NXP's driver library for LPC17xx, ported to mbed's online compiler. Not tested! I had to fix a lot of warings and found a couple of pretty obvious bugs, so the chances are there are more. Original: http://ics.nxp.com/support/documents/microcontrollers/zip/lpc17xx.cmsis.driver.library.zip

Dependencies:   mbed

source/lpc17xx_spi.c

Committer:
igorsk
Date:
2010-02-17
Revision:
0:1063a091a062

File content as of revision 0:1063a091a062:

/**
 * @file    : lpc17xx_spi.c
 * @brief    : Contains all functions support for SPI firmware library on LPC17xx
 * @version    : 1.0
 * @date    : 3. April. 2009
 * @author    : HieuNguyen
 **************************************************************************
 * Software that is described herein is for illustrative purposes only
 * which provides customers with programming information regarding the
 * products. This software is supplied "AS IS" without any warranties.
 * NXP Semiconductors assumes no responsibility or liability for the
 * use of the software, conveys no license or title under any patent,
 * copyright, or mask work right to the product. NXP Semiconductors
 * reserves the right to make changes in the software without
 * notification. NXP Semiconductors also make no representation or
 * warranty that such application will be suitable for the specified
 * use without further testing or modification.
 **********************************************************************/

/* Peripheral group ----------------------------------------------------------- */
/** @addtogroup SPI
 * @{
 */

/* Includes ------------------------------------------------------------------- */
#include "lpc17xx_spi.h"
#include "lpc17xx_clkpwr.h"

/* If this source file built with example, the LPC17xx FW library configuration
 * file in each example directory ("lpc17xx_libcfg.h") must be included,
 * otherwise the default FW library configuration file must be included instead
 */
#ifdef __BUILD_WITH_EXAMPLE__
#include "lpc17xx_libcfg.h"
#else
#include "lpc17xx_libcfg_default.h"
#endif /* __BUILD_WITH_EXAMPLE__ */

#ifdef _SPI

/* Private Types -------------------------------------------------------------- */
/** @defgroup SPI_Private_Types
 * @{
 */

/** @brief SPI device configuration structure type */
typedef struct
{
    int32_t     dataword;                /* Current data word: 0 - 8 bit; 1 - 16 bit */
    uint32_t    txrx_setup;             /* Transmission setup */
    void        (*inthandler)(void);       /* Transmission interrupt handler */
} SPI_CFG_T;

/**
 * @}
 */


/* Private Variables ---------------------------------------------------------- */
/* SPI configuration data */
static SPI_CFG_T spidat;


/* Private Functions ---------------------------------------------------------- */
/** @defgroup SPI_Private_Functions
 * @{
 */

/*********************************************************************//**
 * @brief         Standard Private SPI Interrupt handler
 * @param[in]    None
 * @return         None
 ***********************************************************************/
void SPI_IntHandler(void)
{
    SPI_DATA_SETUP_Type *xf_setup;
    uint16_t tmp;

    xf_setup = (SPI_DATA_SETUP_Type *)spidat.txrx_setup;

    /* Dummy read to clear SPI interrupt flag */
    if (LPC_SPI->SPINT & SPI_SPINT_INTFLAG){
        LPC_SPI->SPINT = SPI_SPINT_INTFLAG;
    }

    // save status
    tmp = LPC_SPI->SPSR;
    xf_setup->status = tmp;
    // Check for error
    if (tmp & (SPI_SPSR_ABRT | SPI_SPSR_MODF | SPI_SPSR_ROVR | SPI_SPSR_WCOL)){
        xf_setup->status |= SPI_STAT_ERROR;
        // Disable Interrupt and call call-back
        SPI_IntCmd(LPC_SPI, DISABLE);
        if (xf_setup->callback != NULL){
            xf_setup->callback();
        }
        return;
    }

    /* Check SPI complete flag */
    if (tmp & SPI_SPSR_SPIF){
       // Read data from SPI data
        tmp = SPI_ReceiveData(LPC_SPI);
        if (xf_setup->rx_data != NULL)
        {
//            if (spidat.dataword == 0){
//                *(uint8_t *)(xf_setup->rx_data + xf_setup->counter) = (uint8_t) tmp;
//            } else {
//                *(uint16_t *)(xf_setup->rx_data + xf_setup->counter) = (uint8_t) tmp;
//            }
            if (spidat.dataword == 0){
                *(uint8_t *)((uint8_t *)(xf_setup->rx_data) + xf_setup->counter) = (uint8_t) tmp;
            } else {
                *(uint16_t *)((uint8_t *)(xf_setup->rx_data) + xf_setup->counter) = (uint8_t) tmp;
            }
        }
        // Increase counter
        if (spidat.dataword == 0){
            xf_setup->counter++;
        } else {
            xf_setup->counter += 2;
        }
    }

