mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/cmsis/TARGET_STM/TARGET_STM32F3/stm32f3xx_hal_opamp.c

Committer:
mbed_official
Date:
2015-09-28
Revision:
632:7687fb9c4f91
Parent:
385:be64abf45658
Child:
634:ac7d6880524d

File content as of revision 632:7687fb9c4f91:

/**
  ******************************************************************************
  * @file    stm32f3xx_hal_opamp.c
  * @author  MCD Application Team
  * @version V1.1.1
  * @date    19-June-2015
  * @brief   OPAMP HAL module driver.
  *    
  *          This file provides firmware functions to manage the following 
  *          functionalities of the operational amplifiers (OPAMP1,...OPAMP4) 
  *          peripheral: 
  *           + OPAMP Configuration
  *           + OPAMP calibration
  *
  *          Thanks to
  *           + Initialization/de-initialization functions
  *           + I/O operation functions
  *           + Peripheral Control functions
  *           + Peripheral State functions
  *         
  @verbatim
================================================================================
          ##### OPAMP Peripheral Features #####
================================================================================
           
  [..] The device integrates up to 4 operational amplifiers OPAMP1, OPAMP2,
       OPAMP3 and OPAMP4:
       
       (#) The OPAMP(s) provides several exclusive running modes.
       (+) Standalone mode
       (+) Programmable Gain Amplifier (PGA) mode (Resistor feedback output)
       (+) Follower mode

       (#) The OPAMP(s) provide(s) calibration capabilities.  
       (+) Calibration aims at correcting some offset for running mode.
       (+) The OPAMP uses either factory calibration settings OR user defined 
           calibration (trimming) settings (i.e. trimming mode).
       (+) The user defined settings can be figured out using self calibration 
           handled by HAL_OPAMP_SelfCalibrate, HAL_OPAMPEx_SelfCalibrateAll
       (+) HAL_OPAMP_SelfCalibrate:
       (++) Runs automatically the calibration in 2 steps. 
            (90% of VDDA for NMOS transistors, 10% of VDDA for PMOS transistors).
            (As OPAMP is Rail-to-rail input/output, these 2 steps calibration is 
            appropriate and enough in most cases).
       (++) Enables the user trimming mode
       (++) Updates the init structure with trimming values with fresh calibration 
            results. 
            The user may store the calibration results for larger 
            (ex monitoring the trimming as a function of temperature 
            for instance)
       (++) for STM32F3 devices having 2 or 4 OPAMPs
            HAL_OPAMPEx_SelfCalibrateAll
            runs calibration of 2 or 4 OPAMPs in parallel. 
       
       (#) For any running mode, an additional Timer-controlled Mux (multiplexer) 
           mode can be set on top.
       (+) Timer-controlled Mux mode allows Automatic switching between inverting
           and non-inverting input. 
       (+) Hence on top of defaults (primary) inverting and non-inverting inputs,
           the user shall select secondary inverting and non inverting inputs.
       (+) TIM1 CC6 provides the alternate switching tempo between defaults 
           (primary) and secondary inputs. 
             
       (#) Running mode: Standalone mode 
       (+) Gain is set externally (gain depends on external loads).
       (+) Follower mode also possible externally by connecting the inverting input to
           the output.
       
       (#) Running mode: Follower mode
       (+) No Inverting Input is connected.
       
       (#) Running mode: Programmable Gain Amplifier (PGA) mode 
           (Resistor feedback output)
       (+) The OPAMP(s) output(s) can be internally connected to resistor feedback
           output.
       (+) OPAMP gain is either 2, 4, 8 or 16.
        
       (#) The OPAMPs non inverting input (both default and secondary) can be 
           selected among the list shown by table below.
       
       (#) The OPAMPs non inverting input (both default and secondary) can be 
           selected among the list shown by table below.
       
