mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_STM/TARGET_STM32F4XX/spi_api.c

Committer:
mbed_official
Date:
2014-07-29
Revision:
268:402bcc0c870b
Parent:
227:7bd0639b8911
Child:
271:ccdf646660f2

File content as of revision 268:402bcc0c870b:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include "spi_api.h"

#if DEVICE_SPI
#include <math.h>

#include "cmsis.h"
#include "pinmap.h"

static const PinMap PinMap_SPI_SCLK[] = {
    {PA_5,  SPI_1, STM_PIN_DATA(2, 5)},
    {PB_3,  SPI_1, STM_PIN_DATA(2, 5)},
    {PB_3,  SPI_3, STM_PIN_DATA(2, 6)},
    {PB_10, SPI_2, STM_PIN_DATA(2, 5)},
    {PB_13, SPI_2, STM_PIN_DATA(2, 5)},
    {PC_10, SPI_3, STM_PIN_DATA(2, 6)},
    {NC,    NC,    0}
};

static const PinMap PinMap_SPI_MOSI[] = {
    {PA_7,  SPI_1, STM_PIN_DATA(2, 5)},
    {PB_5,  SPI_1, STM_PIN_DATA(2, 5)},
    {PB_5,  SPI_3, STM_PIN_DATA(2, 6)},
    {PB_15, SPI_2, STM_PIN_DATA(2, 5)},
    {PC_3,  SPI_2, STM_PIN_DATA(2, 5)},
    {PC_12, SPI_3, STM_PIN_DATA(2, 6)},
    {NC,    NC,    0}
};

static const PinMap PinMap_SPI_MISO[] = {
    {PA_6,  SPI_1, STM_PIN_DATA(2, 5)},
    {PB_4,  SPI_1, STM_PIN_DATA(2, 5)},
    {PB_4,  SPI_3, STM_PIN_DATA(2, 6)},
    {PB_14, SPI_2, STM_PIN_DATA(2, 5)},
    {PC_2,  SPI_2, STM_PIN_DATA(2, 5)},
    {PC_11, SPI_3, STM_PIN_DATA(2, 6)},
    {NC,    NC,    0}
};

static const PinMap PinMap_SPI_SSEL[] = {
    {PA_4,  SPI_1, STM_PIN_DATA(2, 5)},
    {PA_4,  SPI_3, STM_PIN_DATA(2, 6)},
    {PA_15, SPI_1, STM_PIN_DATA(2, 5)},
    {PA_15, SPI_3, STM_PIN_DATA(2, 6)},
    {PB_9,  SPI_2, STM_PIN_DATA(2, 5)},
    {PB_12, SPI_2, STM_PIN_DATA(2, 5)},
    {NC,    NC,    0}
};


static inline int ssp_disable(spi_t *obj);
static inline int ssp_enable(spi_t *obj);

void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
    // determine the SPI to use
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);
    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
    SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);
    obj->spi = (SPI_TypeDef*)pinmap_merge(spi_data, spi_cntl);
    MBED_ASSERT((int)obj->spi != NC)

    // enable power and clocking
    switch ((int)obj->spi) {
        case SPI_1:
            RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN;
            RCC->APB2ENR |= RCC_APB2ENR_SPI1EN;
            break;
        case SPI_2:
            RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN;
            RCC->APB1ENR |= RCC_APB1ENR_SPI2EN;
            break;
        case SPI_3:
            RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN;
            RCC->APB1ENR |= RCC_APB1ENR_SPI3EN;
            break;
    }
    

    // set default format and frequency
    if (ssel == NC) {
        spi_format(obj, 8, 0, 0);  // 8 bits, mode 0, master
    } else {
        spi_format(obj, 8, 0, 1);  // 8 bits, mode 0, slave
    }
    spi_frequency(obj, 1000000);
    
    // enable the ssp channel
    ssp_enable(obj);

