5445 // We monitor the plunger motion for these events, and when they
mjr 87:8d35c74403af 5446 // occur, we report an "idealized" version of the motion to the
mjr 87:8d35c74403af 5447 // PC. The idealized version consists of a series of readings
mjr 87:8d35c74403af 5448 // frozen at the fully retracted position for the whole duration
mjr 87:8d35c74403af 5449 // of the forward travel, followed by a series of readings at the
mjr 87:8d35c74403af 5450 // fully forward position for long enough for the plunger to come
mjr 87:8d35c74403af 5451 // mostly to rest. The series of frozen readings aren't meant to
mjr 87:8d35c74403af 5452 // be perceptible to the player - we try to keep them short enough
mjr 87:8d35c74403af 5453 // that they're not apparent as delay. Instead, they're for the
mjr 87:8d35c74403af 5454 // PC client software's benefit. PC joystick clients use polling,
mjr 87:8d35c74403af 5455 // so they only see an unpredictable subset of the readings we
mjr 87:8d35c74403af 5456 // send. The only way to be sure that the client sees a particular
mjr 87:8d35c74403af 5457 // reading is to hold it for long enough that the client is sure to
mjr 87:8d35c74403af 5458 // poll within the hold interval. In the case of the plunger
mjr 87:8d35c74403af 5459 // firing motion, it's important that the client sees the *ends*
mjr 87:8d35c74403af 5460 // of the travel - the fully retracted starting position in
mjr 87:8d35c74403af 5461 // particular. If the PC client only polls for a sample while the
mjr 87:8d35c74403af 5462 // plunger is somewhere in the middle of the travel, the PC will
mjr 87:8d35c74403af 5463 // think that the firing motion *started* in that middle position,
mjr 87:8d35c74403af 5464 // so it won't be able to model the right amount of momentum when
mjr 87:8d35c74403af 5465 // the plunger hits the ball. We try to ensure that the PC sees
mjr 87:8d35c74403af 5466 // the right starting point by reporting the starting point for
mjr 87:8d35c74403af 5467 // extra time during the forward motion. By the same token, we
mjr 87:8d35c74403af 5468 // want the PC to know that the plunger has moved all the way
mjr 87:8d35c74403af 5469 // forward, rather than mistakenly thinking that it stopped
mjr 87:8d35c74403af 5470 // somewhere in the middle of the travel, so we freeze at the
mjr 87:8d35c74403af 5471 // forward position for a short time.
mjr 76:7f5912b6340e 5472 //
mjr 87:8d35c74403af 5473 // To detect a firing event, we look for forward motion that's
mjr 87:8d35c74403af 5474 // fast enough to be a firing event. To determine how fast is
mjr 87:8d35c74403af 5475 // fast enough, we use a simple model of the plunger motion where
mjr 87:8d35c74403af 5476 // the acceleration is constant. This is only an approximation,
mjr 87:8d35c74403af 5477 // as the spring force actually varies with spring's compression,
mjr 87:8d35c74403af 5478 // but it's close enough for our purposes here.
mjr 87:8d35c74403af 5479 //
mjr 87:8d35c74403af 5480 // Do calculations in fixed-point 2^48 scale with 64-bit ints.
mjr 87:8d35c74403af 5481 // acc2 = acceleration/2 for 50ms release time, units of unit
mjr 87:8d35c74403af 5482 // distances per microsecond squared, where the unit distance
mjr 87:8d35c74403af 5483 // is the overall travel from the starting retracted position
mjr 87:8d35c74403af 5484 // to the park position.
mjr 87:8d35c74403af 5485 const int32_t acc2 = 112590; // 2^48 scale
mjr 50:40015764bbe6 5486 switch (firing)
mjr 50:40015764bbe6 5487 {
mjr 50:40015764bbe6 5488 case 0:
mjr 87:8d35c74403af 5489 // Not in firing mode. If we're retracted a bit, and the
mjr 87:8d35c74403af 5490 // motion is forward at a fast enough rate to look like a
mjr 87:8d35c74403af 5491 // release, enter firing mode.
mjr 87:8d35c74403af 5492 if (r.pos > JOYMAX/6)
mjr 50:40015764bbe6 5493 {
mjr 87:8d35c74403af 5494 const uint32_t dt = uint32_t(r.t - prv.t);
mjr 87:8d35c74403af 5495 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5496 if (r.pos < prv.pos - int((prv.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5497 {
mjr 87:8d35c74403af 5498 // Tentatively enter firing mode. Use the prior reading
mjr 87:8d35c74403af 5499 // as the starting point, and freeze reports for now.
mjr 87:8d35c74403af 5500 firingMode(1);
mjr 87:8d35c74403af 5501 f0 = prv;
mjr 87:8d35c74403af 5502 z = f0.pos;
mjr 87:8d35c74403af 5503
mjr 87:8d35c74403af 5504 // if in calibration state 1 (at rest), switch to
mjr 87:8d35c74403af 5505 // state 2 (not at rest)
mjr 87:8d35c74403af 5506 if (calState == 1)
mjr 87:8d35c74403af 5507 calState = 2;
mjr 87:8d35c74403af 5508 }
mjr 50:40015764bbe6 5509 }
mjr 50:40015764bbe6 5510 break;
mjr 50:40015764bbe6 5511
mjr 50:40015764bbe6 5512 case 1:
mjr 87:8d35c74403af 5513 // Tentative firing mode: the plunger was moving forward
mjr 87:8d35c74403af 5514 // at last check. To stay in firing mode, the plunger has
mjr 87:8d35c74403af 5515 // to keep moving forward fast enough to look like it's
mjr 87:8d35c74403af 5516 // moving under spring force. To figure out how fast is
mjr 87:8d35c74403af 5517 // fast enough, we use a simple model where the acceleration
mjr 87:8d35c74403af 5518 // is constant over the whole travel distance and the total
mjr 87:8d35c74403af 5519 // travel time is 50ms. The acceleration actually varies
mjr 87:8d35c74403af 5520 // slightly since it comes from the spring force, which
mjr 87:8d35c74403af 5521 // is linear in the displacement; but the plunger spring is
mjr 87:8d35c74403af 5522 // fairly compressed even when the plunger is all the way
mjr 87:8d35c74403af 5523 // forward, so the difference in tension from one end of
mjr 87:8d35c74403af 5524 // the travel to the other is fairly small, so it's not too
mjr 87:8d35c74403af 5525 // far off to model it as constant. And the real travel
mjr 87:8d35c74403af 5526 // time obviously isn't a constant, but all we need for
mjr 87:8d35c74403af 5527 // that is an upper bound. So: we'll figure the time since
mjr 87:8d35c74403af 5528 // we entered firing mode, and figure the distance we should
mjr 87:8d35c74403af 5529 // have traveled to complete the trip within the maximum
mjr 87:8d35c74403af 5530 // time allowed. If we've moved far enough, we'll stay
mjr 87:8d35c74403af 5531 // in firing mode; if not, we'll exit firing mode. And if
mjr 87:8d35c74403af 5532 // we cross the finish line while still in firing mode,
mjr 87:8d35c74403af 5533 // we'll switch to the next phase of the firing event.
mjr 50:40015764bbe6 5534 if (r.pos <= 0)
mjr 50:40015764bbe6 5535 {
mjr 87:8d35c74403af 5536 // We crossed the park position. Switch to the second
mjr 87:8d35c74403af 5537 // phase of the firing event, where we hold the reported
mjr 87:8d35c74403af 5538 // position at the "bounce" position (where the plunger
mjr 87:8d35c74403af 5539 // is all the way forward, compressing the barrel spring).
mjr 87:8d35c74403af 5540 // We'll stick here long enough to ensure that the PC
mjr 87:8d35c74403af 5541 // client (Visual Pinball or whatever) sees the reading
mjr 87:8d35c74403af 5542 // and processes the release motion via the simulated
mjr 87:8d35c74403af 5543 // physics.
mjr 50:40015764bbe6 5544 firingMode(2);
mjr 53:9b2611964afc 5545
mjr 53:9b2611964afc 5546 // if in calibration mode, and we're in state 2 (moving),
mjr 53:9b2611964afc 5547 // collect firing statistics for calibration purposes
mjr 53:9b2611964afc 5548 if (plungerCalMode && calState == 2)
mjr 53:9b2611964afc 5549 {
mjr 53:9b2611964afc 5550 // collect a new zero point for the average when we
mjr 53:9b2611964afc 5551 // come to rest
mjr 53:9b2611964afc 5552 calState = 0;
mjr 53:9b2611964afc 5553
mjr 87:8d35c74403af 5554 // collect average firing time statistics in millseconds,
mjr 87:8d35c74403af 5555 // if it's in range (20 to 255 ms)
mjr 87:8d35c74403af 5556 const int dt = uint32_t(r.t - f0.t)/1000UL;
mjr 87:8d35c74403af 5557 if (dt >= 15 && dt <= 255)
mjr 53:9b2611964afc 5558 {
mjr 53:9b2611964afc 5559 calRlsTimeSum += dt;
mjr 53:9b2611964afc 5560 calRlsTimeN += 1;
mjr 53:9b2611964afc 5561 cfg.plunger.cal.tRelease = uint8_t(calRlsTimeSum / calRlsTimeN);
mjr 53:9b2611964afc 5562 }
mjr 53:9b2611964afc 5563 }
mjr 87:8d35c74403af 5564
mjr 87:8d35c74403af 5565 // Figure the "bounce" position as forward of the park
mjr 87:8d35c74403af 5566 // position by 1/6 of the starting retraction distance.
mjr 87:8d35c74403af 5567 // This simulates the momentum of the plunger compressing
mjr 87:8d35c74403af 5568 // the barrel spring on the rebound. The barrel spring
mjr 87:8d35c74403af 5569 // can compress by about 1/6 of the maximum retraction
mjr 87:8d35c74403af 5570 // distance, so we'll simply treat its compression as
mjr 87:8d35c74403af 5571 // proportional to the retraction. (It might be more
mjr 87:8d35c74403af 5572 // realistic to use a slightly higher value here, maybe
mjr 87:8d35c74403af 5573 // 1/4 or 1/3 or the retraction distance, capping it at
mjr 87:8d35c74403af 5574 // a maximum of 1/6, because the real plunger probably
mjr 87:8d35c74403af 5575 // compresses the barrel spring by 100% with less than
mjr 87:8d35c74403af 5576 // 100% retraction. But that won't affect the physics
mjr 87:8d35c74403af 5577 // meaningfully, just the animation, and the effect is
mjr 87:8d35c74403af 5578 // small in any case.)
mjr 87:8d35c74403af 5579 z = f0.pos = -f0.pos / 6;
mjr 87:8d35c74403af 5580
mjr 87:8d35c74403af 5581 // reset the starting time for this phase
mjr 87:8d35c74403af 5582 f0.t = r.t;
mjr 50:40015764bbe6 5583 }
mjr 50:40015764bbe6 5584 else
mjr 50:40015764bbe6 5585 {
mjr 87:8d35c74403af 5586 // check for motion since the start of the firing event
mjr 87:8d35c74403af 5587 const uint32_t dt = uint32_t(r.t - f0.t);
mjr 87:8d35c74403af 5588 const uint32_t dt2 = dt*dt; // dt^2
mjr 87:8d35c74403af 5589 if (dt < 50000
mjr 87:8d35c74403af 5590 && r.pos < f0.pos - int((f0.pos*acc2*uint64_t(dt2)) >> 48))
mjr 87:8d35c74403af 5591 {
mjr 87:8d35c74403af 5592 // It's moving fast enough to still be in a release
mjr 87:8d35c74403af 5593 // motion. Continue reporting the start position, and
mjr 87:8d35c74403af 5594 // stay in the first release phase.
mjr 87:8d35c74403af 5595 z = f0.pos;
mjr 87:8d35c74403af 5596 }
mjr 87:8d35c74403af 5597 else
mjr 87:8d35c74403af 5598 {
mjr 87:8d35c74403af 5599 // It's not moving fast enough to be a release
mjr 87:8d35c74403af 5600 // motion. Return to the default state.
mjr 87:8d35c74403af 5601 firingMode(0);
mjr 87:8d35c74403af 5602 calState = 1;
mjr 87:8d35c74403af 5603 }
mjr 50:40015764bbe6 5604 }
mjr 50:40015764bbe6 5605 break;
mjr 50:40015764bbe6 5606
mjr 50:40015764bbe6 5607 case 2:
mjr 87:8d35c74403af 5608 // Firing mode, holding at forward compression position.
mjr 87:8d35c74403af 5609 // Hold here for 25ms.
mjr 87:8d35c74403af 5610 if (uint32_t(r.t - f0.t) < 25000)
mjr 50:40015764bbe6 5611 {
mjr 87:8d35c74403af 5612 // stay here for now
mjr 87:8d35c74403af 5613 z = f0.pos;
mjr 50:40015764bbe6 5614 }
mjr 50:40015764bbe6 5615 else
mjr 50:40015764bbe6 5616 {
mjr 87:8d35c74403af 5617 // advance to the next phase, where we report the park
mjr 87:8d35c74403af 5618 // position until the plunger comes to rest
mjr 50:40015764bbe6 5619 firingMode(3);
mjr 50:40015764bbe6 5620 z = 0;
mjr 87:8d35c74403af 5621
mjr 87:8d35c74403af 5622 // remember when we started
mjr 87:8d35c74403af 5623 f0.t = r.t;
mjr 50:40015764bbe6 5624 }
mjr 50:40015764bbe6 5625 break;
mjr 50:40015764bbe6 5626
mjr 50:40015764bbe6 5627 case 3:
mjr 87:8d35c74403af 5628 // Firing event, holding at park position. Stay here for
mjr 87:8d35c74403af 5629 // a few moments so that the PC client can simulate the
mjr 87:8d35c74403af 5630 // full release motion, then return to real readings.
mjr 87:8d35c74403af 5631 if (uint32_t(r.t - f0.t) < 250000)
mjr 50:40015764bbe6 5632 {
mjr 87:8d35c74403af 5633 // stay here a while longer
mjr 87:8d35c74403af 5634 z = 0;
mjr 50:40015764bbe6 5635 }
mjr 50:40015764bbe6 5636 else
mjr 50:40015764bbe6 5637 {
mjr 87:8d35c74403af 5638 // it's been long enough - return to normal mode
mjr 87:8d35c74403af 5639 firingMode(0);
mjr 50:40015764bbe6 5640 }
mjr 50:40015764bbe6 5641 break;
mjr 50:40015764bbe6 5642 }
mjr 50:40015764bbe6 5643
mjr 82:4f6209cb5c33 5644 // Check for auto-zeroing, if enabled
mjr 82:4f6209cb5c33 5645 if ((cfg.plunger.autoZero.flags & PlungerAutoZeroEnabled) != 0)
mjr 82:4f6209cb5c33 5646 {
mjr 82:4f6209cb5c33 5647 // If we moved since the last reading, reset and restart the
mjr 82:4f6209cb5c33 5648 // auto-zero timer. Otherwise, if the timer has reached the
mjr 82:4f6209cb5c33 5649 // auto-zero timeout, it means we've been motionless for that
mjr 82:4f6209cb5c33 5650 // long, so auto-zero now.