   [..] Table 1.  OPAMPs inverting/non-inverting inputs for the STM32F3 devices:
     
    +--------------------------------------------------------------+     
    |                 |        | OPAMP1 | OPAMP2 | OPAMP3 | OPAMP4 |
    |-----------------|--------|--------|--------|--------|--------|
    |                 | No conn|   X    |   X    |   X    |   X    |
    | Inverting Input | VM0    |  PC5   |  PC5   |  PB10  |  PB10  |
    | (1)             | VM1    |  PA3   |  PA5   |  PB2   |  PD8   |
    |-----------------|--------|--------|--------|--------|--------|
    |                 | VP0    |  PA1   |  PA7   |  PB0   |  PB13  |
    |  Non Inverting  | VP1    |  PA7   |  PD14  |  PB13  |  PD11  |
    |    Input        | VP2    |  PA3   |  PB0   |  PA1   |  PA4   |
    |                 | VP3    |  PA5   |  PB14  |  PA5   |  PB11  |
    +--------------------------------------------------------------+  
    (1): NA in follower mode.
           
   [..] Table 2.  OPAMPs outputs for the STM32F3 devices:

    +--------------------------------------------------------------+     
    |                 |        | OPAMP1 | OPAMP2 | OPAMP3 | OPAMP4 |
    |-----------------|--------|--------|--------|--------|--------|
    | Output          |        |  PA2   |  PA6   |  PB1   |  PB12  |
    |-----------------|--------|--------|--------|--------|--------|

      
            ##### How to use this driver #####
================================================================================
  [..] 
     
    *** Calibration ***
    ============================================
      To run the opamp calibration self calibration:

      (#) Start calibration using HAL_OPAMP_SelfCalibrate. 
           Store the calibration results.

    *** Running mode ***
    ============================================
      
      To use the opamp, perform the following steps:
            
      (#) Fill in the HAL_OPAMP_MspInit() to
      (+) Configure the opamp input AND output in analog mode using 
          HAL_GPIO_Init() to map the opamp output to the GPIO pin.
  
      (#) Configure the opamp using HAL_OPAMP_Init() function:
      (+) Select the mode
      (+) Select the inverting input
      (+) Select the non-inverting input 
      (+) Select if the Timer controlled Mux mode is enabled/disabled
      (+) If the Timer controlled Mux mode is enabled, select the secondary inverting input
      (+) If the Timer controlled Mux mode is enabled, Select the secondary non-inverting input 
      (+) If PGA mode is enabled, Select if inverting input is connected.
      (+) Select either factory or user defined trimming mode.
      (+) If the user defined trimming mode is enabled, select PMOS & NMOS trimming values
          (typ. settings returned by HAL_OPAMP_SelfCalibrate function).
      
      (#) Enable the opamp using HAL_OPAMP_Start() function.
           
      (#) Disable the opamp using HAL_OPAMP_Stop() function.
      
      (#) Lock the opamp in running mode using HAL_OPAMP_Lock() function. From then The configuration 
          can only be modified after HW reset.

    *** Running mode: change of configuration while OPAMP ON  ***
    ============================================
    To Re-configure OPAMP when OPAMP is ON (change on the fly)
      (#) If needed, Fill in the HAL_OPAMP_MspInit()
      (+) This is the case for instance if you wish to use new OPAMP I/O

      (#) Configure the opamp using HAL_OPAMP_Init() function:
      (+) As in configure case, selects first the parameters you wish to modify.
      
  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f3xx_hal.h"
    
/** @addtogroup STM32F3xx_HAL_Driver
  * @{
  */

/** @defgroup OPAMP OPAMP HAL module driver
  * @brief OPAMP HAL module driver
  * @{
  */

#ifdef HAL_OPAMP_MODULE_ENABLED

#if defined(STM32F302xE) || defined(STM32F303xE) || defined(STM32F398xx) || \
    defined(STM32F302xC) || defined(STM32F303xC) || defined(STM32F358xx) || \
    defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F328xx) || \
    defined(STM32F301x8) || defined(STM32F302x8) || defined(STM32F318xx)

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup OPAMP_Private_Define OPAMP Private Define
 * @{
 */
/* CSR register reset value */ 
#define OPAMP_CSR_RESET_VALUE             ((uint32_t)0x00000000)
/**
  * @}
  */

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions ---------------------------------------------------------*/

