mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_STM/TARGET_STM32F4XX/i2c_api.c

Committer:
mbed_official
Date:
2014-07-29
Revision:
268:402bcc0c870b
Parent:
251:de9a1e4ffd79
Child:
285:31249416b6f9

File content as of revision 268:402bcc0c870b:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include "i2c_api.h"

#if DEVICE_I2C

#include "cmsis.h"
#include "pinmap.h"
#include "error.h"

static const PinMap PinMap_I2C_SDA[] = {
    {PB_7,  I2C_1, STM_PIN_DATA(2, 4)},
    {PB_9,  I2C_1, STM_PIN_DATA(2, 4)},
    {PB_11, I2C_2, STM_PIN_DATA(2, 4)},
    {PC_9,  I2C_3, STM_PIN_DATA(2, 4)},
    {PF_0,  I2C_2, STM_PIN_DATA(2, 4)},
    {PH_5,  I2C_2, STM_PIN_DATA(2, 4)},
    {PH_8,  I2C_3, STM_PIN_DATA(2, 4)},
    {NC,    NC,    0}
};

static const PinMap PinMap_I2C_SCL[] = {
    {PA_8,  I2C_3, STM_PIN_DATA(2, 4)},
    {PB_6,  I2C_1, STM_PIN_DATA(2, 4)},
    {PB_8,  I2C_1, STM_PIN_DATA(2, 4)},
    {PB_10, I2C_2, STM_PIN_DATA(2, 4)},
    {PF_1,  I2C_2, STM_PIN_DATA(2, 4)},
    {PH_4,  I2C_2, STM_PIN_DATA(2, 4)},
    {PH_7,  I2C_3, STM_PIN_DATA(2, 4)},
    {NC,    NC,    0}
};

static const uint32_t I2C_addr_offset[2][4] = {
    {0x0C, 0x20, 0x24, 0x28},
    {0x30, 0x34, 0x38, 0x3C}
};


static inline void i2c_interface_enable(i2c_t *obj) {
    obj->i2c->CR1 |= I2C_CR1_PE;
}

static inline void i2c_interface_disable(i2c_t *obj) {
    obj->i2c->CR1 &= ~I2C_CR1_PE;
}


static inline void i2c_power_enable(i2c_t *obj) {
    switch ((int)obj->i2c) {
        case I2C_1:
            RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN;
            RCC->APB1ENR |= RCC_APB1ENR_I2C1EN;
            break;
        case I2C_2:
            RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOFEN |
                            RCC_AHB1ENR_GPIOHEN;
            RCC->APB1ENR |= RCC_APB1ENR_I2C2EN;
            break;
        case I2C_3:
            RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOCEN |
                            RCC_AHB1ENR_GPIOHEN;
            RCC->APB1ENR |= RCC_APB1ENR_I2C3EN;
            break;
    }
}

static inline void i2c_wait_status(i2c_t *obj, uint32_t sr1_mask,
                                   uint32_t sr2_mask) {
    while (!(((obj->i2c->SR1 & sr1_mask) >= sr1_mask) &&
             ((obj->i2c->SR2 & sr2_mask) == sr2_mask)));
}

// Wait until the slave address has been acknowledged
static inline void i2c_wait_addr_tx(i2c_t *obj) {
    uint32_t sr1_mask = I2C_SR1_ADDR | I2C_SR1_TXE;
    uint32_t sr2_mask = I2C_SR2_MSL | I2C_SR2_BUSY | I2C_SR2_TRA;
    i2c_wait_status(obj, sr1_mask, sr2_mask);
}

// Wait until the slave address has been acknowledged
static inline void i2c_wait_addr_rx(i2c_t *obj) {
    uint32_t sr1_mask = I2C_SR1_ADDR;
    uint32_t sr2_mask = I2C_SR2_MSL | I2C_SR2_BUSY;
    i2c_wait_status(obj, sr1_mask, sr2_mask);
}


// Wait until a byte has been sent
static inline void i2c_wait_send(i2c_t *obj) {
    uint32_t sr1_mask = I2C_SR1_BTF | I2C_SR1_TXE;
    uint32_t sr2_mask = I2C_SR2_MSL | I2C_SR2_BUSY | I2C_SR2_TRA;
    i2c_wait_status(obj, sr1_mask, sr2_mask);
}

// Wait until a byte has been received
static inline void i2c_wait_receive(i2c_t *obj) {
    uint32_t sr1_mask = I2C_SR1_RXNE;
    uint32_t sr2_mask = I2C_SR2_MSL | I2C_SR2_BUSY;
    i2c_wait_status(obj, sr1_mask, sr2_mask);
}

// Wait until the start condition has been accepted
static inline void i2c_wait_start(i2c_t *obj) {
    uint32_t sr1_mask = I2C_SR1_SB;
    uint32_t sr2_mask = I2C_SR2_MSL | I2C_SR2_BUSY;
    i2c_wait_status(obj, sr1_mask, sr2_mask);
}

void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
    // determine the SPI to use
    I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
    I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
    obj->i2c = (I2C_TypeDef *)pinmap_merge(i2c_sda, i2c_scl);
    MBED_ASSERT((int)obj->i2c != NC);