mjr 82:4f6209cb5c33 5651 if (r.pos != prv.pos)
mjr 82:4f6209cb5c33 5652 {
mjr 82:4f6209cb5c33 5653 // movement detected - reset the timer
mjr 82:4f6209cb5c33 5654 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5655 autoZeroTimer.start();
mjr 82:4f6209cb5c33 5656 }
mjr 82:4f6209cb5c33 5657 else if (autoZeroTimer.read_us() > cfg.plunger.autoZero.t * 1000000UL)
mjr 82:4f6209cb5c33 5658 {
mjr 82:4f6209cb5c33 5659 // auto-zero now
mjr 82:4f6209cb5c33 5660 plungerSensor->autoZero();
mjr 82:4f6209cb5c33 5661
mjr 82:4f6209cb5c33 5662 // stop the timer so that we don't keep repeating this
mjr 82:4f6209cb5c33 5663 // if the plunger stays still for a long time
mjr 82:4f6209cb5c33 5664 autoZeroTimer.stop();
mjr 82:4f6209cb5c33 5665 autoZeroTimer.reset();
mjr 82:4f6209cb5c33 5666 }
mjr 82:4f6209cb5c33 5667 }
mjr 82:4f6209cb5c33 5668
mjr 87:8d35c74403af 5669 // this new reading becomes the previous reading for next time
mjr 87:8d35c74403af 5670 prv = r;
mjr 48:058ace2aed1d 5671 }
mjr 48:058ace2aed1d 5672 }
mjr 48:058ace2aed1d 5673
mjr 48:058ace2aed1d 5674 // Get the current value to report through the joystick interface
mjr 58:523fdcffbe6d 5675 int16_t getPosition()
mjr 58:523fdcffbe6d 5676 {
mjr 86:e30a1f60f783 5677 // return the last reading
mjr 86:e30a1f60f783 5678 return z;
mjr 55:4db125cd11a0 5679 }
mjr 58:523fdcffbe6d 5680
mjr 48:058ace2aed1d 5681 // Set calibration mode on or off
mjr 52:8298b2a73eb2 5682 void setCalMode(bool f)
mjr 48:058ace2aed1d 5683 {
mjr 52:8298b2a73eb2 5684 // check to see if we're entering calibration mode
mjr 52:8298b2a73eb2 5685 if (f && !plungerCalMode)
mjr 52:8298b2a73eb2 5686 {
mjr 52:8298b2a73eb2 5687 // reset the calibration in the configuration
mjr 48:058ace2aed1d 5688 cfg.plunger.cal.begin();
mjr 52:8298b2a73eb2 5689
mjr 52:8298b2a73eb2 5690 // start in state 0 (waiting to settle)
mjr 52:8298b2a73eb2 5691 calState = 0;
mjr 52:8298b2a73eb2 5692 calZeroPosSum = 0;
mjr 52:8298b2a73eb2 5693 calZeroPosN = 0;
mjr 52:8298b2a73eb2 5694 calRlsTimeSum = 0;
mjr 52:8298b2a73eb2 5695 calRlsTimeN = 0;
mjr 52:8298b2a73eb2 5696
mjr 82:4f6209cb5c33 5697 // tell the plunger we're starting calibration
mjr 100:1ff35c07217c 5698 plungerSensor->beginCalibration(cfg);
mjr 82:4f6209cb5c33 5699
mjr 52:8298b2a73eb2 5700 // set the initial zero point to the current position
mjr 52:8298b2a73eb2 5701 PlungerReading r;
mjr 52:8298b2a73eb2 5702 if (plungerSensor->read(r))
mjr 52:8298b2a73eb2 5703 {
mjr 52:8298b2a73eb2 5704 // got a reading - use it as the initial zero point
mjr 52:8298b2a73eb2 5705 cfg.plunger.cal.zero = r.pos;
mjr 76:7f5912b6340e 5706 onUpdateCal();
mjr 52:8298b2a73eb2 5707
mjr 52:8298b2a73eb2 5708 // use it as the starting point for the settling watch
mjr 53:9b2611964afc 5709 calZeroStart = r;
mjr 52:8298b2a73eb2 5710 }
mjr 52:8298b2a73eb2 5711 else
mjr 52:8298b2a73eb2 5712 {
mjr 52:8298b2a73eb2 5713 // no reading available - use the default 1/6 position
mjr 52:8298b2a73eb2 5714 cfg.plunger.cal.zero = 0xffff/6;
mjr 76:7f5912b6340e 5715 onUpdateCal();
mjr 52:8298b2a73eb2 5716
mjr 52:8298b2a73eb2 5717 // we don't have a starting point for the setting watch
mjr 53:9b2611964afc 5718 calZeroStart.pos = -65535;
mjr 53:9b2611964afc 5719 calZeroStart.t = 0;
mjr 53:9b2611964afc 5720 }
mjr 53:9b2611964afc 5721 }
mjr 53:9b2611964afc 5722 else if (!f && plungerCalMode)
mjr 53:9b2611964afc 5723 {
mjr 53:9b2611964afc 5724 // Leaving calibration mode. Make sure the max is past the
mjr 53:9b2611964afc 5725 // zero point - if it's not, we'd have a zero or negative
mjr 53:9b2611964afc 5726 // denominator for the scaling calculation, which would be
mjr 53:9b2611964afc 5727 // physically meaningless.
mjr 53:9b2611964afc 5728 if (cfg.plunger.cal.max <= cfg.plunger.cal.zero)
mjr 53:9b2611964afc 5729 {
mjr 53:9b2611964afc 5730 // bad settings - reset to defaults
mjr 53:9b2611964afc 5731 cfg.plunger.cal.max = 0xffff;
mjr 53:9b2611964afc 5732 cfg.plunger.cal.zero = 0xffff/6;
mjr 52:8298b2a73eb2 5733 }
mjr 100:1ff35c07217c 5734
mjr 100:1ff35c07217c 5735 // finalize the configuration in the plunger object
mjr 100:1ff35c07217c 5736 plungerSensor->endCalibration(cfg);
mjr 100:1ff35c07217c 5737
mjr 100:1ff35c07217c 5738 // update our internal cached information for the new calibration
mjr 100:1ff35c07217c 5739 onUpdateCal();
mjr 52:8298b2a73eb2 5740 }
mjr 52:8298b2a73eb2 5741
mjr 48:058ace2aed1d 5742 // remember the new mode
mjr 52:8298b2a73eb2 5743 plungerCalMode = f;
mjr 48:058ace2aed1d 5744 }
mjr 48:058ace2aed1d 5745
mjr 76:7f5912b6340e 5746 // Cached inverse of the calibration range. This is for calculating
mjr 76:7f5912b6340e 5747 // the calibrated plunger position given a raw sensor reading. The
mjr 76:7f5912b6340e 5748 // cached inverse is calculated as
mjr 76:7f5912b6340e 5749 //
mjr 76:7f5912b6340e 5750 // 64K * JOYMAX / (cfg.plunger.cal.max - cfg.plunger.cal.zero)
mjr 76:7f5912b6340e 5751 //
mjr 76:7f5912b6340e 5752 // To convert a raw sensor reading to a calibrated position, calculate
mjr 76:7f5912b6340e 5753 //
mjr 76:7f5912b6340e 5754 // ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16
mjr 76:7f5912b6340e 5755 //
mjr 76:7f5912b6340e 5756 // That yields the calibration result without performing a division.
mjr 76:7f5912b6340e 5757 int invCalRange;
mjr 76:7f5912b6340e 5758
mjr 76:7f5912b6340e 5759 // apply the calibration range to a reading
mjr 76:7f5912b6340e 5760 inline int applyCal(int reading)
mjr 76:7f5912b6340e 5761 {
mjr 76:7f5912b6340e 5762 return ((reading - cfg.plunger.cal.zero)*invCalRange) >> 16;
mjr 76:7f5912b6340e 5763 }
mjr 76:7f5912b6340e 5764
mjr 76:7f5912b6340e 5765 void onUpdateCal()
mjr 76:7f5912b6340e 5766 {
mjr 76:7f5912b6340e 5767 invCalRange = (JOYMAX << 16)/(cfg.plunger.cal.max - cfg.plunger.cal.zero);
mjr 76:7f5912b6340e 5768 }
mjr 76:7f5912b6340e 5769
mjr 48:058ace2aed1d 5770 // is a firing event in progress?
mjr 53:9b2611964afc 5771 bool isFiring() { return firing == 3; }
mjr 76:7f5912b6340e 5772
mjr 48:058ace2aed1d 5773 private:
mjr 87:8d35c74403af 5774 // current reported joystick reading
mjr 87:8d35c74403af 5775 int z;
mjr 87:8d35c74403af 5776
mjr 87:8d35c74403af 5777 // previous reading
mjr 87:8d35c74403af 5778 PlungerReading prv;
mjr 87:8d35c74403af 5779
mjr 52:8298b2a73eb2 5780 // Calibration state. During calibration mode, we watch for release
mjr 52:8298b2a73eb2 5781 // events, to measure the time it takes to complete the release
mjr 52:8298b2a73eb2 5782 // motion; and we watch for the plunger to come to reset after a
mjr 52:8298b2a73eb2 5783 // release, to gather statistics on the rest position.
mjr 52:8298b2a73eb2 5784 // 0 = waiting to settle
mjr 52:8298b2a73eb2 5785 // 1 = at rest
mjr 52:8298b2a73eb2 5786 // 2 = retracting
mjr 52:8298b2a73eb2 5787 // 3 = possibly releasing
mjr 52:8298b2a73eb2 5788 uint8_t calState;
mjr 52:8298b2a73eb2 5789
mjr 52:8298b2a73eb2 5790 // Calibration zero point statistics.
mjr 52:8298b2a73eb2 5791 // During calibration mode, we collect data on the rest position (the
mjr 52:8298b2a73eb2 5792 // zero point) by watching for the plunger to come to rest after each
mjr 52:8298b2a73eb2 5793 // release. We average these rest positions to get the calibrated
mjr 52:8298b2a73eb2 5794 // zero point. We use the average because the real physical plunger
mjr 52:8298b2a73eb2 5795 // itself doesn't come to rest at exactly the same spot every time,
mjr 52:8298b2a73eb2 5796 // largely due to friction in the mechanism. To calculate the average,
mjr 52:8298b2a73eb2 5797 // we keep a sum of the readings and a count of samples.
mjr 53:9b2611964afc 5798 PlungerReading calZeroStart;
mjr 52:8298b2a73eb2 5799 long calZeroPosSum;
mjr 52:8298b2a73eb2 5800 int calZeroPosN;
mjr 52:8298b2a73eb2 5801
mjr 52:8298b2a73eb2 5802 // Calibration release time statistics.
mjr 52:8298b2a73eb2 5803 // During calibration, we collect an average for the release time.
mjr 52:8298b2a73eb2 5804 long calRlsTimeSum;
mjr 52:8298b2a73eb2 5805 int calRlsTimeN;
mjr 52:8298b2a73eb2 5806
mjr 85:3c28aee81cde 5807 // Auto-zeroing timer
mjr 85:3c28aee81cde 5808 Timer autoZeroTimer;
mjr 85:3c28aee81cde 5809
mjr 48:058ace2aed1d 5810 // set a firing mode
mjr 48:058ace2aed1d 5811 inline void firingMode(int m)
mjr 48:058ace2aed1d 5812 {
mjr 48:058ace2aed1d 5813 firing = m;
mjr 48:058ace2aed1d 5814 }
mjr 48:058ace2aed1d 5815
mjr 48:058ace2aed1d 5816 // Firing event state.
mjr 48:058ace2aed1d 5817 //
mjr 87:8d35c74403af 5818 // 0 - Default state: not in firing event. We report the true
mjr 87:8d35c74403af 5819 // instantaneous plunger position to the joystick interface.
mjr 48:058ace2aed1d 5820 //
mjr 87:8d35c74403af 5821 // 1 - Moving forward at release speed
mjr 48:058ace2aed1d 5822 //
mjr 87:8d35c74403af 5823 // 2 - Firing - reporting the bounce position
mjr 87:8d35c74403af 5824 //
mjr 87:8d35c74403af 5825 // 3 - Firing - reporting the park position
mjr 48:058ace2aed1d 5826 //
mjr 48:058ace2aed1d 5827 int firing;
mjr 48:058ace2aed1d 5828
mjr 87:8d35c74403af 5829 // Starting position for current firing mode phase
mjr 87:8d35c74403af 5830 PlungerReading f0;
mjr 48:058ace2aed1d 5831 };
mjr 48:058ace2aed1d 5832
mjr 48:058ace2aed1d 5833 // plunger reader singleton
mjr 48:058ace2aed1d 5834 PlungerReader plungerReader;
mjr 48:058ace2aed1d 5835
mjr 48:058ace2aed1d 5836 // ---------------------------------------------------------------------------
mjr 48:058ace2aed1d 5837 //
mjr 48:058ace2aed1d 5838 // Handle the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5839 //
mjr 48:058ace2aed1d 5840 // The ZB Launch Ball feature, if enabled, lets the mechanical plunger
mjr 48:058ace2aed1d 5841 // serve as a substitute for a physical Launch Ball button. When a table
mjr 48:058ace2aed1d 5842 // is loaded in VP, and the table has the ZB Launch Ball LedWiz port
mjr 48:058ace2aed1d 5843 // turned on, we'll disable mechanical plunger reports through the
mjr 48:058ace2aed1d 5844 // joystick interface and instead use the plunger only to simulate the
mjr 48:058ace2aed1d 5845 // Launch Ball button. When the mode is active, pulling back and
mjr 48:058ace2aed1d 5846 // releasing the plunger causes a brief simulated press of the Launch
mjr 48:058ace2aed1d 5847 // button, and pushing the plunger forward of the rest position presses
mjr 48:058ace2aed1d 5848 // the Launch button as long as the plunger is pressed forward.
mjr 48:058ace2aed1d 5849 //
mjr 48:058ace2aed1d 5850 // This feature has two configuration components:
mjr 48:058ace2aed1d 5851 //
mjr 48:058ace2aed1d 5852 // - An LedWiz port number. This port is a "virtual" port that doesn't
mjr 48:058ace2aed1d 5853 // have to be attached to any actual output. DOF uses it to signal
mjr 48:058ace2aed1d 5854 // that the current table uses a Launch button instead of a plunger.
mjr 48:058ace2aed1d 5855 // DOF simply turns the port on when such a table is loaded and turns
mjr 48:058ace2aed1d 5856 // it off at all other times. We use it to enable and disable the
mjr 48:058ace2aed1d 5857 // plunger/launch button connection.
mjr 48:058ace2aed1d 5858 //
mjr 48:058ace2aed1d 5859 // - A joystick button ID. We simulate pressing this button when the
mjr 48:058ace2aed1d 5860 // launch feature is activated via the LedWiz port and the plunger is
mjr 48:058ace2aed1d 5861 // either pulled back and releasd, or pushed forward past the rest
mjr 48:058ace2aed1d 5862 // position.
mjr 48:058ace2aed1d 5863 //
mjr 48:058ace2aed1d 5864 class ZBLaunchBall
mjr 48:058ace2aed1d 5865 {
mjr 48:058ace2aed1d 5866 public:
mjr 48:058ace2aed1d 5867 ZBLaunchBall()
mjr 48:058ace2aed1d 5868 {
mjr 48:058ace2aed1d 5869 // start in the default state
mjr 48:058ace2aed1d 5870 lbState = 0;
mjr 53:9b2611964afc 5871 btnState = false;
mjr 48:058ace2aed1d 5872 }
mjr 48:058ace2aed1d 5873
mjr 48:058ace2aed1d 5874 // Update state. This checks the current plunger position and
mjr 48:058ace2aed1d 5875 // the timers to see if the plunger is in a position that simulates
mjr 48:058ace2aed1d 5876 // a Launch Ball button press via the ZB Launch Ball feature.
mjr 48:058ace2aed1d 5877 // Updates the simulated button vector according to the current
mjr 48:058ace2aed1d 5878 // launch ball state. The main loop calls this before each
mjr 48:058ace2aed1d 5879 // joystick update to figure the new simulated button state.
mjr 53:9b2611964afc 5880 void update()
mjr 48:058ace2aed1d 5881 {
mjr 53:9b2611964afc 5882 // If the ZB Launch Ball led wiz output is ON, check for a
mjr 53:9b2611964afc 5883 // plunger firing event
mjr 53:9b2611964afc 5884 if (zbLaunchOn)
mjr 48:058ace2aed1d 5885 {
mjr 53:9b2611964afc 5886 // note the new position
mjr 48:058ace2aed1d 5887 int znew = plungerReader.getPosition();
mjr 53:9b2611964afc 5888
mjr 53:9b2611964afc 5889 // figure the push threshold from the configuration data
mjr 51:57eb311faafa 5890 const int pushThreshold = int(-JOYMAX/3.0 * cfg.plunger.zbLaunchBall.pushDistance/1000.0);
mjr 53:9b2611964afc 5891
mjr 53:9b2611964afc 5892 // check the state
mjr 48:058ace2aed1d 5893 switch (lbState)
mjr 48:058ace2aed1d 5894 {
mjr 48:058ace2aed1d 5895 case 0:
mjr 53:9b2611964afc 5896 // Default state. If a launch event has been detected on
mjr 53:9b2611964afc 5897 // the plunger, activate a timed pulse and switch to state 1.
mjr 53:9b2611964afc 5898 // If the plunger is pushed forward of the threshold, push
mjr 53:9b2611964afc 5899 // the button.
mjr 53:9b2611964afc 5900 if (plungerReader.isFiring())
mjr 53:9b2611964afc 5901 {
mjr 53:9b2611964afc 5902 // firing event - start a timed Launch button pulse
mjr 53:9b2611964afc 5903 lbTimer.reset();
mjr 53:9b2611964afc 5904 lbTimer.start();
mjr 53:9b2611964afc 5905 setButton(true);
mjr 53:9b2611964afc 5906
mjr 53:9b2611964afc 5907 // switch to state 1
mjr 53:9b2611964afc 5908 lbState = 1;
mjr 53:9b2611964afc 5909 }
mjr 48:058ace2aed1d 5910 else if (znew <= pushThreshold)
mjr 53:9b2611964afc 5911 {
mjr 53:9b2611964afc 5912 // pushed forward without a firing event - hold the
mjr 53:9b2611964afc 5913 // button as long as we're pushed forward
mjr 53:9b2611964afc 5914 setButton(true);
mjr 53:9b2611964afc 5915 }
mjr 53:9b2611964afc 5916 else
mjr 53:9b2611964afc 5917 {
mjr 53:9b2611964afc 5918 // not pushed forward - turn off the Launch button
mjr 53:9b2611964afc 5919 setButton(false);
mjr 53:9b2611964afc 5920 }
mjr 48:058ace2aed1d 5921 break;
mjr 48:058ace2aed1d 5922
mjr 48:058ace2aed1d 5923 case 1:
mjr 53:9b2611964afc 5924 // State 1: Timed Launch button pulse in progress after a
mjr 53:9b2611964afc 5925 // firing event. Wait for the timer to expire.