/** @defgroup OPAMP_Exported_Functions OPAMP Exported Functions
  * @{
  */

/** @defgroup OPAMP_Exported_Functions_Group1 Initialization and de-initialization functions
 *  @brief    Initialization and Configuration functions 
 *
@verbatim    
 ===============================================================================
              ##### Initialization/de-initialization  functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
 
@endverbatim
  * @{
  */

/**
  * @brief  Initializes the OPAMP according to the specified
  *         parameters in the OPAMP_InitTypeDef and create the associated handle.
  * @note   If the selected opamp is locked, initialization can't be performed.
  *         To unlock the configuration, perform a system reset.
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_OPAMP_Init(OPAMP_HandleTypeDef *hopamp)

{ 
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the OPAMP handle allocation and lock status */
  /* Init not allowed if calibration is ongoing */
  if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) \
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY))
  {
    return HAL_ERROR;
  }
  else
  {
      
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
       
    /* Set OPAMP parameters */
    assert_param(IS_OPAMP_FUNCTIONAL_NORMALMODE(hopamp->Init.Mode));
    assert_param(IS_OPAMP_NONINVERTING_INPUT(hopamp->Init.NonInvertingInput));
    if ((hopamp->Init.Mode) == OPAMP_STANDALONE_MODE)
    {
      assert_param(IS_OPAMP_INVERTING_INPUT(hopamp->Init.InvertingInput));
    }
  
    assert_param(IS_OPAMP_TIMERCONTROLLED_MUXMODE(hopamp->Init.TimerControlledMuxmode));

    if ((hopamp->Init.TimerControlledMuxmode) == OPAMP_TIMERCONTROLLEDMUXMODE_ENABLE)
    {
      assert_param(IS_OPAMP_SEC_NONINVERTINGINPUT(hopamp->Init.NonInvertingInputSecondary));
      if ((hopamp->Init.Mode) == OPAMP_STANDALONE_MODE)
      {
        assert_param(IS_OPAMP_SEC_INVERTINGINPUT(hopamp->Init.InvertingInputSecondary));
      }
    }
    
    if ((hopamp->Init.Mode) == OPAMP_PGA_MODE)
    {
      assert_param(IS_OPAMP_PGACONNECT(hopamp->Init.PgaConnect));
      assert_param(IS_OPAMP_PGA_GAIN(hopamp->Init.PgaGain));
    }
    
    assert_param(IS_OPAMP_TRIMMING(hopamp->Init.UserTrimming)); 
    if ((hopamp->Init.UserTrimming) == OPAMP_TRIMMING_USER)
    {
      assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueP));
      assert_param(IS_OPAMP_TRIMMINGVALUE(hopamp->Init.TrimmingValueN));
    }
 
    /* Init SYSCFG and the low level hardware to access opamp */
    __SYSCFG_CLK_ENABLE();
    
    /* Call MSP init function */
    HAL_OPAMP_MspInit(hopamp);
                                          
    /* Set OPAMP parameters */
    /*     Set  bits according to hopamp->hopamp->Init.Mode value                                 */
    /*     Set  bits according to hopamp->hopamp->Init.InvertingInput value                       */
    /*     Set  bits according to hopamp->hopamp->Init.NonInvertingInput value                    */
    /*     Set  bits according to hopamp->hopamp->Init.TimerControlledMuxmode value               */
    /*     Set  bits according to hopamp->hopamp->Init.InvertingInputSecondary  value             */
    /*     Set  bits according to hopamp->hopamp->Init.NonInvertingInputSecondary value           */
    /*     Set  bits according to hopamp->hopamp->Init.PgaConnect value                           */
    /*     Set  bits according to hopamp->hopamp->Init.PgaGain value                              */
    /*     Set  bits according to hopamp->hopamp->Init.UserTrimming value                         */
    /*     Set  bits according to hopamp->hopamp->Init.TrimmingValueP value                       */
    /*     Set  bits according to hopamp->hopamp->Init.TrimmingValueN value                       */
    