    // enable power
    i2c_power_enable(obj);

    pinmap_pinout(sda, PinMap_I2C_SDA);
    pinmap_pinout(scl, PinMap_I2C_SCL);

    pin_mode(sda, OpenDrain);
    pin_mode(scl, OpenDrain);

    // Force reset if the bus is stuck in the BUSY state
    if (obj->i2c->SR2 & I2C_SR2_BUSY) {
        obj->i2c->CR1 |= I2C_CR1_SWRST;
        obj->i2c->CR1 &= ~I2C_CR1_SWRST;
    }

    // Set the peripheral clock frequency
    obj->i2c->CR2 |= 42;

    // set default frequency at 100k
    i2c_frequency(obj, 100000);
    i2c_interface_enable(obj);
}

inline int i2c_start(i2c_t *obj) {
    // Wait until we are not busy any more
    while (obj->i2c->SR2 & I2C_SR2_BUSY);

    // Generate the start condition
    obj->i2c->CR1 |= I2C_CR1_START;
    i2c_wait_start(obj);

    return 0;
}

inline int i2c_stop(i2c_t *obj) {
    // Generate the stop condition
    obj->i2c->CR1 |= I2C_CR1_STOP;
    return 0;
}


static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) {
    obj->i2c->DR = value;
    return 0;
}

static inline int i2c_do_read(i2c_t *obj, int last) {
    if(last) {
        // Don't acknowledge the byte
        obj->i2c->CR1 &= ~(I2C_CR1_ACK);
    } else {
        // Acknowledge the byte
        obj->i2c->CR1 |= I2C_CR1_ACK;
    }

    // Wait until we receive the byte
    i2c_wait_receive(obj);

    int data = obj->i2c->DR;
    return data;
}

void i2c_frequency(i2c_t *obj, int hz) {
    i2c_interface_disable(obj);
    obj->i2c->CCR &= ~(I2C_CCR_CCR | I2C_CCR_FS);
    if (hz > 100000) {
        // Fast Mode
        obj->i2c->CCR |= I2C_CCR_FS;
        int result = 42000000 / (hz * 3);
        obj->i2c->CCR |= result & I2C_CCR_CCR;
        obj->i2c->TRISE = ((42 * 300) / 1000) + 1;
    }
    else {
        // Standard mode
        obj->i2c->CCR &= ~I2C_CCR_FS;
        int result = 42000000 / (hz << 1);
        result = result < 0x4 ? 0x4 : result;
        obj->i2c->CCR |= result & I2C_CCR_CCR;
        obj->i2c->TRISE = 42 + 1;
    }
    i2c_interface_enable(obj);
}

// The I2C does a read or a write as a whole operation
// There are two types of error conditions it can encounter
//  1) it can not obtain the bus
//  2) it gets error responses at part of the transmission
//
// We tackle them as follows:
//  1) we retry until we get the bus. we could have a "timeout" if we can not get it
//      which basically turns it in to a 2)
//  2) on error, we use the standard error mechanisms to report/debug
//
// Therefore an I2C transaction should always complete. If it doesn't it is usually
// because something is setup wrong (e.g. wiring), and we don't need to programatically
// check for that

int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
    int count;

    i2c_start(obj);

    // Send the slave address
    i2c_do_write(obj, (address | 0x01), 1);

    // Wait until we have transmitted and the ADDR byte is set
    i2c_wait_addr_rx(obj);

    // Read in all except last byte
    for (count = 0; count < (length - 1); count++) {
        int value = i2c_do_read(obj, 0);
        data[count] = (char) value;
    }

    // read in last byte
    int value = i2c_do_read(obj, 1);
    data[count] = (char) value;

    // If not repeated start, send stop.
    if (stop) {
        i2c_stop(obj);
    }

    return length;
}

int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
    int i;

    i2c_start(obj);

    // Send the slave address
    i2c_do_write(obj, (address & 0xFE), 1);
    i2c_wait_addr_tx(obj);

    for (i=0; i<length; i++) {
        i2c_do_write(obj, data[i], 0);
        i2c_wait_send(obj);
    }

    // If not repeated start, send stop.
    if (stop) {
        i2c_stop(obj);
    }

    return length;
}

void i2c_reset(i2c_t *obj) {
    i2c_stop(obj);
}

int i2c_byte_read(i2c_t *obj, int last) {
    return (i2c_do_read(obj, last) & 0xFF);
}

int i2c_byte_write(i2c_t *obj, int data) {
    i2c_do_write(obj, (data & 0xFF), 0);
    i2c_wait_send(obj);

    // TODO: Should return whether write has been acknowledged
    return 1;
}

#endif