mjr 53:9b2611964afc 5926 if (lbTimer.read_us() > 200000UL)
mjr 53:9b2611964afc 5927 {
mjr 53:9b2611964afc 5928 // timer expired - turn off the button
mjr 53:9b2611964afc 5929 setButton(false);
mjr 53:9b2611964afc 5930
mjr 53:9b2611964afc 5931 // switch to state 2
mjr 53:9b2611964afc 5932 lbState = 2;
mjr 53:9b2611964afc 5933 }
mjr 48:058ace2aed1d 5934 break;
mjr 48:058ace2aed1d 5935
mjr 48:058ace2aed1d 5936 case 2:
mjr 53:9b2611964afc 5937 // State 2: Timed Launch button pulse done. Wait for the
mjr 53:9b2611964afc 5938 // plunger launch event to end.
mjr 53:9b2611964afc 5939 if (!plungerReader.isFiring())
mjr 53:9b2611964afc 5940 {
mjr 53:9b2611964afc 5941 // firing event done - return to default state
mjr 53:9b2611964afc 5942 lbState = 0;
mjr 53:9b2611964afc 5943 }
mjr 48:058ace2aed1d 5944 break;
mjr 48:058ace2aed1d 5945 }
mjr 53:9b2611964afc 5946 }
mjr 53:9b2611964afc 5947 else
mjr 53:9b2611964afc 5948 {
mjr 53:9b2611964afc 5949 // ZB Launch Ball disabled - turn off the button if it was on
mjr 53:9b2611964afc 5950 setButton(false);
mjr 48:058ace2aed1d 5951
mjr 53:9b2611964afc 5952 // return to the default state
mjr 53:9b2611964afc 5953 lbState = 0;
mjr 48:058ace2aed1d 5954 }
mjr 48:058ace2aed1d 5955 }
mjr 53:9b2611964afc 5956
mjr 53:9b2611964afc 5957 // Set the button state
mjr 53:9b2611964afc 5958 void setButton(bool on)
mjr 53:9b2611964afc 5959 {
mjr 53:9b2611964afc 5960 if (btnState != on)
mjr 53:9b2611964afc 5961 {
mjr 53:9b2611964afc 5962 // remember the new state
mjr 53:9b2611964afc 5963 btnState = on;
mjr 53:9b2611964afc 5964
mjr 53:9b2611964afc 5965 // update the virtual button state
mjr 65:739875521aae 5966 buttonState[zblButtonIndex].virtPress(on);
mjr 53:9b2611964afc 5967 }
mjr 53:9b2611964afc 5968 }
mjr 53:9b2611964afc 5969
mjr 48:058ace2aed1d 5970 private:
mjr 48:058ace2aed1d 5971 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 48:058ace2aed1d 5972 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 48:058ace2aed1d 5973 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 48:058ace2aed1d 5974 // back and releases the plunger, or simply pushes on the plunger from
mjr 48:058ace2aed1d 5975 // the rest position. This allows the plunger to be used in lieu of a
mjr 48:058ace2aed1d 5976 // physical Launch Ball button for tables that don't have plungers.
mjr 48:058ace2aed1d 5977 //
mjr 48:058ace2aed1d 5978 // States:
mjr 48:058ace2aed1d 5979 // 0 = default
mjr 53:9b2611964afc 5980 // 1 = firing (firing event has activated a Launch button pulse)
mjr 53:9b2611964afc 5981 // 2 = firing done (Launch button pulse ended, waiting for plunger
mjr 53:9b2611964afc 5982 // firing event to end)
mjr 53:9b2611964afc 5983 uint8_t lbState;
mjr 48:058ace2aed1d 5984
mjr 53:9b2611964afc 5985 // button state
mjr 53:9b2611964afc 5986 bool btnState;
mjr 48:058ace2aed1d 5987
mjr 48:058ace2aed1d 5988 // Time since last lbState transition. Some of the states are time-
mjr 48:058ace2aed1d 5989 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 48:058ace2aed1d 5990 // we remain in this state for more than a few milliseconds, since
mjr 48:058ace2aed1d 5991 // it indicates that the plunger is being slowly returned to rest
mjr 48:058ace2aed1d 5992 // rather than released. In the "launching" state, we need to release
mjr 48:058ace2aed1d 5993 // the Launch Ball button after a moment, and we need to wait for
mjr 48:058ace2aed1d 5994 // the plunger to come to rest before returning to state 0.
mjr 48:058ace2aed1d 5995 Timer lbTimer;
mjr 48:058ace2aed1d 5996 };
mjr 48:058ace2aed1d 5997
mjr 35:e959ffba78fd 5998 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 5999 //
mjr 35:e959ffba78fd 6000 // Reboot - resets the microcontroller
mjr 35:e959ffba78fd 6001 //
mjr 54:fd77a6b2f76c 6002 void reboot(USBJoystick &js, bool disconnect = true, long pause_us = 2000000L)
mjr 35:e959ffba78fd 6003 {
mjr 35:e959ffba78fd 6004 // disconnect from USB
mjr 54:fd77a6b2f76c 6005 if (disconnect)
mjr 54:fd77a6b2f76c 6006 js.disconnect();
mjr 35:e959ffba78fd 6007
mjr 35:e959ffba78fd 6008 // wait a few seconds to make sure the host notices the disconnect
mjr 54:fd77a6b2f76c 6009 wait_us(pause_us);
mjr 35:e959ffba78fd 6010
mjr 35:e959ffba78fd 6011 // reset the device
mjr 35:e959ffba78fd 6012 NVIC_SystemReset();
mjr 35:e959ffba78fd 6013 while (true) { }
mjr 35:e959ffba78fd 6014 }
mjr 35:e959ffba78fd 6015
mjr 35:e959ffba78fd 6016 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6017 //
mjr 35:e959ffba78fd 6018 // Translate joystick readings from raw values to reported values, based
mjr 35:e959ffba78fd 6019 // on the orientation of the controller card in the cabinet.
mjr 35:e959ffba78fd 6020 //
mjr 35:e959ffba78fd 6021 void accelRotate(int &x, int &y)
mjr 35:e959ffba78fd 6022 {
mjr 35:e959ffba78fd 6023 int tmp;
mjr 78:1e00b3fa11af 6024 switch (cfg.accel.orientation)
mjr 35:e959ffba78fd 6025 {
mjr 35:e959ffba78fd 6026 case OrientationFront:
mjr 35:e959ffba78fd 6027 tmp = x;
mjr 35:e959ffba78fd 6028 x = y;
mjr 35:e959ffba78fd 6029 y = tmp;
mjr 35:e959ffba78fd 6030 break;
mjr 35:e959ffba78fd 6031
mjr 35:e959ffba78fd 6032 case OrientationLeft:
mjr 35:e959ffba78fd 6033 x = -x;
mjr 35:e959ffba78fd 6034 break;
mjr 35:e959ffba78fd 6035
mjr 35:e959ffba78fd 6036 case OrientationRight:
mjr 35:e959ffba78fd 6037 y = -y;
mjr 35:e959ffba78fd 6038 break;
mjr 35:e959ffba78fd 6039
mjr 35:e959ffba78fd 6040 case OrientationRear:
mjr 35:e959ffba78fd 6041 tmp = -x;
mjr 35:e959ffba78fd 6042 x = -y;
mjr 35:e959ffba78fd 6043 y = tmp;
mjr 35:e959ffba78fd 6044 break;
mjr 35:e959ffba78fd 6045 }
mjr 35:e959ffba78fd 6046 }
mjr 35:e959ffba78fd 6047
mjr 35:e959ffba78fd 6048 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6049 //
mjr 35:e959ffba78fd 6050 // Calibration button state:
mjr 35:e959ffba78fd 6051 // 0 = not pushed
mjr 35:e959ffba78fd 6052 // 1 = pushed, not yet debounced
mjr 35:e959ffba78fd 6053 // 2 = pushed, debounced, waiting for hold time
mjr 35:e959ffba78fd 6054 // 3 = pushed, hold time completed - in calibration mode
mjr 35:e959ffba78fd 6055 int calBtnState = 0;
mjr 35:e959ffba78fd 6056
mjr 35:e959ffba78fd 6057 // calibration button debounce timer
mjr 35:e959ffba78fd 6058 Timer calBtnTimer;
mjr 35:e959ffba78fd 6059
mjr 35:e959ffba78fd 6060 // calibration button light state
mjr 35:e959ffba78fd 6061 int calBtnLit = false;
mjr 35:e959ffba78fd 6062
mjr 35:e959ffba78fd 6063
mjr 35:e959ffba78fd 6064 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6065 //
mjr 40:cc0d9814522b 6066 // Configuration variable get/set message handling
mjr 35:e959ffba78fd 6067 //
mjr 40:cc0d9814522b 6068
mjr 40:cc0d9814522b 6069 // Handle SET messages - write configuration variables from USB message data
mjr 40:cc0d9814522b 6070 #define if_msg_valid(test) if (test)
mjr 53:9b2611964afc 6071 #define v_byte(var, ofs) cfg.var = data[ofs]
mjr 91:ae9be42652bf 6072 #define v_byte_wo(var, ofs) cfg.var = data[ofs]
mjr 53:9b2611964afc 6073 #define v_ui16(var, ofs) cfg.var = wireUI16(data+(ofs))
mjr 77:0b96f6867312 6074 #define v_ui32(var, ofs) cfg.var = wireUI32(data+(ofs))
mjr 53:9b2611964afc 6075 #define v_pin(var, ofs) cfg.var = wirePinName(data[ofs])
mjr 53:9b2611964afc 6076 #define v_byte_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 6077 #define v_ui32_ro(val, ofs) // ignore read-only variables on SET
mjr 74:822a92bc11d2 6078 #define VAR_MODE_SET 1 // we're in SET mode
mjr 76:7f5912b6340e 6079 #define v_func configVarSet(const uint8_t *data)
mjr 40:cc0d9814522b 6080 #include "cfgVarMsgMap.h"
mjr 35:e959ffba78fd 6081
mjr 40:cc0d9814522b 6082 // redefine everything for the SET messages
mjr 40:cc0d9814522b 6083 #undef if_msg_valid
mjr 40:cc0d9814522b 6084 #undef v_byte
mjr 40:cc0d9814522b 6085 #undef v_ui16
mjr 77:0b96f6867312 6086 #undef v_ui32
mjr 40:cc0d9814522b 6087 #undef v_pin
mjr 53:9b2611964afc 6088 #undef v_byte_ro
mjr 91:ae9be42652bf 6089 #undef v_byte_wo
mjr 74:822a92bc11d2 6090 #undef v_ui32_ro
mjr 74:822a92bc11d2 6091 #undef VAR_MODE_SET
mjr 40:cc0d9814522b 6092 #undef v_func
mjr 38:091e511ce8a0 6093
mjr 91:ae9be42652bf 6094 // Handle GET messages - read variable values and return in USB message data
mjr 40:cc0d9814522b 6095 #define if_msg_valid(test)
mjr 53:9b2611964afc 6096 #define v_byte(var, ofs) data[ofs] = cfg.var
mjr 53:9b2611964afc 6097 #define v_ui16(var, ofs) ui16Wire(data+(ofs), cfg.var)
mjr 77:0b96f6867312 6098 #define v_ui32(var, ofs) ui32Wire(data+(ofs), cfg.var)
mjr 53:9b2611964afc 6099 #define v_pin(var, ofs) pinNameWire(data+(ofs), cfg.var)
mjr 73:4e8ce0b18915 6100 #define v_byte_ro(val, ofs) data[ofs] = (val)
mjr 74:822a92bc11d2 6101 #define v_ui32_ro(val, ofs) ui32Wire(data+(ofs), val);
mjr 74:822a92bc11d2 6102 #define VAR_MODE_SET 0 // we're in GET mode
mjr 91:ae9be42652bf 6103 #define v_byte_wo(var, ofs) // ignore write-only variables in GET mode
mjr 76:7f5912b6340e 6104 #define v_func configVarGet(uint8_t *data)
mjr 40:cc0d9814522b 6105 #include "cfgVarMsgMap.h"
mjr 40:cc0d9814522b 6106
mjr 35:e959ffba78fd 6107
mjr 35:e959ffba78fd 6108 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 6109 //
mjr 101:755f44622abc 6110 // Timer for timestamping input requests
mjr 101:755f44622abc 6111 //
mjr 101:755f44622abc 6112 Timer requestTimestamper;
mjr 101:755f44622abc 6113
mjr 101:755f44622abc 6114 // ---------------------------------------------------------------------------
mjr 101:755f44622abc 6115 //
mjr 35:e959ffba78fd 6116 // Handle an input report from the USB host. Input reports use our extended
mjr 35:e959ffba78fd 6117 // LedWiz protocol.
mjr 33:d832bcab089e 6118 //
mjr 78:1e00b3fa11af 6119 void handleInputMsg(LedWizMsg &lwm, USBJoystick &js, Accel &accel)
mjr 35:e959ffba78fd 6120 {
mjr 38:091e511ce8a0 6121 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 38:091e511ce8a0 6122 // SBA is marked by the first byte having value 64 (0x40). In
mjr 38:091e511ce8a0 6123 // the real LedWiz protocol, any other value in the first byte
mjr 38:091e511ce8a0 6124 // means it's a PBA message. However, *valid* PBA messages
mjr 38:091e511ce8a0 6125 // always have a first byte (and in fact all 8 bytes) in the
mjr 38:091e511ce8a0 6126 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 38:091e511ce8a0 6127 // advantage of this to implement private protocol extensions.
mjr 38:091e511ce8a0 6128 // So our full protocol is as follows:
mjr 38:091e511ce8a0 6129 //
mjr 38:091e511ce8a0 6130 // first byte =
mjr 74:822a92bc11d2 6131 // 0-48 -> PBA
mjr 74:822a92bc11d2 6132 // 64 -> SBA
mjr 38:091e511ce8a0 6133 // 65 -> private control message; second byte specifies subtype
mjr 74:822a92bc11d2 6134 // 129-132 -> PBA
mjr 38:091e511ce8a0 6135 // 200-228 -> extended bank brightness set for outputs N to N+6, where
mjr 38:091e511ce8a0 6136 // N is (first byte - 200)*7
mjr 38:091e511ce8a0 6137 // other -> reserved for future use
mjr 38:091e511ce8a0 6138 //
mjr 39:b3815a1c3802 6139 uint8_t *data = lwm.data;
mjr 74:822a92bc11d2 6140 if (data[0] == 64)
mjr 35:e959ffba78fd 6141 {
mjr 74:822a92bc11d2 6142 // 64 = SBA (original LedWiz command to set on/off switches for ports 1-32)
mjr 74:822a92bc11d2 6143 //printf("SBA %02x %02x %02x %02x, speed %02x\r\n",
mjr 38:091e511ce8a0 6144 // data[1], data[2], data[3], data[4], data[5]);
mjr 74:822a92bc11d2 6145 sba_sbx(0, data);
mjr 74:822a92bc11d2 6146
mjr 74:822a92bc11d2 6147 // SBA resets the PBA port group counter
mjr 38:091e511ce8a0 6148 pbaIdx = 0;
mjr 38:091e511ce8a0 6149 }
mjr 38:091e511ce8a0 6150 else if (data[0] == 65)
mjr 38:091e511ce8a0 6151 {
mjr 38:091e511ce8a0 6152 // Private control message. This isn't an LedWiz message - it's
mjr 38:091e511ce8a0 6153 // an extension for this device. 65 is an invalid PBA setting,
mjr 38:091e511ce8a0 6154 // and isn't used for any other LedWiz message, so we appropriate
mjr 38:091e511ce8a0 6155 // it for our own private use. The first byte specifies the
mjr 38:091e511ce8a0 6156 // message type.