    
    /* check if OPAMP_PGA_MODE & in Follower mode */
    /*   - InvertingInput                         */
    /*   - InvertingInputSecondary                */
    /* are Not Applicable                         */
    
    if ((hopamp->Init.Mode == OPAMP_PGA_MODE) || (hopamp->Init.Mode == OPAMP_FOLLOWER_MODE))
    {
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_UPDATE_PARAMETERS_INIT_MASK, \
                                        hopamp->Init.Mode | \
                                        hopamp->Init.NonInvertingInput | \
                                        hopamp->Init.TimerControlledMuxmode | \
                                        hopamp->Init.NonInvertingInputSecondary  | \
                                        hopamp->Init.PgaConnect | \
                                        hopamp->Init.PgaGain | \
                                        hopamp->Init.UserTrimming | \
                                        (hopamp->Init.TrimmingValueP << OPAMP_INPUT_NONINVERTING) | \
                                        (hopamp->Init.TrimmingValueN << OPAMP_INPUT_INVERTING));  
    }    
    else /* OPAMP_STANDALONE_MODE */
    {
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_UPDATE_PARAMETERS_INIT_MASK, \
                                        hopamp->Init.Mode | \
                                        hopamp->Init.InvertingInput    | \
                                        hopamp->Init.NonInvertingInput | \
                                        hopamp->Init.TimerControlledMuxmode | \
                                        hopamp->Init.InvertingInputSecondary  | \
                                        hopamp->Init.NonInvertingInputSecondary  | \
                                        hopamp->Init.PgaConnect | \
                                        hopamp->Init.PgaGain | \
                                        hopamp->Init.UserTrimming | \
                                        (hopamp->Init.TrimmingValueP << OPAMP_INPUT_NONINVERTING) | \
                                        (hopamp->Init.TrimmingValueN << OPAMP_INPUT_INVERTING));     
    } 
    
    /* Update the OPAMP state*/
    if (hopamp->State == HAL_OPAMP_STATE_RESET)
    {
      /* From RESET state to READY State */
    hopamp->State = HAL_OPAMP_STATE_READY;
    }
    /* else: remain in READY or BUSY state (no update) */
  
    return status;
    }
}


/**
  * @brief  DeInitializes the OPAMP peripheral 
  * @note   Deinitialization can't be performed if the OPAMP configuration is locked.
  *         To unlock the configuration, perform a system reset.
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_OPAMP_DeInit(OPAMP_HandleTypeDef *hopamp)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  /* DeInit not allowed if calibration is ongoing */
  if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) \
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY))
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));

    /* Set OPAMP_CSR register to reset value */
    WRITE_REG(hopamp->Instance->CSR, OPAMP_CSR_RESET_VALUE);

    /* DeInit the low level hardware: GPIO, CLOCK and NVIC */
    HAL_OPAMP_MspDeInit(hopamp);

    /* Update the OPAMP state*/
    hopamp->State = HAL_OPAMP_STATE_RESET;
  }
  return status;
}

/**
  * @brief  Initializes the OPAMP MSP.
  * @param  hopamp: OPAMP handle
  * @retval None
  */
__weak void HAL_OPAMP_MspInit(OPAMP_HandleTypeDef *hopamp)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_OPAMP_MspInit could be implemented in the user file
   */

   /* Example */ 
}

/**
  * @brief  DeInitializes OPAMP MSP.
  * @param  hopamp: OPAMP handle
  * @retval None
  */
__weak void HAL_OPAMP_MspDeInit(OPAMP_HandleTypeDef *hopamp)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_OPAMP_MspDeInit could be implemented in the user file
   */

}

/**
  * @}
  */


/** @defgroup OPAMP_Exported_Functions_Group2 Input and Output operation functions 
 *  @brief   Data transfers functions 
 *
@verbatim   
 ===============================================================================
                      ##### IO operation  functions #####
 ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to manage the OPAMP data 
    transfers.