    // pin out the spi pins
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);
    if (ssel != NC) {
        pinmap_pinout(ssel, PinMap_SPI_SSEL);
    }
    else {
        // Use software slave management
        obj->spi->CR1 |= SPI_CR1_SSM | SPI_CR1_SSI;
    }
}

void spi_free(spi_t *obj) {}

void spi_format(spi_t *obj, int bits, int mode, int slave) {
    MBED_ASSERT(((bits == 8) || (bits == 16)) && ((mode >= 0) && (mode <= 3)));
    ssp_disable(obj);

    int polarity = (mode & 0x2) ? 1 : 0;
    int phase = (mode & 0x1) ? 1 : 0;

    obj->spi->CR1 &= ~0x807;
    obj->spi->CR1 |= ((phase) ? 1 : 0) << 0 |
                     ((polarity) ? 1 : 0) << 1 |
                     ((slave) ? 0: 1) << 2 |
                     ((bits == 16) ? 1 : 0) << 11;

    if (obj->spi->SR & SPI_SR_MODF) {
        obj->spi->CR1 = obj->spi->CR1;
    }

    ssp_enable(obj);
}

void spi_frequency(spi_t *obj, int hz) {
    ssp_disable(obj);

    // SPI1 runs from PCLK2, which runs at SystemCoreClock / 2.  SPI2 and SPI3
    // run from PCLK1, which runs at SystemCoreClock / 4.
    uint32_t PCLK = SystemCoreClock;
    switch ((int)obj->spi) {
        case SPI_1: PCLK = PCLK >> 1; break;
        case SPI_2: PCLK = PCLK >> 2; break;
        case SPI_3: PCLK = PCLK >> 2; break;
    }

    // Choose the baud rate divisor (between 2 and 256)
    uint32_t divisor = PCLK / hz;

    // Find the nearest power-of-2
    divisor = divisor > 0 ? divisor-1 : 0;
    divisor |= divisor >> 1;
    divisor |= divisor >> 2;
    divisor |= divisor >> 4;
    divisor |= divisor >> 8;
    divisor |= divisor >> 16;
    divisor++;

    uint32_t baud_rate = __builtin_ffs(divisor) - 1;
    baud_rate = baud_rate > 0x7 ? 0x7 : baud_rate;

    obj->spi->CR1 &= ~(0x7 << 3);
    obj->spi->CR1 |= baud_rate << 3;

    ssp_enable(obj);
}

static inline int ssp_disable(spi_t *obj) {
    // TODO: Follow the instructions in 25.3.8 for safely disabling the SPI
    return obj->spi->CR1 &= ~SPI_CR1_SPE;
}

static inline int ssp_enable(spi_t *obj) {
    return obj->spi->CR1 |= SPI_CR1_SPE;
}

static inline int ssp_readable(spi_t *obj) {
    return obj->spi->SR & SPI_SR_RXNE;
}

static inline int ssp_writeable(spi_t *obj) {
    return obj->spi->SR & SPI_SR_TXE;
}

static inline void ssp_write(spi_t *obj, int value) {
    while (!ssp_writeable(obj));
    obj->spi->DR = value;
}

static inline int ssp_read(spi_t *obj) {
    while (!ssp_readable(obj));
    return obj->spi->DR;
}

static inline int ssp_busy(spi_t *obj) {
    return (obj->spi->SR & SPI_SR_BSY) ? (1) : (0);
}

int spi_master_write(spi_t *obj, int value) {
    ssp_write(obj, value);
    return ssp_read(obj);
}

int spi_slave_receive(spi_t *obj) {
    return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0);
};

int spi_slave_read(spi_t *obj) {
    return obj->spi->DR;
}

void spi_slave_write(spi_t *obj, int value) {
    while (ssp_writeable(obj) == 0) ;
    obj->spi->DR = value;
}

int spi_busy(spi_t *obj) {
    return ssp_busy(obj);
}

#endif