mjr 39:b3815a1c3802 6157 switch (data[1])
mjr 38:091e511ce8a0 6158 {
mjr 39:b3815a1c3802 6159 case 0:
mjr 39:b3815a1c3802 6160 // No Op
mjr 39:b3815a1c3802 6161 break;
mjr 39:b3815a1c3802 6162
mjr 39:b3815a1c3802 6163 case 1:
mjr 38:091e511ce8a0 6164 // 1 = Old Set Configuration:
mjr 38:091e511ce8a0 6165 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 38:091e511ce8a0 6166 // data[3] = feature enable bit mask:
mjr 38:091e511ce8a0 6167 // 0x01 = enable plunger sensor
mjr 39:b3815a1c3802 6168 {
mjr 39:b3815a1c3802 6169
mjr 39:b3815a1c3802 6170 // get the new LedWiz unit number - this is 0-15, whereas we
mjr 39:b3815a1c3802 6171 // we save the *nominal* unit number 1-16 in the config
mjr 39:b3815a1c3802 6172 uint8_t newUnitNo = (data[2] & 0x0f) + 1;
mjr 39:b3815a1c3802 6173
mjr 86:e30a1f60f783 6174 // we'll need a reboot if the LedWiz unit number is changing
mjr 86:e30a1f60f783 6175 bool reboot = (newUnitNo != cfg.psUnitNo);
mjr 39:b3815a1c3802 6176
mjr 39:b3815a1c3802 6177 // set the configuration parameters from the message
mjr 39:b3815a1c3802 6178 cfg.psUnitNo = newUnitNo;
mjr 39:b3815a1c3802 6179 cfg.plunger.enabled = data[3] & 0x01;
mjr 39:b3815a1c3802 6180
mjr 77:0b96f6867312 6181 // set the flag to do the save
mjr 86:e30a1f60f783 6182 saveConfigToFlash(0, reboot);
mjr 39:b3815a1c3802 6183 }
mjr 39:b3815a1c3802 6184 break;
mjr 38:091e511ce8a0 6185
mjr 39:b3815a1c3802 6186 case 2:
mjr 38:091e511ce8a0 6187 // 2 = Calibrate plunger
mjr 38:091e511ce8a0 6188 // (No parameters)
mjr 38:091e511ce8a0 6189
mjr 38:091e511ce8a0 6190 // enter calibration mode
mjr 38:091e511ce8a0 6191 calBtnState = 3;
mjr 52:8298b2a73eb2 6192 plungerReader.setCalMode(true);
mjr 38:091e511ce8a0 6193 calBtnTimer.reset();
mjr 39:b3815a1c3802 6194 break;
mjr 39:b3815a1c3802 6195
mjr 39:b3815a1c3802 6196 case 3:
mjr 52:8298b2a73eb2 6197 // 3 = plunger sensor status report
mjr 48:058ace2aed1d 6198 // data[2] = flag bits
mjr 53:9b2611964afc 6199 // data[3] = extra exposure time, 100us (.1ms) increments
mjr 52:8298b2a73eb2 6200 reportPlungerStat = true;
mjr 53:9b2611964afc 6201 reportPlungerStatFlags = data[2];
mjr 53:9b2611964afc 6202 reportPlungerStatTime = data[3];
mjr 38:091e511ce8a0 6203
mjr 101:755f44622abc 6204 // set the extra integration time in the sensor
mjr 101:755f44622abc 6205 plungerSensor->setExtraIntegrationTime(reportPlungerStatTime * 100);
mjr 101:755f44622abc 6206
mjr 101:755f44622abc 6207 // make a note of the request timestamp
mjr 101:755f44622abc 6208 tReportPlungerStat = requestTimestamper.read_us();
mjr 101:755f44622abc 6209
mjr 38:091e511ce8a0 6210 // show purple until we finish sending the report
mjr 38:091e511ce8a0 6211 diagLED(1, 0, 1);
mjr 39:b3815a1c3802 6212 break;
mjr 39:b3815a1c3802 6213
mjr 39:b3815a1c3802 6214 case 4:
mjr 38:091e511ce8a0 6215 // 4 = hardware configuration query
mjr 38:091e511ce8a0 6216 // (No parameters)
mjr 38:091e511ce8a0 6217 js.reportConfig(
mjr 38:091e511ce8a0 6218 numOutputs,
mjr 38:091e511ce8a0 6219 cfg.psUnitNo - 1, // report 0-15 range for unit number (we store 1-16 internally)
mjr 52:8298b2a73eb2 6220 cfg.plunger.cal.zero, cfg.plunger.cal.max, cfg.plunger.cal.tRelease,
mjr 75:677892300e7a 6221 nvm.valid(), // a config is loaded if the config memory block is valid
mjr 75:677892300e7a 6222 true, // we support sbx/pbx extensions
mjr 78:1e00b3fa11af 6223 true, // we support the new accelerometer settings
mjr 82:4f6209cb5c33 6224 true, // we support the "flash write ok" status bit in joystick reports
mjr 92:f264fbaa1be5 6225 true, // we support the configurable joystick report timing features
mjr 99:8139b0c274f4 6226 true, // chime logic is supported
mjr 79:682ae3171a08 6227 mallocBytesFree()); // remaining memory size
mjr 39:b3815a1c3802 6228 break;
mjr 39:b3815a1c3802 6229
mjr 39:b3815a1c3802 6230 case 5:
mjr 38:091e511ce8a0 6231 // 5 = all outputs off, reset to LedWiz defaults
mjr 38:091e511ce8a0 6232 allOutputsOff();
mjr 39:b3815a1c3802 6233 break;
mjr 39:b3815a1c3802 6234
mjr 39:b3815a1c3802 6235 case 6:
mjr 85:3c28aee81cde 6236 // 6 = Save configuration to flash. Optionally reboot after the
mjr 85:3c28aee81cde 6237 // delay time in seconds given in data[2].
mjr 85:3c28aee81cde 6238 //
mjr 85:3c28aee81cde 6239 // data[2] = delay time in seconds
mjr 85:3c28aee81cde 6240 // data[3] = flags:
mjr 85:3c28aee81cde 6241 // 0x01 -> do not reboot
mjr 86:e30a1f60f783 6242 saveConfigToFlash(data[2], !(data[3] & 0x01));
mjr 39:b3815a1c3802 6243 break;
mjr 40:cc0d9814522b 6244
mjr 40:cc0d9814522b 6245 case 7:
mjr 40:cc0d9814522b 6246 // 7 = Device ID report
mjr 53:9b2611964afc 6247 // data[2] = ID index: 1=CPU ID, 2=OpenSDA TUID
mjr 53:9b2611964afc 6248 js.reportID(data[2]);
mjr 40:cc0d9814522b 6249 break;
mjr 40:cc0d9814522b 6250
mjr 40:cc0d9814522b 6251 case 8:
mjr 40:cc0d9814522b 6252 // 8 = Engage/disengage night mode.
mjr 40:cc0d9814522b 6253 // data[2] = 1 to engage, 0 to disengage
mjr 40:cc0d9814522b 6254 setNightMode(data[2]);
mjr 40:cc0d9814522b 6255 break;
mjr 52:8298b2a73eb2 6256
mjr 52:8298b2a73eb2 6257 case 9:
mjr 52:8298b2a73eb2 6258 // 9 = Config variable query.
mjr 52:8298b2a73eb2 6259 // data[2] = config var ID
mjr 52:8298b2a73eb2 6260 // data[3] = array index (for array vars: button assignments, output ports)
mjr 52:8298b2a73eb2 6261 {
mjr 53:9b2611964afc 6262 // set up the reply buffer with the variable ID data, and zero out
mjr 53:9b2611964afc 6263 // the rest of the buffer
mjr 52:8298b2a73eb2 6264 uint8_t reply[8];
mjr 52:8298b2a73eb2 6265 reply[1] = data[2];
mjr 52:8298b2a73eb2 6266 reply[2] = data[3];
mjr 53:9b2611964afc 6267 memset(reply+3, 0, sizeof(reply)-3);
mjr 52:8298b2a73eb2 6268
mjr 52:8298b2a73eb2 6269 // query the value
mjr 52:8298b2a73eb2 6270 configVarGet(reply);
mjr 52:8298b2a73eb2 6271
mjr 52:8298b2a73eb2 6272 // send the reply
mjr 52:8298b2a73eb2 6273 js.reportConfigVar(reply + 1);
mjr 52:8298b2a73eb2 6274 }
mjr 52:8298b2a73eb2 6275 break;
mjr 53:9b2611964afc 6276
mjr 53:9b2611964afc 6277 case 10:
mjr 53:9b2611964afc 6278 // 10 = Build ID query.
mjr 53:9b2611964afc 6279 js.reportBuildInfo(getBuildID());
mjr 53:9b2611964afc 6280 break;
mjr 73:4e8ce0b18915 6281
mjr 73:4e8ce0b18915 6282 case 11:
mjr 73:4e8ce0b18915 6283 // 11 = TV ON relay control.
mjr 73:4e8ce0b18915 6284 // data[2] = operation:
mjr 73:4e8ce0b18915 6285 // 0 = turn relay off
mjr 73:4e8ce0b18915 6286 // 1 = turn relay on
mjr 73:4e8ce0b18915 6287 // 2 = pulse relay (as though the power-on timer fired)
mjr 73:4e8ce0b18915 6288 TVRelay(data[2]);
mjr 73:4e8ce0b18915 6289 break;
mjr 73:4e8ce0b18915 6290
mjr 73:4e8ce0b18915 6291 case 12:
mjr 77:0b96f6867312 6292 // 12 = Learn IR code. This enters IR learning mode. While
mjr 77:0b96f6867312 6293 // in learning mode, we report raw IR signals and the first IR
mjr 77:0b96f6867312 6294 // command decoded through the special IR report format. IR
mjr 77:0b96f6867312 6295 // learning mode automatically ends after a timeout expires if
mjr 77:0b96f6867312 6296 // no command can be decoded within the time limit.
mjr 77:0b96f6867312 6297
mjr 77:0b96f6867312 6298 // enter IR learning mode
mjr 77:0b96f6867312 6299 IRLearningMode = 1;
mjr 77:0b96f6867312 6300
mjr 77:0b96f6867312 6301 // cancel any regular IR input in progress
mjr 77:0b96f6867312 6302 IRCommandIn = 0;
mjr 77:0b96f6867312 6303
mjr 77:0b96f6867312 6304 // reset and start the learning mode timeout timer
mjr 77:0b96f6867312 6305 IRTimer.reset();
mjr 73:4e8ce0b18915 6306 break;
mjr 73:4e8ce0b18915 6307
mjr 73:4e8ce0b18915 6308 case 13:
mjr 73:4e8ce0b18915 6309 // 13 = Send button status report
mjr 73:4e8ce0b18915 6310 reportButtonStatus(js);
mjr 73:4e8ce0b18915 6311 break;
mjr 78:1e00b3fa11af 6312
mjr 78:1e00b3fa11af 6313 case 14:
mjr 78:1e00b3fa11af 6314 // 14 = manually center the accelerometer
mjr 78:1e00b3fa11af 6315 accel.manualCenterRequest();
mjr 78:1e00b3fa11af 6316 break;
mjr 78:1e00b3fa11af 6317
mjr 78:1e00b3fa11af 6318 case 15:
mjr 78:1e00b3fa11af 6319 // 15 = set up ad hoc IR command, part 1. Mark the command
mjr 78:1e00b3fa11af 6320 // as not ready, and save the partial data from the message.
mjr 78:1e00b3fa11af 6321 IRAdHocCmd.ready = 0;
mjr 78:1e00b3fa11af 6322 IRAdHocCmd.protocol = data[2];
mjr 78:1e00b3fa11af 6323 IRAdHocCmd.dittos = (data[3] & IRFlagDittos) != 0;
mjr 78:1e00b3fa11af 6324 IRAdHocCmd.code = wireUI32(&data[4]);
mjr 78:1e00b3fa11af 6325 break;
mjr 78:1e00b3fa11af 6326
mjr 78:1e00b3fa11af 6327 case 16:
mjr 78:1e00b3fa11af 6328 // 16 = send ad hoc IR command, part 2. Fill in the rest
mjr 78:1e00b3fa11af 6329 // of the data from the message and mark the command as
mjr 78:1e00b3fa11af 6330 // ready. The IR polling routine will send this as soon
mjr 78:1e00b3fa11af 6331 // as the IR transmitter is free.
mjr 78:1e00b3fa11af 6332 IRAdHocCmd.code |= (uint64_t(wireUI32(&data[2])) << 32);
mjr 78:1e00b3fa11af 6333 IRAdHocCmd.ready = 1;
mjr 78:1e00b3fa11af 6334 break;
mjr 88:98bce687e6c0 6335
mjr 88:98bce687e6c0 6336 case 17:
mjr 88:98bce687e6c0 6337 // 17 = send pre-programmed IR command. This works just like
mjr 88:98bce687e6c0 6338 // sending an ad hoc command above, but we get the command data
mjr 88:98bce687e6c0 6339 // from an IR slot in the config rather than from the client.
mjr 88:98bce687e6c0 6340 // First make sure we have a valid slot number.
mjr 88:98bce687e6c0 6341 if (data[2] >= 1 && data[2] <= MAX_IR_CODES)
mjr 88:98bce687e6c0 6342 {
mjr 88:98bce687e6c0 6343 // get the IR command slot in the config
mjr 88:98bce687e6c0 6344 IRCommandCfg &cmd = cfg.IRCommand[data[2] - 1];
mjr 88:98bce687e6c0 6345
mjr 88:98bce687e6c0 6346 // copy the IR command data from the config
mjr 88:98bce687e6c0 6347 IRAdHocCmd.protocol = cmd.protocol;
mjr 88:98bce687e6c0 6348 IRAdHocCmd.dittos = (cmd.flags & IRFlagDittos) != 0;
mjr 88:98bce687e6c0 6349 IRAdHocCmd.code = (uint64_t(cmd.code.hi) << 32) | cmd.code.lo;
mjr 88:98bce687e6c0 6350
mjr 88:98bce687e6c0 6351 // mark the command as ready - this will trigger the polling
mjr 88:98bce687e6c0 6352 // routine to send the command as soon as the transmitter
mjr 88:98bce687e6c0 6353 // is free
mjr 88:98bce687e6c0 6354 IRAdHocCmd.ready = 1;
mjr 88:98bce687e6c0 6355 }
mjr 88:98bce687e6c0 6356 break;
mjr 38:091e511ce8a0 6357 }
mjr 38:091e511ce8a0 6358 }
mjr 38:091e511ce8a0 6359 else if (data[0] == 66)
mjr 38:091e511ce8a0 6360 {
mjr 38:091e511ce8a0 6361 // Extended protocol - Set configuration variable.
mjr 38:091e511ce8a0 6362 // The second byte of the message is the ID of the variable
mjr 38:091e511ce8a0 6363 // to update, and the remaining bytes give the new value,
mjr 38:091e511ce8a0 6364 // in a variable-dependent format.
mjr 40:cc0d9814522b 6365 configVarSet(data);
mjr 86:e30a1f60f783 6366
mjr 87:8d35c74403af 6367 // notify the plunger, so that it can update relevant variables
mjr 87:8d35c74403af 6368 // dynamically
mjr 87:8d35c74403af 6369 plungerSensor->onConfigChange(data[1], cfg);
mjr 38:091e511ce8a0 6370 }
mjr 74:822a92bc11d2 6371 else if (data[0] == 67)
mjr 74:822a92bc11d2 6372 {
mjr 74:822a92bc11d2 6373 // SBX - extended SBA message. This is the same as SBA, except
mjr 74:822a92bc11d2 6374 // that the 7th byte selects a group of 32 ports, to allow access
mjr 74:822a92bc11d2 6375 // to ports beyond the first 32.
mjr 74:822a92bc11d2 6376 sba_sbx(data[6], data);
mjr 74:822a92bc11d2 6377 }
mjr 74:822a92bc11d2 6378 else if (data[0] == 68)
mjr 74:822a92bc11d2 6379 {
mjr 74:822a92bc11d2 6380 // PBX - extended PBA message. This is similar to PBA, but
mjr 74:822a92bc11d2 6381 // allows access to more than the first 32 ports by encoding
mjr 74:822a92bc11d2 6382 // a port group byte that selects a block of 8 ports.
mjr 74:822a92bc11d2 6383
mjr 74:822a92bc11d2 6384 // get the port group - the first port is 8*group
mjr 74:822a92bc11d2 6385 int portGroup = data[1];
mjr 74:822a92bc11d2 6386
mjr 74:822a92bc11d2 6387 // unpack the brightness values
mjr 74:822a92bc11d2 6388 uint32_t tmp1 = data[2] | (data[3]<<8) | (data[4]<<16);
mjr 74:822a92bc11d2 6389 uint32_t tmp2 = data[5] | (data[6]<<8) | (data[7]<<16);
mjr 74:822a92bc11d2 6390 uint8_t bri[8] = {
mjr 74:822a92bc11d2 6391 tmp1 & 0x3F, (tmp1>>6) & 0x3F, (tmp1>>12) & 0x3F, (tmp1>>18) & 0x3F,
mjr 74:822a92bc11d2 6392 tmp2 & 0x3F, (tmp2>>6) & 0x3F, (tmp2>>12) & 0x3F, (tmp2>>18) & 0x3F
mjr 74:822a92bc11d2 6393 };
mjr 74:822a92bc11d2 6394
mjr 74:822a92bc11d2 6395 // map the flash levels: 60->129, 61->130, 62->131, 63->132
mjr 74:822a92bc11d2 6396 for (int i = 0 ; i < 8 ; ++i)
mjr 74:822a92bc11d2 6397 {
mjr 74:822a92bc11d2 6398 if (bri[i] >= 60)
mjr 74:822a92bc11d2 6399 bri[i] += 129-60;
mjr 74:822a92bc11d2 6400 }
mjr 74:822a92bc11d2 6401
mjr 74:822a92bc11d2 6402 // Carry out the PBA
mjr 74:822a92bc11d2 6403 pba_pbx(portGroup*8, bri);
mjr 74:822a92bc11d2 6404 }
mjr 38:091e511ce8a0 6405 else if (data[0] >= 200 && data[0] <= 228)
mjr 38:091e511ce8a0 6406 {
mjr 38:091e511ce8a0 6407 // Extended protocol - Extended output port brightness update.