@endverbatim
  * @{
  */

/**
  * @brief  Start the opamp
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */

HAL_StatusTypeDef HAL_OPAMP_Start(OPAMP_HandleTypeDef *hopamp)
{ 
  HAL_StatusTypeDef status = HAL_OK;
  
  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
                      
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
    
    if(hopamp->State == HAL_OPAMP_STATE_READY)
    {
      /* Enable the selected opamp */
      SET_BIT (hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN);

      /* Update the OPAMP state*/     
      /* From HAL_OPAMP_STATE_READY to HAL_OPAMP_STATE_BUSY */
      hopamp->State = HAL_OPAMP_STATE_BUSY;   
    }
    else
    {
      status = HAL_ERROR;
    }
    
    
   }
  return status;
}

/**
  * @brief  Stop the opamp 
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_OPAMP_Stop(OPAMP_HandleTypeDef *hopamp)
{ 
  HAL_StatusTypeDef status = HAL_OK;
    
  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  /* Check if OPAMP calibration ongoing */
  if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED) \
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY))  
  {
    status = HAL_ERROR;
  }
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));

    if(hopamp->State == HAL_OPAMP_STATE_BUSY)
    {
      /* Disable the selected opamp */
      CLEAR_BIT (hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN); 
    
      /* Update the OPAMP state*/     
      /* From  HAL_OPAMP_STATE_BUSY to HAL_OPAMP_STATE_READY*/
      hopamp->State = HAL_OPAMP_STATE_READY;
    }
    else
    {
      status = HAL_ERROR;
    }
  }
  return status;
}

/**
  * @brief  Run the self calibration of one OPAMP
  * @param  hopamp handle
  * @retval Updated offset trimming values (PMOS & NMOS), user trimming is enabled
  * @retval HAL status
  * @note   Calibration runs about 25 ms.
  */

HAL_StatusTypeDef HAL_OPAMP_SelfCalibrate(OPAMP_HandleTypeDef *hopamp)
{ 

  HAL_StatusTypeDef status = HAL_OK;
  
  uint32_t trimmingvaluen = 0;
  uint32_t trimmingvaluep = 0;
  uint32_t delta;
  
  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
  {
    status = HAL_ERROR;
  }
  else
  {
  
    /* Check if OPAMP in calibration mode and calibration not yet enable */
    if(hopamp->State ==  HAL_OPAMP_STATE_READY)
    {
      /* Check the parameter */
      assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));

      /* Set Calibration mode */
      /* Non-inverting input connected to calibration reference voltage. */
      SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_FORCEVP);

      /*  user trimming values are used for offset calibration */
      SET_BIT(hopamp->Instance->CSR, OPAMP_CSR_USERTRIM);
      
      /* Enable calibration */
      SET_BIT (hopamp->Instance->CSR, OPAMP_CSR_CALON);
  
      /* 1st calibration - N */
      /* Select 90% VREF */
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_CALSEL, OPAMP_VREF_90VDDA);
      
      /* Enable the selected opamp */
      SET_BIT (hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN);
      
      /* Init trimming counter */    
      /* Medium value */
      trimmingvaluen = 16; 
      delta = 8;
      
      while (delta != 0)
      {
        /* Set candidate trimming */
        MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen<<OPAMP_INPUT_INVERTING);
              
        /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */ 
        /* Offset trim time: during calibration, minimum time needed between */
        /* two steps to have 1 mV accuracy */
        HAL_Delay(2);

        if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != RESET)
        { 
          /* OPAMP_CSR_OUTCAL is HIGH try higher trimming */
          trimmingvaluen += delta;
        }
        else
        {
          /* OPAMP_CSR_OUTCAL is LOW try lower trimming */
          trimmingvaluen -= delta;
        }
                      
        delta >>= 1;
      }

      /* Still need to check if righ calibration is current value or un step below */
      /* Indeed the first value that causes the OUTCAL bit to change from 1 to 0  */
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen<<OPAMP_INPUT_INVERTING);
      
       /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */ 
       /* Offset trim time: during calibration, minimum time needed between */
       /* two steps to have 1 mV accuracy */
       HAL_Delay(2);
      
      if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != RESET) 
      { 
        /* OPAMP_CSR_OUTCAL is actually one value more */
        trimmingvaluen++;
        /* Set right trimming */
        MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen<<OPAMP_INPUT_INVERTING);
      }
       
      /* 2nd calibration - P */
      /* Select 10% VREF */
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_CALSEL, OPAMP_VREF_10VDDA);
      
      /* Init trimming counter */    
      /* Medium value */
      trimmingvaluep = 16; 
      delta = 8;
      
      while (delta != 0)
      {
        /* Set candidate trimming */
        MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep<<OPAMP_INPUT_NONINVERTING);
               