mjr 38:091e511ce8a0 6408 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 38:091e511ce8a0 6409 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 38:091e511ce8a0 6410 // The remaining bytes are brightness levels, 0-255, for the
mjr 38:091e511ce8a0 6411 // seven outputs in the selected bank. The LedWiz flashing
mjr 38:091e511ce8a0 6412 // modes aren't accessible in this message type; we can only
mjr 38:091e511ce8a0 6413 // set a fixed brightness, but in exchange we get 8-bit
mjr 38:091e511ce8a0 6414 // resolution rather than the paltry 0-48 scale that the real
mjr 38:091e511ce8a0 6415 // LedWiz uses. There's no separate on/off status for outputs
mjr 38:091e511ce8a0 6416 // adjusted with this message type, either, as there would be
mjr 38:091e511ce8a0 6417 // for a PBA message - setting a non-zero value immediately
mjr 38:091e511ce8a0 6418 // turns the output, overriding the last SBA setting.
mjr 38:091e511ce8a0 6419 //
mjr 38:091e511ce8a0 6420 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 38:091e511ce8a0 6421 // settings for the port. Any subsequent PBA/SBA message will
mjr 38:091e511ce8a0 6422 // in turn override the setting made here. It's simple - the
mjr 38:091e511ce8a0 6423 // most recent message of either type takes precedence. For
mjr 38:091e511ce8a0 6424 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 38:091e511ce8a0 6425 // address those ports anyway.
mjr 63:5cd1a5f3a41b 6426
mjr 63:5cd1a5f3a41b 6427 // figure the block of 7 ports covered in the message
mjr 38:091e511ce8a0 6428 int i0 = (data[0] - 200)*7;
mjr 38:091e511ce8a0 6429 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 63:5cd1a5f3a41b 6430
mjr 63:5cd1a5f3a41b 6431 // update each port
mjr 38:091e511ce8a0 6432 for (int i = i0 ; i < i1 ; ++i)
mjr 38:091e511ce8a0 6433 {
mjr 38:091e511ce8a0 6434 // set the brightness level for the output
mjr 40:cc0d9814522b 6435 uint8_t b = data[i-i0+1];
mjr 38:091e511ce8a0 6436 outLevel[i] = b;
mjr 38:091e511ce8a0 6437
mjr 74:822a92bc11d2 6438 // set the port's LedWiz state to the nearest equivalent, so
mjr 74:822a92bc11d2 6439 // that it maintains its current setting if we switch back to
mjr 74:822a92bc11d2 6440 // LedWiz mode on a future update
mjr 76:7f5912b6340e 6441 if (b != 0)
mjr 76:7f5912b6340e 6442 {
mjr 76:7f5912b6340e 6443 // Non-zero brightness - set the SBA switch on, and set the
mjr 76:7f5912b6340e 6444 // PBA brightness to the DOF brightness rescaled to the 1..48
mjr 76:7f5912b6340e 6445 // LedWiz range. If the port is subsequently addressed by an
mjr 76:7f5912b6340e 6446 // LedWiz command, this will carry the current DOF setting
mjr 76:7f5912b6340e 6447 // forward unchanged.
mjr 76:7f5912b6340e 6448 wizOn[i] = 1;
mjr 76:7f5912b6340e 6449 wizVal[i] = dof_to_lw[b];
mjr 76:7f5912b6340e 6450 }
mjr 76:7f5912b6340e 6451 else
mjr 76:7f5912b6340e 6452 {
mjr 76:7f5912b6340e 6453 // Zero brightness. Set the SBA switch off, and leave the
mjr 76:7f5912b6340e 6454 // PBA brightness the same as it was.
mjr 76:7f5912b6340e 6455 wizOn[i] = 0;
mjr 76:7f5912b6340e 6456 }
mjr 74:822a92bc11d2 6457
mjr 38:091e511ce8a0 6458 // set the output
mjr 40:cc0d9814522b 6459 lwPin[i]->set(b);
mjr 38:091e511ce8a0 6460 }
mjr 38:091e511ce8a0 6461
mjr 38:091e511ce8a0 6462 // update 74HC595 outputs, if attached
mjr 38:091e511ce8a0 6463 if (hc595 != 0)
mjr 38:091e511ce8a0 6464 hc595->update();
mjr 38:091e511ce8a0 6465 }
mjr 38:091e511ce8a0 6466 else
mjr 38:091e511ce8a0 6467 {
mjr 74:822a92bc11d2 6468 // Everything else is an LedWiz PBA message. This is a full
mjr 74:822a92bc11d2 6469 // "profile" dump from the host for one bank of 8 outputs. Each
mjr 74:822a92bc11d2 6470 // byte sets one output in the current bank. The current bank
mjr 74:822a92bc11d2 6471 // is implied; the bank starts at 0 and is reset to 0 by any SBA
mjr 74:822a92bc11d2 6472 // message, and is incremented to the next bank by each PBA. Our
mjr 74:822a92bc11d2 6473 // variable pbaIdx keeps track of the current bank. There's no
mjr 74:822a92bc11d2 6474 // direct way for the host to select the bank; it just has to count
mjr 74:822a92bc11d2 6475 // on us staying in sync. In practice, clients always send the
mjr 74:822a92bc11d2 6476 // full set of 4 PBA messages in a row to set all 32 outputs.
mjr 38:091e511ce8a0 6477 //
mjr 38:091e511ce8a0 6478 // Note that a PBA implicitly overrides our extended profile
mjr 38:091e511ce8a0 6479 // messages (message prefix 200-219), because this sets the
mjr 38:091e511ce8a0 6480 // wizVal[] entry for each output, and that takes precedence
mjr 63:5cd1a5f3a41b 6481 // over the extended protocol settings when we're in LedWiz
mjr 63:5cd1a5f3a41b 6482 // protocol mode.
mjr 38:091e511ce8a0 6483 //
mjr 38:091e511ce8a0 6484 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 38:091e511ce8a0 6485 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 38:091e511ce8a0 6486
mjr 74:822a92bc11d2 6487 // carry out the PBA
mjr 74:822a92bc11d2 6488 pba_pbx(pbaIdx, data);
mjr 74:822a92bc11d2 6489
mjr 74:822a92bc11d2 6490 // update the PBX index state for the next message
mjr 74:822a92bc11d2 6491 pbaIdx = (pbaIdx + 8) % 32;
mjr 38:091e511ce8a0 6492 }
mjr 38:091e511ce8a0 6493 }
mjr 35:e959ffba78fd 6494
mjr 38:091e511ce8a0 6495 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 6496 //
mjr 5:a70c0bce770d 6497 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 6498 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 6499 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 6500 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 6501 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 6502 // port outputs.
mjr 5:a70c0bce770d 6503 //
mjr 0:5acbbe3f4cf4 6504 int main(void)
mjr 0:5acbbe3f4cf4 6505 {
mjr 60:f38da020aa13 6506 // say hello to the debug console, in case it's connected
mjr 39:b3815a1c3802 6507 printf("\r\nPinscape Controller starting\r\n");
mjr 94:0476b3e2b996 6508
mjr 98:4df3c0f7e707 6509 // Set the default PWM period to 0.5ms = 2 kHz. This will be used
mjr 98:4df3c0f7e707 6510 // for PWM channels on PWM units whose periods aren't changed
mjr 98:4df3c0f7e707 6511 // explicitly, so it'll apply to LW outputs assigned to GPIO pins.
mjr 98:4df3c0f7e707 6512 // The KL25Z only allows the period to be set at the TPM unit
mjr 94:0476b3e2b996 6513 // level, not per channel, so all channels on a given unit will
mjr 94:0476b3e2b996 6514 // necessarily use the same frequency. We (currently) have two
mjr 94:0476b3e2b996 6515 // subsystems that need specific PWM frequencies: TLC5940NT (which
mjr 94:0476b3e2b996 6516 // uses PWM to generate the grayscale clock signal) and IR remote
mjr 94:0476b3e2b996 6517 // (which uses PWM to generate the IR carrier signal). Since
mjr 94:0476b3e2b996 6518 // those require specific PWM frequencies, it's important to assign
mjr 94:0476b3e2b996 6519 // those to separate TPM units if both are in use simultaneously;
mjr 94:0476b3e2b996 6520 // the Config Tool includes checks to ensure that will happen when
mjr 94:0476b3e2b996 6521 // setting a config interactively. In addition, for the greatest
mjr 94:0476b3e2b996 6522 // flexibility, we take care NOT to assign explicit PWM frequencies
mjr 94:0476b3e2b996 6523 // to pins that don't require special frequences. That way, if a
mjr 94:0476b3e2b996 6524 // pin that doesn't need anything special happens to be sharing a
mjr 94:0476b3e2b996 6525 // TPM unit with a pin that does require a specific frequency, the
mjr 94:0476b3e2b996 6526 // two will co-exist peacefully on the TPM.
mjr 94:0476b3e2b996 6527 //
mjr 94:0476b3e2b996 6528 // We set this default first, before we create any PWM GPIOs, so
mjr 94:0476b3e2b996 6529 // that it will apply to all channels by default but won't override
mjr 94:0476b3e2b996 6530 // any channels that need specific frequences. Currently, the only
mjr 94:0476b3e2b996 6531 // frequency-agnostic PWM user is the LW outputs, so we can choose
mjr 94:0476b3e2b996 6532 // the default to be suitable for those. This is chosen to minimize
mjr 94:0476b3e2b996 6533 // flicker on attached LEDs.
mjr 94:0476b3e2b996 6534 NewPwmUnit::defaultPeriod = 0.0005f;
mjr 82:4f6209cb5c33 6535
mjr 76:7f5912b6340e 6536 // clear the I2C connection
mjr 35:e959ffba78fd 6537 clear_i2c();
mjr 82:4f6209cb5c33 6538
mjr 82:4f6209cb5c33 6539 // Elevate GPIO pin interrupt priorities, so that they can preempt
mjr 82:4f6209cb5c33 6540 // other interrupts. This is important for some external peripherals,
mjr 82:4f6209cb5c33 6541 // particularly the quadrature plunger sensors, which can generate
mjr 82:4f6209cb5c33 6542 // high-speed interrupts that need to be serviced quickly to keep
mjr 82:4f6209cb5c33 6543 // proper count of the quadrature position.
mjr 82:4f6209cb5c33 6544 FastInterruptIn::elevatePriority();
mjr 38:091e511ce8a0 6545
mjr 76:7f5912b6340e 6546 // Load the saved configuration. There are two sources of the
mjr 76:7f5912b6340e 6547 // configuration data:
mjr 76:7f5912b6340e 6548 //
mjr 76:7f5912b6340e 6549 // - Look for an NVM (flash non-volatile memory) configuration.
mjr 76:7f5912b6340e 6550 // If this is valid, we'll load it. The NVM is config data that can
mjr 76:7f5912b6340e 6551 // be updated dynamically by the host via USB commands and then stored
mjr 76:7f5912b6340e 6552 // in the flash by the firmware itself. If this exists, it supersedes
mjr 76:7f5912b6340e 6553 // any of the other settings stores. The Windows config tool uses this
mjr 76:7f5912b6340e 6554 // to store user settings updates.
mjr 76:7f5912b6340e 6555 //
mjr 76:7f5912b6340e 6556 // - If there's no NVM, we'll load the factory defaults, then we'll
mjr 76:7f5912b6340e 6557 // load any settings stored in the host-loaded configuration. The
mjr 76:7f5912b6340e 6558 // host can patch a set of configuration variable settings into the
mjr 76:7f5912b6340e 6559 // .bin file when loading new firmware, in the host-loaded config
mjr 76:7f5912b6340e 6560 // area that we reserve for this purpose. This allows the host to
mjr 76:7f5912b6340e 6561 // restore a configuration at the same time it installs firmware,
mjr 76:7f5912b6340e 6562 // without a separate download of the config data.
mjr 76:7f5912b6340e 6563 //
mjr 76:7f5912b6340e 6564 // The NVM supersedes the host-loaded config, since it can be updated
mjr 76:7f5912b6340e 6565 // between firmware updated and is thus presumably more recent if it's
mjr 76:7f5912b6340e 6566 // present. (Note that the NVM and host-loaded config are both in
mjr 76:7f5912b6340e 6567 // flash, so in principle we could just have a single NVM store that
mjr 76:7f5912b6340e 6568 // the host patches. The only reason we don't is that the NVM store
mjr 76:7f5912b6340e 6569 // is an image of our in-memory config structure, which is a native C
mjr 76:7f5912b6340e 6570 // struct, and we don't want the host to have to know the details of
mjr 76:7f5912b6340e 6571 // its byte layout, for obvious reasons. The host-loaded config, in
mjr 76:7f5912b6340e 6572 // contrast, uses the wire protocol format, which has a well-defined
mjr 76:7f5912b6340e 6573 // byte layout that's independent of the firmware version or the
mjr 76:7f5912b6340e 6574 // details of how the C compiler arranges the struct memory.)
mjr 76:7f5912b6340e 6575 if (!loadConfigFromFlash())
mjr 76:7f5912b6340e 6576 loadHostLoadedConfig();
mjr 35:e959ffba78fd 6577
mjr 38:091e511ce8a0 6578 // initialize the diagnostic LEDs
mjr 38:091e511ce8a0 6579 initDiagLEDs(cfg);
mjr 38:091e511ce8a0 6580
mjr 33:d832bcab089e 6581 // we're not connected/awake yet
mjr 33:d832bcab089e 6582 bool connected = false;
mjr 40:cc0d9814522b 6583 Timer connectChangeTimer;
mjr 33:d832bcab089e 6584
mjr 35:e959ffba78fd 6585 // create the plunger sensor interface
mjr 35:e959ffba78fd 6586 createPlunger();
mjr 76:7f5912b6340e 6587
mjr 76:7f5912b6340e 6588 // update the plunger reader's cached calibration data
mjr 76:7f5912b6340e 6589 plungerReader.onUpdateCal();
mjr 33:d832bcab089e 6590
mjr 60:f38da020aa13 6591 // set up the TLC5940 interface, if these chips are present
mjr 35:e959ffba78fd 6592 init_tlc5940(cfg);
mjr 34:6b981a2afab7 6593
mjr 87:8d35c74403af 6594 // initialize the TLC5916 interface, if these chips are present
mjr 87:8d35c74403af 6595 init_tlc59116(cfg);
mjr 87:8d35c74403af 6596
mjr 60:f38da020aa13 6597 // set up 74HC595 interface, if these chips are present
mjr 35:e959ffba78fd 6598 init_hc595(cfg);
mjr 6:cc35eb643e8f 6599
mjr 54:fd77a6b2f76c 6600 // Initialize the LedWiz ports. Note that the ordering here is important:
mjr 54:fd77a6b2f76c 6601 // this has to come after we create the TLC5940 and 74HC595 object instances
mjr 54:fd77a6b2f76c 6602 // (which we just did above), since we need to access those objects to set
mjr 54:fd77a6b2f76c 6603 // up ports assigned to the respective chips.
mjr 35:e959ffba78fd 6604 initLwOut(cfg);
mjr 48:058ace2aed1d 6605
mjr 60:f38da020aa13 6606 // start the TLC5940 refresh cycle clock
mjr 35:e959ffba78fd 6607 if (tlc5940 != 0)
mjr 35:e959ffba78fd 6608 tlc5940->start();
mjr 87:8d35c74403af 6609
mjr 77:0b96f6867312 6610 // Assume that nothing uses keyboard keys. We'll check for keyboard
mjr 77:0b96f6867312 6611 // usage when initializing the various subsystems that can send keys
mjr 77:0b96f6867312 6612 // (buttons, IR). If we find anything that does, we'll create the
mjr 77:0b96f6867312 6613 // USB keyboard interface.