        /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */ 
        /* Offset trim time: during calibration, minimum time needed between */
        /* two steps to have 1 mV accuracy */
        HAL_Delay(2);

        if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != RESET) 
        { 
          /* OPAMP_CSR_OUTCAL is HIGH try higher trimming */
          trimmingvaluep += delta;
        }
        else
        {
          trimmingvaluep -= delta;
        }
                      
        delta >>= 1;
      }
      
      /* Still need to check if righ calibration is current value or un step below */
      /* Indeed the first value that causes the OUTCAL bit to change from 1 to 0 */
      /* Set candidate trimming */
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep<<OPAMP_INPUT_NONINVERTING);

       /* OFFTRIMmax delay 2 ms as per datasheet (electrical characteristics */ 
       /* Offset trim time: during calibration, minimum time needed between */
       /* two steps to have 1 mV accuracy */
       HAL_Delay(2);
      
      if ((hopamp->Instance->CSR & OPAMP_CSR_OUTCAL) != RESET)
      { 
        /* OPAMP_CSR_OUTCAL is actually one value more */
        trimmingvaluep++;
        /* Set right trimming */
        MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep<<OPAMP_INPUT_NONINVERTING);
      }
           
      /* Disable calibration */
      CLEAR_BIT (hopamp->Instance->CSR, OPAMP_CSR_CALON);

      /* Disable the OPAMP */
      CLEAR_BIT (hopamp->Instance->CSR, OPAMP_CSR_OPAMPxEN);
      
      /* Set normale operating mode  */
      /* Non-inverting input connected to calibration reference voltage. */
      CLEAR_BIT(hopamp->Instance->CSR, OPAMP_CSR_FORCEVP);
            
      /* Self calibration is successful  */
      /* Store calibration(user timming) results in init structure. */

      /* Write calibration result N */
      hopamp->Init.TrimmingValueN = trimmingvaluen;
     
      /* Write calibration result P */
      hopamp->Init.TrimmingValueP = trimmingvaluep;

      /* Select user timming mode */      
      /* And updated with calibrated settings */
      hopamp->Init.UserTrimming = OPAMP_TRIMMING_USER;
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, trimmingvaluep<<OPAMP_INPUT_NONINVERTING);
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, trimmingvaluen<<OPAMP_INPUT_INVERTING);
    }

    else
    {
      /* OPAMP can not be calibrated from this mode */ 
      status = HAL_ERROR;
    }   
  }
  return status;
}

/**
  * @}
  */

/** @defgroup OPAMP_Exported_Functions_Group3 Peripheral Control functions 
 *  @brief   management functions 
 *
@verbatim   
 ===============================================================================
                      ##### Peripheral Control functions #####
 ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to control the OPAMP data 
    transfers.



@endverbatim
  * @{
  */

/**
  * @brief  Lock the selected opamp configuration. 
  * @param  hopamp: OPAMP handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_OPAMP_Lock(OPAMP_HandleTypeDef *hopamp)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Check the OPAMP handle allocation */
  /* Check if OPAMP locked */
  /* OPAMP can be locked when enabled and running in normal mode */ 
  /*   It is meaningless otherwise */
  if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_RESET) \
                      || (hopamp->State == HAL_OPAMP_STATE_READY) \
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)\
                      || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
  
  {
    status = HAL_ERROR;
  }
  
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
    
   /* Lock OPAMP */
    SET_BIT (hopamp->Instance->CSR, OPAMP_CSR_LOCK);
  
   /* OPAMP state changed to locked */
    hopamp->State = HAL_OPAMP_STATE_BUSYLOCKED;
  }
  return status; 
}

/**
  * @}
  */

/** @defgroup OPAMP_Exported_Functions_Group4 Peripheral State functions 
 *  @brief   Peripheral State functions 
 *
@verbatim   
 ===============================================================================
                      ##### Peripheral State functions #####
 ===============================================================================  
    [..]
    This subsection permit to get in run-time the status of the peripheral 
    and the data flow.

@endverbatim
  * @{
  */

/**
  * @brief  Return the OPAMP state
  * @param  hopamp : OPAMP handle
  * @retval HAL state
  */
HAL_OPAMP_StateTypeDef HAL_OPAMP_GetState(OPAMP_HandleTypeDef *hopamp)
{
  /* Check the OPAMP handle allocation */
  if(hopamp == NULL)
  {
    return HAL_OPAMP_STATE_RESET;
  }

  /* Check the parameter */
  assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));

  return hopamp->State;
}

/**
  * @brief  Return the OPAMP factory trimming value
  * @param  hopamp : OPAMP handle
  * @param  trimmingoffset : Trimming offset (P or N)
  * @retval Trimming value (P or N): range: 0->31
  *         or OPAMP_FACTORYTRIMMING_DUMMY if trimming value is not available
 */

OPAMP_TrimmingValueTypeDef HAL_OPAMP_GetTrimOffset (OPAMP_HandleTypeDef *hopamp, uint32_t trimmingoffset)
{
  uint32_t oldusertrimming = 0;
  OPAMP_TrimmingValueTypeDef  oldtrimmingvaluep = 0, oldtrimmingvaluen = 0, trimmingvalue = 0;
  
  /* Check the OPAMP handle allocation */
  /* Value can be retrieved in HAL_OPAMP_STATE_READY state */
  if((hopamp == NULL) || (hopamp->State == HAL_OPAMP_STATE_RESET) \
                      || (hopamp->State == HAL_OPAMP_STATE_BUSY) \
                      || (hopamp->State == HAL_OPAMP_STATE_CALIBBUSY)\
                      || (hopamp->State == HAL_OPAMP_STATE_BUSYLOCKED))
  {
    return OPAMP_FACTORYTRIMMING_DUMMY;
  }
  else
  {
    /* Check the parameter */
    assert_param(IS_OPAMP_ALL_INSTANCE(hopamp->Instance));
    assert_param(IS_OPAMP_FACTORYTRIMMING(trimmingoffset));
    
    /* Check the trimming mode */
    if ((READ_BIT(hopamp->Instance->CSR,OPAMP_CSR_USERTRIM)) != RESET) 
    {
      /* User trimming is used */
      oldusertrimming = OPAMP_TRIMMING_USER;
      /* Store the TrimmingValueP & TrimmingValueN */
      oldtrimmingvaluep = (hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETP) >> OPAMP_INPUT_NONINVERTING;
      oldtrimmingvaluen = (hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETN) >> OPAMP_INPUT_INVERTING;
    }
    
    /* Set factory timming mode */
    CLEAR_BIT (hopamp->Instance->CSR, OPAMP_CSR_USERTRIM);
    
    /* Get factory trimming  */
    if (trimmingoffset == OPAMP_FACTORYTRIMMING_P)
    {
      /* Return TrimOffsetP */
     trimmingvalue = ((hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETP) >> OPAMP_INPUT_NONINVERTING);
    }
    else 
    {
      /* Return TrimOffsetN */
      trimmingvalue = ((hopamp->Instance->CSR & OPAMP_CSR_TRIMOFFSETN) >> OPAMP_INPUT_INVERTING);
    }
    
    /* Restore user trimming configuration if it was formerly set */
    /* Check if user trimming was used */
    if (oldusertrimming == OPAMP_TRIMMING_USER) 
    {
      /* Restore user trimming */
      SET_BIT(hopamp->Instance->CSR,OPAMP_CSR_USERTRIM);
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETP, oldtrimmingvaluep<<OPAMP_INPUT_NONINVERTING);
      MODIFY_REG(hopamp->Instance->CSR, OPAMP_CSR_TRIMOFFSETN, oldtrimmingvaluen<<OPAMP_INPUT_INVERTING);
    }
  }  
  return trimmingvalue;
}
/**
  * @}
  */

/**
  * @}
  */
#endif /* STM32F302xE || STM32F303xE || STM32F398xx || */
       /* STM32F302xC || STM32F303xC || STM32F358xx || */
       /* STM32F303x8 || STM32F334x8 || STM32F328xx || */
       /* STM32F301x8 || STM32F302x8 || STM32F318xx    */

#endif /* HAL_OPAMP_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/