mjr 77:0b96f6867312 6614 bool kbKeys = false;
mjr 77:0b96f6867312 6615
mjr 77:0b96f6867312 6616 // set up the IR remote control emitter & receiver, if present
mjr 77:0b96f6867312 6617 init_IR(cfg, kbKeys);
mjr 77:0b96f6867312 6618
mjr 77:0b96f6867312 6619 // start the power status time, if applicable
mjr 77:0b96f6867312 6620 startPowerStatusTimer(cfg);
mjr 48:058ace2aed1d 6621
mjr 35:e959ffba78fd 6622 // initialize the button input ports
mjr 35:e959ffba78fd 6623 initButtons(cfg, kbKeys);
mjr 38:091e511ce8a0 6624
mjr 60:f38da020aa13 6625 // Create the joystick USB client. Note that the USB vendor/product ID
mjr 60:f38da020aa13 6626 // information comes from the saved configuration. Also note that we have
mjr 60:f38da020aa13 6627 // to wait until after initializing the input buttons (which we just did
mjr 60:f38da020aa13 6628 // above) to set up the interface, since the button setup will determine
mjr 60:f38da020aa13 6629 // whether or not we need to present a USB keyboard interface in addition
mjr 60:f38da020aa13 6630 // to the joystick interface.
mjr 51:57eb311faafa 6631 MyUSBJoystick js(cfg.usbVendorID, cfg.usbProductID, USB_VERSION_NO, false,
mjr 90:aa4e571da8e8 6632 cfg.joystickEnabled, cfg.joystickAxisFormat, kbKeys);
mjr 51:57eb311faafa 6633
mjr 101:755f44622abc 6634 // start the request timestamp timer
mjr 101:755f44622abc 6635 requestTimestamper.start();
mjr 101:755f44622abc 6636
mjr 60:f38da020aa13 6637 // Wait for the USB connection to start up. Show a distinctive diagnostic
mjr 60:f38da020aa13 6638 // flash pattern while waiting.
mjr 70:9f58735a1732 6639 Timer connTimeoutTimer, connFlashTimer;
mjr 70:9f58735a1732 6640 connTimeoutTimer.start();
mjr 70:9f58735a1732 6641 connFlashTimer.start();
mjr 51:57eb311faafa 6642 while (!js.configured())
mjr 51:57eb311faafa 6643 {
mjr 51:57eb311faafa 6644 // show one short yellow flash at 2-second intervals
mjr 70:9f58735a1732 6645 if (connFlashTimer.read_us() > 2000000)
mjr 51:57eb311faafa 6646 {
mjr 51:57eb311faafa 6647 // short yellow flash
mjr 51:57eb311faafa 6648 diagLED(1, 1, 0);
mjr 54:fd77a6b2f76c 6649 wait_us(50000);
mjr 51:57eb311faafa 6650 diagLED(0, 0, 0);
mjr 51:57eb311faafa 6651
mjr 51:57eb311faafa 6652 // reset the flash timer
mjr 70:9f58735a1732 6653 connFlashTimer.reset();
mjr 51:57eb311faafa 6654 }
mjr 70:9f58735a1732 6655
mjr 77:0b96f6867312 6656 // If we've been disconnected for more than the reboot timeout,
mjr 77:0b96f6867312 6657 // reboot. Some PCs won't reconnect if we were left plugged in
mjr 77:0b96f6867312 6658 // during a power cycle on the PC, but fortunately a reboot on
mjr 77:0b96f6867312 6659 // the KL25Z will make the host notice us and trigger a reconnect.
mjr 86:e30a1f60f783 6660 // Don't do this if we're in a non-recoverable PSU2 power state.
mjr 70:9f58735a1732 6661 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 6662 && connTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 6663 && powerStatusAllowsReboot())
mjr 70:9f58735a1732 6664 reboot(js, false, 0);
mjr 77:0b96f6867312 6665
mjr 77:0b96f6867312 6666 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6667 powerStatusUpdate(cfg);
mjr 51:57eb311faafa 6668 }
mjr 60:f38da020aa13 6669
mjr 60:f38da020aa13 6670 // we're now connected to the host
mjr 54:fd77a6b2f76c 6671 connected = true;
mjr 40:cc0d9814522b 6672
mjr 92:f264fbaa1be5 6673 // Set up a timer for keeping track of how long it's been since we
mjr 92:f264fbaa1be5 6674 // sent the last joystick report. We use this to determine when it's
mjr 92:f264fbaa1be5 6675 // time to send the next joystick report.
mjr 92:f264fbaa1be5 6676 //
mjr 92:f264fbaa1be5 6677 // We have to use a timer for two reasons. The first is that our main
mjr 92:f264fbaa1be5 6678 // loop runs too fast (about .25ms to 2.5ms per loop, depending on the
mjr 92:f264fbaa1be5 6679 // type of plunger sensor attached and other factors) for us to send
mjr 92:f264fbaa1be5 6680 // joystick reports on every iteration. We *could*, but the PC couldn't
mjr 92:f264fbaa1be5 6681 // digest them at that pace. So we need to slow down the reports to a
mjr 92:f264fbaa1be5 6682 // reasonable pace. The second is that VP has some complicated timing
mjr 92:f264fbaa1be5 6683 // issues of its own, so we not only need to slow down the reports from
mjr 92:f264fbaa1be5 6684 // our "natural" pace, but also time them to sync up with VP's input
mjr 92:f264fbaa1be5 6685 // sampling rate as best we can.
mjr 38:091e511ce8a0 6686 Timer jsReportTimer;
mjr 38:091e511ce8a0 6687 jsReportTimer.start();
mjr 38:091e511ce8a0 6688
mjr 92:f264fbaa1be5 6689 // Accelerometer sample "stutter" counter. Each time we send a joystick
mjr 92:f264fbaa1be5 6690 // report, we increment this counter, and check to see if it has reached
mjr 92:f264fbaa1be5 6691 // the threshold set in the configuration. If so, we take a new
mjr 92:f264fbaa1be5 6692 // accelerometer sample and send it with the new joystick report. It
mjr 92:f264fbaa1be5 6693 // not, we don't take a new sample, but simply repeat the last sample.
mjr 92:f264fbaa1be5 6694 //
mjr 92:f264fbaa1be5 6695 // This lets us send joystick reports more frequently than accelerometer
mjr 92:f264fbaa1be5 6696 // samples. The point is to let us slow down accelerometer reports to
mjr 92:f264fbaa1be5 6697 // a pace that matches VP's input sampling frequency, while still sending
mjr 92:f264fbaa1be5 6698 // joystick button updates more frequently, so that other programs that
mjr 92:f264fbaa1be5 6699 // can read input faster will see button changes with less latency.
mjr 92:f264fbaa1be5 6700 int jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 6701
mjr 92:f264fbaa1be5 6702 // Last accelerometer report, in joystick units. We normally report the
mjr 92:f264fbaa1be5 6703 // acceleromter reading via the joystick X and Y axes, per the VP
mjr 92:f264fbaa1be5 6704 // convention. We can alternatively report in the RX and RY axes; this
mjr 92:f264fbaa1be5 6705 // can be set in the configuration.
mjr 92:f264fbaa1be5 6706 int x = 0, y = 0;
mjr 92:f264fbaa1be5 6707
mjr 60:f38da020aa13 6708 // Time since we successfully sent a USB report. This is a hacky
mjr 60:f38da020aa13 6709 // workaround to deal with any remaining sporadic problems in the USB
mjr 60:f38da020aa13 6710 // stack. I've been trying to bulletproof the USB code over time to
mjr 60:f38da020aa13 6711 // remove all such problems at their source, but it seems unlikely that
mjr 60:f38da020aa13 6712 // we'll ever get them all. Thus this hack. The idea here is that if
mjr 60:f38da020aa13 6713 // we go too long without successfully sending a USB report, we'll
mjr 60:f38da020aa13 6714 // assume that the connection is broken (and the KL25Z USB hardware
mjr 60:f38da020aa13 6715 // hasn't noticed this), and we'll try taking measures to recover.
mjr 38:091e511ce8a0 6716 Timer jsOKTimer;
mjr 38:091e511ce8a0 6717 jsOKTimer.start();
mjr 35:e959ffba78fd 6718
mjr 55:4db125cd11a0 6719 // Initialize the calibration button and lamp, if enabled. To be enabled,
mjr 55:4db125cd11a0 6720 // the pin has to be assigned to something other than NC (0xFF), AND the
mjr 55:4db125cd11a0 6721 // corresponding feature enable flag has to be set.
mjr 55:4db125cd11a0 6722 DigitalIn *calBtn = 0;
mjr 55:4db125cd11a0 6723 DigitalOut *calBtnLed = 0;
mjr 55:4db125cd11a0 6724
mjr 55:4db125cd11a0 6725 // calibration button input - feature flag 0x01
mjr 55:4db125cd11a0 6726 if ((cfg.plunger.cal.features & 0x01) && cfg.plunger.cal.btn != 0xFF)
mjr 55:4db125cd11a0 6727 calBtn = new DigitalIn(wirePinName(cfg.plunger.cal.btn));
mjr 55:4db125cd11a0 6728
mjr 55:4db125cd11a0 6729 // calibration button indicator lamp output - feature flag 0x02
mjr 55:4db125cd11a0 6730 if ((cfg.plunger.cal.features & 0x02) && cfg.plunger.cal.led != 0xFF)
mjr 55:4db125cd11a0 6731 calBtnLed = new DigitalOut(wirePinName(cfg.plunger.cal.led));
mjr 6:cc35eb643e8f 6732
mjr 35:e959ffba78fd 6733 // initialize the calibration button
mjr 1:d913e0afb2ac 6734 calBtnTimer.start();
mjr 35:e959ffba78fd 6735 calBtnState = 0;
mjr 1:d913e0afb2ac 6736
mjr 1:d913e0afb2ac 6737 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 6738 Timer hbTimer;
mjr 1:d913e0afb2ac 6739 hbTimer.start();
mjr 1:d913e0afb2ac 6740 int hb = 0;
mjr 5:a70c0bce770d 6741 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 6742
mjr 1:d913e0afb2ac 6743 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 6744 Timer acTimer;
mjr 1:d913e0afb2ac 6745 acTimer.start();
mjr 1:d913e0afb2ac 6746
mjr 0:5acbbe3f4cf4 6747 // create the accelerometer object
mjr 77:0b96f6867312 6748 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS,
mjr 78:1e00b3fa11af 6749 MMA8451_INT_PIN, cfg.accel.range, cfg.accel.autoCenterTime);
mjr 76:7f5912b6340e 6750
mjr 48:058ace2aed1d 6751 // initialize the plunger sensor
mjr 35:e959ffba78fd 6752 plungerSensor->init();
mjr 10:976666ffa4ef 6753
mjr 48:058ace2aed1d 6754 // set up the ZB Launch Ball monitor
mjr 48:058ace2aed1d 6755 ZBLaunchBall zbLaunchBall;
mjr 48:058ace2aed1d 6756
mjr 54:fd77a6b2f76c 6757 // enable the peripheral chips
mjr 54:fd77a6b2f76c 6758 if (tlc5940 != 0)
mjr 54:fd77a6b2f76c 6759 tlc5940->enable(true);
mjr 54:fd77a6b2f76c 6760 if (hc595 != 0)
mjr 54:fd77a6b2f76c 6761 hc595->enable(true);
mjr 87:8d35c74403af 6762 if (tlc59116 != 0)
mjr 87:8d35c74403af 6763 tlc59116->enable(true);
mjr 74:822a92bc11d2 6764
mjr 76:7f5912b6340e 6765 // start the LedWiz flash cycle timer
mjr 74:822a92bc11d2 6766 wizCycleTimer.start();
mjr 74:822a92bc11d2 6767
mjr 74:822a92bc11d2 6768 // start the PWM update polling timer
mjr 74:822a92bc11d2 6769 polledPwmTimer.start();
mjr 43:7a6364d82a41 6770
mjr 1:d913e0afb2ac 6771 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 6772 // host requests
mjr 0:5acbbe3f4cf4 6773 for (;;)
mjr 0:5acbbe3f4cf4 6774 {
mjr 74:822a92bc11d2 6775 // start the main loop timer for diagnostic data collection
mjr 76:7f5912b6340e 6776 IF_DIAG(mainLoopTimer.reset(); mainLoopTimer.start();)
mjr 96:68d5621ff49f 6777
mjr 48:058ace2aed1d 6778 // Process incoming reports on the joystick interface. The joystick
mjr 48:058ace2aed1d 6779 // "out" (receive) endpoint is used for LedWiz commands and our
mjr 48:058ace2aed1d 6780 // extended protocol commands. Limit processing time to 5ms to
mjr 48:058ace2aed1d 6781 // ensure we don't starve the input side.
mjr 39:b3815a1c3802 6782 LedWizMsg lwm;
mjr 48:058ace2aed1d 6783 Timer lwt;
mjr 48:058ace2aed1d 6784 lwt.start();
mjr 77:0b96f6867312 6785 IF_DIAG(int msgCount = 0;)
mjr 48:058ace2aed1d 6786 while (js.readLedWizMsg(lwm) && lwt.read_us() < 5000)
mjr 74:822a92bc11d2 6787 {
mjr 78:1e00b3fa11af 6788 handleInputMsg(lwm, js, accel);
mjr 74:822a92bc11d2 6789 IF_DIAG(++msgCount;)
mjr 74:822a92bc11d2 6790 }
mjr 74:822a92bc11d2 6791
mjr 74:822a92bc11d2 6792 // collect performance statistics on the message reader, if desired
mjr 74:822a92bc11d2 6793 IF_DIAG(
mjr 74:822a92bc11d2 6794 if (msgCount != 0)
mjr 74:822a92bc11d2 6795 {
mjr 76:7f5912b6340e 6796 mainLoopMsgTime += lwt.read_us();
mjr 74:822a92bc11d2 6797 mainLoopMsgCount++;
mjr 74:822a92bc11d2 6798 }
mjr 74:822a92bc11d2 6799 )
mjr 74:822a92bc11d2 6800
mjr 77:0b96f6867312 6801 // process IR input
mjr 77:0b96f6867312 6802 process_IR(cfg, js);
mjr 77:0b96f6867312 6803
mjr 77:0b96f6867312 6804 // update the PSU2 power sensing status
mjr 77:0b96f6867312 6805 powerStatusUpdate(cfg);
mjr 77:0b96f6867312 6806
mjr 74:822a92bc11d2 6807 // update flashing LedWiz outputs periodically
mjr 74:822a92bc11d2 6808 wizPulse();
mjr 74:822a92bc11d2 6809
mjr 74:822a92bc11d2 6810 // update PWM outputs
mjr 74:822a92bc11d2 6811 pollPwmUpdates();
mjr 77:0b96f6867312 6812
mjr 99:8139b0c274f4 6813 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 6814 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 6815 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 6816
mjr 77:0b96f6867312 6817 // poll the accelerometer
mjr 77:0b96f6867312 6818 accel.poll();
mjr 55:4db125cd11a0 6819
mjr 96:68d5621ff49f 6820 // Note the "effective" plunger enabled status. This has two
mjr 96:68d5621ff49f 6821 // components: the explicit "enabled" bit, and the plunger sensor
mjr 96:68d5621ff49f 6822 // type setting. For most purposes, a plunger type of NONE is
mjr 96:68d5621ff49f 6823 // equivalent to disabled. Set this to explicit 0x01 or 0x00
mjr 96:68d5621ff49f 6824 // so that we can OR the bit into status reports.
mjr 96:68d5621ff49f 6825 uint8_t effectivePlungerEnabled = (cfg.plunger.enabled
mjr 96:68d5621ff49f 6826 && cfg.plunger.sensorType != PlungerType_None) ? 0x01 : 0x00;
mjr 96:68d5621ff49f 6827
mjr 76:7f5912b6340e 6828 // collect diagnostic statistics, checkpoint 0
mjr 76:7f5912b6340e 6829 IF_DIAG(mainLoopIterCheckpt[0] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6830
mjr 55:4db125cd11a0 6831 // send TLC5940 data updates if applicable
mjr 55:4db125cd11a0 6832 if (tlc5940 != 0)
mjr 55:4db125cd11a0 6833 tlc5940->send();
mjr 87:8d35c74403af 6834
mjr 87:8d35c74403af 6835 // send TLC59116 data updates
mjr 87:8d35c74403af 6836 if (tlc59116 != 0)
mjr 87:8d35c74403af 6837 tlc59116->send();
mjr 1:d913e0afb2ac 6838
mjr 76:7f5912b6340e 6839 // collect diagnostic statistics, checkpoint 1
mjr 76:7f5912b6340e 6840 IF_DIAG(mainLoopIterCheckpt[1] += mainLoopTimer.read_us();)
mjr 77:0b96f6867312 6841
mjr 1:d913e0afb2ac 6842 // check for plunger calibration
mjr 17:ab3cec0c8bf4 6843 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 6844 {
mjr 1:d913e0afb2ac 6845 // check the state
mjr 1:d913e0afb2ac 6846 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6847 {
mjr 1:d913e0afb2ac 6848 case 0:
mjr 1:d913e0afb2ac 6849 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 6850 calBtnTimer.reset();
mjr 1:d913e0afb2ac 6851 calBtnState = 1;
mjr 1:d913e0afb2ac 6852 break;
mjr 1:d913e0afb2ac 6853
mjr 1:d913e0afb2ac 6854 case 1:
mjr 1:d913e0afb2ac 6855 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 6856 // passed, start the hold period
mjr 48:058ace2aed1d 6857 if (calBtnTimer.read_us() > 50000)
mjr 1:d913e0afb2ac 6858 calBtnState = 2;
mjr 1:d913e0afb2ac 6859 break;
mjr 1:d913e0afb2ac 6860
mjr 1:d913e0afb2ac 6861 case 2:
mjr 1:d913e0afb2ac 6862 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 6863 // for the entire hold period, move to calibration mode
mjr 48:058ace2aed1d 6864 if (calBtnTimer.read_us() > 2050000)
mjr 1:d913e0afb2ac 6865 {
mjr 1:d913e0afb2ac 6866 // enter calibration mode
mjr 1:d913e0afb2ac 6867 calBtnState = 3;
mjr 9:fd65b0a94720 6868 calBtnTimer.reset();
mjr 35:e959ffba78fd 6869
mjr 44:b5ac89b9cd5d 6870 // begin the plunger calibration limits
mjr 52:8298b2a73eb2 6871 plungerReader.setCalMode(true);
mjr 1:d913e0afb2ac 6872 }
mjr 1:d913e0afb2ac 6873 break;
mjr 2:c174f9ee414a 6874
mjr 2:c174f9ee414a 6875 case 3:
mjr 9:fd65b0a94720 6876 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 6877 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 6878 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 6879 break;
mjr 0:5acbbe3f4cf4 6880 }
mjr 0:5acbbe3f4cf4 6881 }
mjr 1:d913e0afb2ac 6882 else
mjr 1:d913e0afb2ac 6883 {
mjr 2:c174f9ee414a 6884 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 6885 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 6886 // and save the results to flash.
mjr 2:c174f9ee414a 6887 //
mjr 2:c174f9ee414a 6888 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 6889 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 6890 // mode, it simply cancels the attempt.
mjr 48:058ace2aed1d 6891 if (calBtnState == 3 && calBtnTimer.read_us() > 15000000)
mjr 2:c174f9ee414a 6892 {
mjr 2:c174f9ee414a 6893 // exit calibration mode
mjr 1:d913e0afb2ac 6894 calBtnState = 0;
mjr 52:8298b2a73eb2 6895 plungerReader.setCalMode(false);
mjr 2:c174f9ee414a 6896
mjr 6:cc35eb643e8f 6897 // save the updated configuration
mjr 35:e959ffba78fd 6898 cfg.plunger.cal.calibrated = 1;
mjr 86:e30a1f60f783 6899 saveConfigToFlash(0, false);
mjr 2:c174f9ee414a 6900 }
mjr 2:c174f9ee414a 6901 else if (calBtnState != 3)
mjr 2:c174f9ee414a 6902 {
mjr 2:c174f9ee414a 6903 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 6904 calBtnState = 0;
mjr 2:c174f9ee414a 6905 }
mjr 1:d913e0afb2ac 6906 }
mjr 1:d913e0afb2ac 6907
mjr 1:d913e0afb2ac 6908 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 6909 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 6910 switch (calBtnState)
mjr 0:5acbbe3f4cf4 6911 {
mjr 1:d913e0afb2ac 6912 case 2:
mjr 1:d913e0afb2ac 6913 // in the hold period - flash the light
mjr 48:058ace2aed1d 6914 newCalBtnLit = ((calBtnTimer.read_us()/250000) & 1);
mjr 1:d913e0afb2ac 6915 break;
mjr 1:d913e0afb2ac 6916
mjr 1:d913e0afb2ac 6917 case 3:
mjr 1:d913e0afb2ac 6918 // calibration mode - show steady on
mjr 1:d913e0afb2ac 6919 newCalBtnLit = true;
mjr 1:d913e0afb2ac 6920 break;
mjr 1:d913e0afb2ac 6921
mjr 1:d913e0afb2ac 6922 default:
mjr 1:d913e0afb2ac 6923 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 6924 newCalBtnLit = false;
mjr 1:d913e0afb2ac 6925 break;
mjr 1:d913e0afb2ac 6926 }
mjr 3:3514575d4f86 6927
mjr 3:3514575d4f86 6928 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 6929 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 6930 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 6931 {
mjr 1:d913e0afb2ac 6932 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 6933 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 6934 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6935 calBtnLed->write(1);
mjr 38:091e511ce8a0 6936 diagLED(0, 0, 1); // blue
mjr 2:c174f9ee414a 6937 }
mjr 2:c174f9ee414a 6938 else {
mjr 17:ab3cec0c8bf4 6939 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 6940 calBtnLed->write(0);
mjr 38:091e511ce8a0 6941 diagLED(0, 0, 0); // off
mjr 2:c174f9ee414a 6942 }
mjr 1:d913e0afb2ac 6943 }
mjr 35:e959ffba78fd 6944
mjr 76:7f5912b6340e 6945 // collect diagnostic statistics, checkpoint 2
mjr 76:7f5912b6340e 6946 IF_DIAG(mainLoopIterCheckpt[2] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6947
mjr 48:058ace2aed1d 6948 // read the plunger sensor
mjr 48:058ace2aed1d 6949 plungerReader.read();
mjr 48:058ace2aed1d 6950
mjr 76:7f5912b6340e 6951 // collect diagnostic statistics, checkpoint 3
mjr 76:7f5912b6340e 6952 IF_DIAG(mainLoopIterCheckpt[3] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6953
mjr 53:9b2611964afc 6954 // update the ZB Launch Ball status
mjr 53:9b2611964afc 6955 zbLaunchBall.update();
mjr 37:ed52738445fc 6956
mjr 76:7f5912b6340e 6957 // collect diagnostic statistics, checkpoint 4
mjr 76:7f5912b6340e 6958 IF_DIAG(mainLoopIterCheckpt[4] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6959
mjr 53:9b2611964afc 6960 // process button updates
mjr 53:9b2611964afc 6961 processButtons(cfg);
mjr 53:9b2611964afc 6962
mjr 76:7f5912b6340e 6963 // collect diagnostic statistics, checkpoint 5
mjr 76:7f5912b6340e 6964 IF_DIAG(mainLoopIterCheckpt[5] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6965
mjr 38:091e511ce8a0 6966 // send a keyboard report if we have new data
mjr 37:ed52738445fc 6967 if (kbState.changed)
mjr 37:ed52738445fc 6968 {
mjr 38:091e511ce8a0 6969 // send a keyboard report
mjr 37:ed52738445fc 6970 js.kbUpdate(kbState.data);
mjr 37:ed52738445fc 6971 kbState.changed = false;
mjr 37:ed52738445fc 6972 }
mjr 38:091e511ce8a0 6973
mjr 38:091e511ce8a0 6974 // likewise for the media controller
mjr 37:ed52738445fc 6975 if (mediaState.changed)
mjr 37:ed52738445fc 6976 {
mjr 38:091e511ce8a0 6977 // send a media report
mjr 37:ed52738445fc 6978 js.mediaUpdate(mediaState.data);
mjr 37:ed52738445fc 6979 mediaState.changed = false;
mjr 37:ed52738445fc 6980 }
mjr 38:091e511ce8a0 6981
mjr 76:7f5912b6340e 6982 // collect diagnostic statistics, checkpoint 6
mjr 76:7f5912b6340e 6983 IF_DIAG(mainLoopIterCheckpt[6] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 6984
mjr 38:091e511ce8a0 6985 // flag: did we successfully send a joystick report on this round?
mjr 38:091e511ce8a0 6986 bool jsOK = false;
mjr 55:4db125cd11a0 6987
mjr 55:4db125cd11a0 6988 // figure the current status flags for joystick reports
mjr 77:0b96f6867312 6989 uint16_t statusFlags =
mjr 96:68d5621ff49f 6990 effectivePlungerEnabled // 0x01
mjr 77:0b96f6867312 6991 | nightMode // 0x02
mjr 79:682ae3171a08 6992 | ((psu2_state & 0x07) << 2) // 0x04 0x08 0x10
mjr 79:682ae3171a08 6993 | saveConfigSucceededFlag; // 0x40
mjr 77:0b96f6867312 6994 if (IRLearningMode != 0)
mjr 77:0b96f6867312 6995 statusFlags |= 0x20;
mjr 17:ab3cec0c8bf4 6996
mjr 50:40015764bbe6 6997 // If it's been long enough since our last USB status report, send
mjr 50:40015764bbe6 6998 // the new report. VP only polls for input in 10ms intervals, so
mjr 50:40015764bbe6 6999 // there's no benefit in sending reports more frequently than this.
mjr 50:40015764bbe6 7000 // More frequent reporting would only add USB I/O overhead.
mjr 92:f264fbaa1be5 7001 if (cfg.joystickEnabled && jsReportTimer.read_us() > cfg.jsReportInterval_us)
mjr 17:ab3cec0c8bf4 7002 {
mjr 92:f264fbaa1be5 7003 // Increment the "stutter" counter. If it has reached the
mjr 92:f264fbaa1be5 7004 // stutter threshold, read a new accelerometer sample. If
mjr 92:f264fbaa1be5 7005 // not, repeat the last sample.
mjr 92:f264fbaa1be5 7006 if (++jsAccelStutterCounter >= cfg.accel.stutter)
mjr 92:f264fbaa1be5 7007 {
mjr 92:f264fbaa1be5 7008 // read the accelerometer
mjr 92:f264fbaa1be5 7009 int xa, ya;
mjr 92:f264fbaa1be5 7010 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 7011
mjr 92:f264fbaa1be5 7012 // confine the results to our joystick axis range
mjr 92:f264fbaa1be5 7013 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 92:f264fbaa1be5 7014 if (xa > JOYMAX) xa = JOYMAX;
mjr 92:f264fbaa1be5 7015 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 92:f264fbaa1be5 7016 if (ya > JOYMAX) ya = JOYMAX;
mjr 92:f264fbaa1be5 7017
mjr 92:f264fbaa1be5 7018 // store the updated accelerometer coordinates
mjr 92:f264fbaa1be5 7019 x = xa;
mjr 92:f264fbaa1be5 7020 y = ya;
mjr 92:f264fbaa1be5 7021
mjr 95:8eca8acbb82c 7022 // rotate X and Y according to the device orientation in the cabinet
mjr 95:8eca8acbb82c 7023 accelRotate(x, y);
mjr 95:8eca8acbb82c 7024
mjr 92:f264fbaa1be5 7025 // reset the stutter counter
mjr 92:f264fbaa1be5 7026 jsAccelStutterCounter = 0;
mjr 92:f264fbaa1be5 7027 }
mjr 17:ab3cec0c8bf4 7028
mjr 48:058ace2aed1d 7029 // Report the current plunger position unless the plunger is
mjr 48:058ace2aed1d 7030 // disabled, or the ZB Launch Ball signal is on. In either of
mjr 48:058ace2aed1d 7031 // those cases, just report a constant 0 value. ZB Launch Ball
mjr 48:058ace2aed1d 7032 // temporarily disables mechanical plunger reporting because it
mjr 21:5048e16cc9ef 7033 // tells us that the table has a Launch Ball button instead of
mjr 48:058ace2aed1d 7034 // a traditional plunger, so we don't want to confuse VP with
mjr 48:058ace2aed1d 7035 // regular plunger inputs.
mjr 92:f264fbaa1be5 7036 int zActual = plungerReader.getPosition();
mjr 96:68d5621ff49f 7037 int zReported = (!effectivePlungerEnabled || zbLaunchOn ? 0 : zActual);
mjr 35:e959ffba78fd 7038
mjr 35:e959ffba78fd 7039 // send the joystick report
mjr 92:f264fbaa1be5 7040 jsOK = js.update(x, y, zReported, jsButtons, statusFlags);
mjr 21:5048e16cc9ef 7041
mjr 17:ab3cec0c8bf4 7042 // we've just started a new report interval, so reset the timer
mjr 38:091e511ce8a0 7043 jsReportTimer.reset();
mjr 17:ab3cec0c8bf4 7044 }
mjr 21:5048e16cc9ef 7045
mjr 52:8298b2a73eb2 7046 // If we're in sensor status mode, report all pixel exposure values
mjr 101:755f44622abc 7047 if (reportPlungerStat && plungerSensor->ready())
mjr 10:976666ffa4ef 7048 {
mjr 17:ab3cec0c8bf4 7049 // send the report
mjr 101:755f44622abc 7050 plungerSensor->sendStatusReport(js, reportPlungerStatFlags);
mjr 17:ab3cec0c8bf4 7051
mjr 10:976666ffa4ef 7052 // we have satisfied this request
mjr 52:8298b2a73eb2 7053 reportPlungerStat = false;
mjr 10:976666ffa4ef 7054 }
mjr 10:976666ffa4ef 7055
mjr 101:755f44622abc 7056 // Reset the plunger status report extra timer after enough time has
mjr 101:755f44622abc 7057 // elapsed to satisfy the request. We don't just do this immediately
mjr 101:755f44622abc 7058 // because of the complexities of the pixel frame buffer pipelines in
mjr 101:755f44622abc 7059 // most of the image sensors. The pipelines delay the effect of the
mjr 101:755f44622abc 7060 // exposure time request by a couple of frames, so we can't be sure
mjr 101:755f44622abc 7061 // exactly when they're applied - meaning we can't consider the
mjr 101:755f44622abc 7062 // delay time to be consumed after a fixed number of frames. Instead,
mjr 101:755f44622abc 7063 // we'll consider it consumed after a long enough time to be sure
mjr 101:755f44622abc 7064 // we've sent a few frames. The extra time value is meant to be an
mjr 101:755f44622abc 7065 // interactive tool for debugging, so it's not important to reset it
mjr 101:755f44622abc 7066 // immediately - the user will probably want to see the effect over
mjr 101:755f44622abc 7067 // many frames, so they're likely to keep sending requests with the
mjr 101:755f44622abc 7068 // time value over and over. They'll eventually shut down the frame
mjr 101:755f44622abc 7069 // viewer and return to normal operation, at which point the requests
mjr 101:755f44622abc 7070 // will stop. So we just have to clear things out after we haven't
mjr 101:755f44622abc 7071 // seen a request with extra time for a little while.
mjr 101:755f44622abc 7072 if (reportPlungerStatTime != 0
mjr 101:755f44622abc 7073 && static_cast<uint32_t>(requestTimestamper.read_us() - tReportPlungerStat) > 1000000)
mjr 101:755f44622abc 7074 {
mjr 101:755f44622abc 7075 reportPlungerStatTime = 0;
mjr 101:755f44622abc 7076 plungerSensor->setExtraIntegrationTime(0);
mjr 101:755f44622abc 7077 }
mjr 101:755f44622abc 7078
mjr 35:e959ffba78fd 7079 // If joystick reports are turned off, send a generic status report
mjr 35:e959ffba78fd 7080 // periodically for the sake of the Windows config tool.
mjr 77:0b96f6867312 7081 if (!cfg.joystickEnabled && jsReportTimer.read_us() > 10000UL)
mjr 21:5048e16cc9ef 7082 {
mjr 55:4db125cd11a0 7083 jsOK = js.updateStatus(statusFlags);
mjr 38:091e511ce8a0 7084 jsReportTimer.reset();
mjr 38:091e511ce8a0 7085 }
mjr 38:091e511ce8a0 7086
mjr 38:091e511ce8a0 7087 // if we successfully sent a joystick report, reset the watchdog timer
mjr 38:091e511ce8a0 7088 if (jsOK)
mjr 38:091e511ce8a0 7089 {
mjr 38:091e511ce8a0 7090 jsOKTimer.reset();
mjr 38:091e511ce8a0 7091 jsOKTimer.start();
mjr 21:5048e16cc9ef 7092 }
mjr 21:5048e16cc9ef 7093
mjr 76:7f5912b6340e 7094 // collect diagnostic statistics, checkpoint 7
mjr 76:7f5912b6340e 7095 IF_DIAG(mainLoopIterCheckpt[7] += mainLoopTimer.read_us();)
mjr 76:7f5912b6340e 7096
mjr 6:cc35eb643e8f 7097 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 7098 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 7099 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 7100 #endif
mjr 6:cc35eb643e8f 7101
mjr 33:d832bcab089e 7102 // check for connection status changes
mjr 54:fd77a6b2f76c 7103 bool newConnected = js.isConnected() && !js.isSleeping();
mjr 33:d832bcab089e 7104 if (newConnected != connected)
mjr 33:d832bcab089e 7105 {
mjr 54:fd77a6b2f76c 7106 // give it a moment to stabilize
mjr 40:cc0d9814522b 7107 connectChangeTimer.start();
mjr 55:4db125cd11a0 7108 if (connectChangeTimer.read_us() > 1000000)
mjr 33:d832bcab089e 7109 {
mjr 33:d832bcab089e 7110 // note the new status
mjr 33:d832bcab089e 7111 connected = newConnected;
mjr 40:cc0d9814522b 7112
mjr 40:cc0d9814522b 7113 // done with the change timer for this round - reset it for next time
mjr 40:cc0d9814522b 7114 connectChangeTimer.stop();
mjr 40:cc0d9814522b 7115 connectChangeTimer.reset();
mjr 33:d832bcab089e 7116
mjr 54:fd77a6b2f76c 7117 // if we're newly disconnected, clean up for PC suspend mode or power off
mjr 54:fd77a6b2f76c 7118 if (!connected)
mjr 40:cc0d9814522b 7119 {
mjr 54:fd77a6b2f76c 7120 // turn off all outputs
mjr 33:d832bcab089e 7121 allOutputsOff();
mjr 40:cc0d9814522b 7122
mjr 40:cc0d9814522b 7123 // The KL25Z runs off of USB power, so we might (depending on the PC
mjr 40:cc0d9814522b 7124 // and OS configuration) continue to receive power even when the main
mjr 40:cc0d9814522b 7125 // PC power supply is turned off, such as in soft-off or suspend/sleep
mjr 40:cc0d9814522b 7126 // mode. Any external output controller chips (TLC5940, 74HC595) might
mjr 40:cc0d9814522b 7127 // be powered from the PC power supply directly rather than from our
mjr 40:cc0d9814522b 7128 // USB power, so they might be powered off even when we're still running.
mjr 40:cc0d9814522b 7129 // To ensure cleaner startup when the power comes back on, globally
mjr 40:cc0d9814522b 7130 // disable the outputs. The global disable signals come from GPIO lines
mjr 40:cc0d9814522b 7131 // that remain powered as long as the KL25Z is powered, so these modes
mjr 40:cc0d9814522b 7132 // will apply smoothly across power state transitions in the external
mjr 40:cc0d9814522b 7133 // hardware. That is, when the external chips are powered up, they'll
mjr 40:cc0d9814522b 7134 // see the global disable signals as stable voltage inputs immediately,
mjr 40:cc0d9814522b 7135 // which will cause them to suppress any output triggering. This ensures
mjr 40:cc0d9814522b 7136 // that we don't fire any solenoids or flash any lights spuriously when
mjr 40:cc0d9814522b 7137 // the power first comes on.
mjr 40:cc0d9814522b 7138 if (tlc5940 != 0)
mjr 40:cc0d9814522b 7139 tlc5940->enable(false);
mjr 87:8d35c74403af 7140 if (tlc59116 != 0)
mjr 87:8d35c74403af 7141 tlc59116->enable(false);
mjr 40:cc0d9814522b 7142 if (hc595 != 0)
mjr 40:cc0d9814522b 7143 hc595->enable(false);
mjr 40:cc0d9814522b 7144 }
mjr 33:d832bcab089e 7145 }
mjr 33:d832bcab089e 7146 }
mjr 48:058ace2aed1d 7147
mjr 53:9b2611964afc 7148 // if we have a reboot timer pending, check for completion
mjr 86:e30a1f60f783 7149 if (saveConfigFollowupTimer.isRunning()
mjr 87:8d35c74403af 7150 && saveConfigFollowupTimer.read_us() > saveConfigFollowupTime*1000000UL)
mjr 85:3c28aee81cde 7151 {
mjr 85:3c28aee81cde 7152 // if a reboot is pending, execute it now
mjr 86:e30a1f60f783 7153 if (saveConfigRebootPending)
mjr 82:4f6209cb5c33 7154 {
mjr 86:e30a1f60f783 7155 // Only reboot if the PSU2 power state allows it. If it
mjr 86:e30a1f60f783 7156 // doesn't, suppress the reboot for now, but leave the boot
mjr 86:e30a1f60f783 7157 // flags set so that we keep checking on future rounds.
mjr 86:e30a1f60f783 7158 // That way we should eventually reboot when the power
mjr 86:e30a1f60f783 7159 // status allows it.
mjr 86:e30a1f60f783 7160 if (powerStatusAllowsReboot())
mjr 86:e30a1f60f783 7161 reboot(js);
mjr 82:4f6209cb5c33 7162 }
mjr 85:3c28aee81cde 7163 else
mjr 85:3c28aee81cde 7164 {
mjr 86:e30a1f60f783 7165 // No reboot required. Exit the timed post-save state.
mjr 86:e30a1f60f783 7166
mjr 86:e30a1f60f783 7167 // stop and reset the post-save timer
mjr 86:e30a1f60f783 7168 saveConfigFollowupTimer.stop();
mjr 86:e30a1f60f783 7169 saveConfigFollowupTimer.reset();
mjr 86:e30a1f60f783 7170
mjr 86:e30a1f60f783 7171 // clear the post-save success flag
mjr 86:e30a1f60f783 7172 saveConfigSucceededFlag = 0;
mjr 85:3c28aee81cde 7173 }
mjr 77:0b96f6867312 7174 }
mjr 86:e30a1f60f783 7175
mjr 48:058ace2aed1d 7176 // if we're disconnected, initiate a new connection
mjr 51:57eb311faafa 7177 if (!connected)
mjr 48:058ace2aed1d 7178 {
mjr 54:fd77a6b2f76c 7179 // show USB HAL debug events
mjr 54:fd77a6b2f76c 7180 extern void HAL_DEBUG_PRINTEVENTS(const char *prefix);
mjr 54:fd77a6b2f76c 7181 HAL_DEBUG_PRINTEVENTS(">DISC");
mjr 54:fd77a6b2f76c 7182
mjr 54:fd77a6b2f76c 7183 // show immediate diagnostic feedback
mjr 54:fd77a6b2f76c 7184 js.diagFlash();
mjr 54:fd77a6b2f76c 7185
mjr 54:fd77a6b2f76c 7186 // clear any previous diagnostic LED display
mjr 54:fd77a6b2f76c 7187 diagLED(0, 0, 0);
mjr 51:57eb311faafa 7188
mjr 51:57eb311faafa 7189 // set up a timer to monitor the reboot timeout
mjr 70:9f58735a1732 7190 Timer reconnTimeoutTimer;
mjr 70:9f58735a1732 7191 reconnTimeoutTimer.start();
mjr 48:058ace2aed1d 7192
mjr 54:fd77a6b2f76c 7193 // set up a timer for diagnostic displays
mjr 54:fd77a6b2f76c 7194 Timer diagTimer;
mjr 54:fd77a6b2f76c 7195 diagTimer.reset();
mjr 54:fd77a6b2f76c 7196 diagTimer.start();
mjr 74:822a92bc11d2 7197
mjr 74:822a92bc11d2 7198 // turn off the main loop timer while spinning
mjr 74:822a92bc11d2 7199 IF_DIAG(mainLoopTimer.stop();)
mjr 54:fd77a6b2f76c 7200
mjr 54:fd77a6b2f76c 7201 // loop until we get our connection back
mjr 54:fd77a6b2f76c 7202 while (!js.isConnected() || js.isSleeping())
mjr 51:57eb311faafa 7203 {
mjr 54:fd77a6b2f76c 7204 // try to recover the connection
mjr 54:fd77a6b2f76c 7205 js.recoverConnection();
mjr 54:fd77a6b2f76c 7206
mjr 99:8139b0c274f4 7207 // update Flipper Logic and Chime Logic outputs
mjr 89:c43cd923401c 7208 LwFlipperLogicOut::poll();
mjr 99:8139b0c274f4 7209 LwChimeLogicOut::poll();
mjr 89:c43cd923401c 7210
mjr 55:4db125cd11a0 7211 // send TLC5940 data if necessary
mjr 55:4db125cd11a0 7212 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7213 tlc5940->send();
mjr 87:8d35c74403af 7214
mjr 87:8d35c74403af 7215 // update TLC59116 outputs
mjr 87:8d35c74403af 7216 if (tlc59116 != 0)
mjr 87:8d35c74403af 7217 tlc59116->send();
mjr 55:4db125cd11a0 7218
mjr 54:fd77a6b2f76c 7219 // show a diagnostic flash every couple of seconds
mjr 54:fd77a6b2f76c 7220 if (diagTimer.read_us() > 2000000)
mjr 51:57eb311faafa 7221 {
mjr 54:fd77a6b2f76c 7222 // flush the USB HAL debug events, if in debug mode
mjr 54:fd77a6b2f76c 7223 HAL_DEBUG_PRINTEVENTS(">NC");
mjr 54:fd77a6b2f76c 7224
mjr 54:fd77a6b2f76c 7225 // show diagnostic feedback
mjr 54:fd77a6b2f76c 7226 js.diagFlash();
mjr 51:57eb311faafa 7227
mjr 51:57eb311faafa 7228 // reset the flash timer
mjr 54:fd77a6b2f76c 7229 diagTimer.reset();
mjr 51:57eb311faafa 7230 }
mjr 51:57eb311faafa 7231
mjr 77:0b96f6867312 7232 // If the disconnect reboot timeout has expired, reboot.
mjr 77:0b96f6867312 7233 // Some PC hosts won't reconnect to a device that's left
mjr 77:0b96f6867312 7234 // plugged in through various events on the PC side, such as
mjr 77:0b96f6867312 7235 // rebooting Windows, cycling power on the PC, or just a lost
mjr 77:0b96f6867312 7236 // USB connection. Rebooting the KL25Z seems to be the most
mjr 77:0b96f6867312 7237 // reliable way to get Windows to notice us again after one
mjr 86:e30a1f60f783 7238 // of these events and make it reconnect. Only reboot if
mjr 86:e30a1f60f783 7239 // the PSU2 power status allows it - if not, skip it on this
mjr 86:e30a1f60f783 7240 // round and keep waiting.
mjr 51:57eb311faafa 7241 if (cfg.disconnectRebootTimeout != 0
mjr 86:e30a1f60f783 7242 && reconnTimeoutTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7243 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7244 reboot(js, false, 0);
mjr 77:0b96f6867312 7245
mjr 77:0b96f6867312 7246 // update the PSU2 power sensing status
mjr 77:0b96f6867312 7247 powerStatusUpdate(cfg);
mjr 54:fd77a6b2f76c 7248 }
mjr 54:fd77a6b2f76c 7249
mjr 74:822a92bc11d2 7250 // resume the main loop timer
mjr 74:822a92bc11d2 7251 IF_DIAG(mainLoopTimer.start();)
mjr 74:822a92bc11d2 7252
mjr 54:fd77a6b2f76c 7253 // if we made it out of that loop alive, we're connected again!
mjr 54:fd77a6b2f76c 7254 connected = true;
mjr 54:fd77a6b2f76c 7255 HAL_DEBUG_PRINTEVENTS(">C");
mjr 54:fd77a6b2f76c 7256
mjr 54:fd77a6b2f76c 7257 // Enable peripheral chips and update them with current output data
mjr 54:fd77a6b2f76c 7258 if (tlc5940 != 0)
mjr 55:4db125cd11a0 7259 tlc5940->enable(true);
mjr 87:8d35c74403af 7260 if (tlc59116 != 0)
mjr 87:8d35c74403af 7261 tlc59116->enable(true);
mjr 54:fd77a6b2f76c 7262 if (hc595 != 0)
mjr 54:fd77a6b2f76c 7263 {
mjr 55:4db125cd11a0 7264 hc595->enable(true);
mjr 54:fd77a6b2f76c 7265 hc595->update(true);
mjr 51:57eb311faafa 7266 }
mjr 48:058ace2aed1d 7267 }
mjr 43:7a6364d82a41 7268
mjr 6:cc35eb643e8f 7269 // provide a visual status indication on the on-board LED
mjr 48:058ace2aed1d 7270 if (calBtnState < 2 && hbTimer.read_us() > 1000000)
mjr 1:d913e0afb2ac 7271 {
mjr 54:fd77a6b2f76c 7272 if (jsOKTimer.read_us() > 1000000)
mjr 38:091e511ce8a0 7273 {
mjr 39:b3815a1c3802 7274 // USB freeze - show red/yellow.
mjr 40:cc0d9814522b 7275 //
mjr 54:fd77a6b2f76c 7276 // It's been more than a second since we successfully sent a joystick
mjr 54:fd77a6b2f76c 7277 // update message. This must mean that something's wrong on the USB
mjr 54:fd77a6b2f76c 7278 // connection, even though we haven't detected an outright disconnect.
mjr 54:fd77a6b2f76c 7279 // Show a distinctive diagnostic LED pattern when this occurs.
mjr 38:091e511ce8a0 7280 hb = !hb;
mjr 38:091e511ce8a0 7281 diagLED(1, hb, 0);
mjr 54:fd77a6b2f76c 7282
mjr 54:fd77a6b2f76c 7283 // If the reboot-on-disconnect option is in effect, treat this condition
mjr 54:fd77a6b2f76c 7284 // as equivalent to a disconnect, since something is obviously wrong
mjr 54:fd77a6b2f76c 7285 // with the USB connection.
mjr 54:fd77a6b2f76c 7286 if (cfg.disconnectRebootTimeout != 0)
mjr 54:fd77a6b2f76c 7287 {
mjr 54:fd77a6b2f76c 7288 // The reboot timeout is in effect. If we've been incommunicado for
mjr 54:fd77a6b2f76c 7289 // longer than the timeout, reboot. If we haven't reached the time
mjr 54:fd77a6b2f76c 7290 // limit, keep running for now, and leave the OK timer running so
mjr 86:e30a1f60f783 7291 // that we can continue to monitor this. Only reboot if the PSU2
mjr 86:e30a1f60f783 7292 // power status allows it.
mjr 86:e30a1f60f783 7293 if (jsOKTimer.read() > cfg.disconnectRebootTimeout
mjr 86:e30a1f60f783 7294 && powerStatusAllowsReboot())
mjr 54:fd77a6b2f76c 7295 reboot(js, false, 0);
mjr 54:fd77a6b2f76c 7296 }
mjr 54:fd77a6b2f76c 7297 else
mjr 54:fd77a6b2f76c 7298 {
mjr 54:fd77a6b2f76c 7299 // There's no reboot timer, so just keep running with the diagnostic
mjr 54:fd77a6b2f76c 7300 // pattern displayed. Since we're not waiting for any other timed
mjr 54:fd77a6b2f76c 7301 // conditions in this state, stop the timer so that it doesn't
mjr 54:fd77a6b2f76c 7302 // overflow if this condition persists for a long time.
mjr 54:fd77a6b2f76c 7303 jsOKTimer.stop();
mjr 54:fd77a6b2f76c 7304 }
mjr 38:091e511ce8a0 7305 }
mjr 73:4e8ce0b18915 7306 else if (psu2_state >= 4)
mjr 73:4e8ce0b18915 7307 {
mjr 73:4e8ce0b18915 7308 // We're in the TV timer countdown. Skip the normal heartbeat
mjr 73:4e8ce0b18915 7309 // flashes and show the TV timer flashes instead.
mjr 73:4e8ce0b18915 7310 diagLED(0, 0, 0);
mjr 73:4e8ce0b18915 7311 }
mjr 96:68d5621ff49f 7312 else if (effectivePlungerEnabled && !cfg.plunger.cal.calibrated)
mjr 6:cc35eb643e8f 7313 {
mjr 6:cc35eb643e8f 7314 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 7315 hb = !hb;
mjr 38:091e511ce8a0 7316 diagLED(hb, 1, 0);
mjr 6:cc35eb643e8f 7317 }
mjr 6:cc35eb643e8f 7318 else
mjr 6:cc35eb643e8f 7319 {
mjr 6:cc35eb643e8f 7320 // connected - flash blue/green
mjr 2:c174f9ee414a 7321 hb = !hb;
mjr 38:091e511ce8a0 7322 diagLED(0, hb, !hb);
mjr 2:c174f9ee414a 7323 }
mjr 1:d913e0afb2ac 7324
mjr 1:d913e0afb2ac 7325 // reset the heartbeat timer
mjr 1:d913e0afb2ac 7326 hbTimer.reset();
mjr 5:a70c0bce770d 7327 ++hbcnt;
mjr 1:d913e0afb2ac 7328 }
mjr 74:822a92bc11d2 7329
mjr 74:822a92bc11d2 7330 // collect statistics on the main loop time, if desired
mjr 74:822a92bc11d2 7331 IF_DIAG(
mjr 76:7f5912b6340e 7332 mainLoopIterTime += mainLoopTimer.read_us();
mjr 74:822a92bc11d2 7333 mainLoopIterCount++;
mjr 74:822a92bc11d2 7334 )
mjr 1:d913e0afb2ac 7335 }
mjr 0:5acbbe3f4cf4 7336 }