    if (xf_setup->counter < xf_setup->length){
        // Write data to buffer
        if(xf_setup->tx_data == NULL){
            if (spidat.dataword == 0){
                SPI_SendData(LPC_SPI, 0xFF);
            } else {
                SPI_SendData(LPC_SPI, 0xFFFF);
            }
        } else {
//            if (spidat.dataword == 0){
//                SPI_SendData(SPI, (*(uint8_t *)(xf_setup->tx_data + xf_setup->counter)));
//            } else {
//                SPI_SendData(SPI, (*(uint16_t *)(xf_setup->tx_data + xf_setup->counter)));
//            }
            if (spidat.dataword == 0){
                SPI_SendData(LPC_SPI, (*(uint8_t *)((uint8_t *)(xf_setup->tx_data) + xf_setup->counter)));
            } else {
                SPI_SendData(LPC_SPI, (*(uint16_t *)((uint8_t *)(xf_setup->tx_data) + xf_setup->counter)));
            }
        }
    }
    // No more data to send
    else {
        xf_setup->status |= SPI_STAT_DONE;
        // Disable Interrupt and call call-back
        SPI_IntCmd(LPC_SPI, DISABLE);
        if (xf_setup->callback != NULL){
            xf_setup->callback();
        }
    }
}


/**
 * @}
 */

/* Public Functions ----------------------------------------------------------- */
/** @addtogroup SPI_Public_Functions
 * @{
 */

/*********************************************************************//**
 * @brief         Setup clock rate for SPI device
 * @param[in]     SPIx    SPI peripheral definition, should be SPI
 * @param[in]    target_clock : clock of SPI (Hz)
 * @return         None
 ***********************************************************************/
void SPI_SetClock (LPC_SPI_TypeDef *SPIx, uint32_t target_clock)
{
    uint32_t spi_pclk;
    uint32_t prescale, temp;

    CHECK_PARAM(PARAM_SPIx(SPIx));

    if (SPIx == LPC_SPI){
        spi_pclk =  CLKPWR_GetPCLK (CLKPWR_PCLKSEL_SPI);
    } else {
        return;
    }

    prescale = 8;
    // Find closest clock to target clock
    while (1){
        temp = target_clock * prescale;
        if (temp >= spi_pclk){
            break;
        }
        prescale += 2;
        if(prescale >= 254){
            break;
        }
    }

    // Write to register
    SPIx->SPCCR = SPI_SPCCR_COUNTER(prescale);
}


/*********************************************************************//**
 * @brief        De-initializes the SPIx peripheral registers to their
*                  default reset values.
 * @param[in]    SPIx    SPI peripheral selected, should be SPI
 * @return         None
 **********************************************************************/
void SPI_DeInit(LPC_SPI_TypeDef *SPIx)
{
    CHECK_PARAM(PARAM_SPIx(SPIx));

    if (SPIx == LPC_SPI){
        /* Set up clock and power for SPI module */
        CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSPI, DISABLE);
    }
}



/********************************************************************//**
 * @brief        Initializes the SPIx peripheral according to the specified
*               parameters in the UART_ConfigStruct.
 * @param[in]    SPIx    SPI peripheral selected, should be SPI
 * @param[in]    SPI_ConfigStruct Pointer to a SPI_CFG_Type structure
*                    that contains the configuration information for the
*                    specified SPI peripheral.
 * @return         None
 *********************************************************************/
void SPI_Init(LPC_SPI_TypeDef *SPIx, SPI_CFG_Type *SPI_ConfigStruct)
{
    uint32_t tmp;

    CHECK_PARAM(PARAM_SPIx(SPIx));

    if(SPIx == LPC_SPI){
        /* Set up clock and power for UART module */
        CLKPWR_ConfigPPWR (CLKPWR_PCONP_PCSPI, ENABLE);
    } else {
        return;
    }

    // Configure SPI, interrupt is disable as default
    tmp = ((SPI_ConfigStruct->CPHA) | (SPI_ConfigStruct->CPOL) \
        | (SPI_ConfigStruct->DataOrder) | (SPI_ConfigStruct->Databit) \
        | (SPI_ConfigStruct->Mode) | SPI_SPCR_BIT_EN) & SPI_SPCR_BITMASK;
    // write back to SPI control register
    SPIx->SPCR = tmp;

    if (SPI_ConfigStruct->Databit > SPI_DATABIT_8){
        spidat.dataword = 1;
    } else {
        spidat.dataword = 0;
    }

    // Set clock rate for SPI peripheral
    SPI_SetClock(SPIx, SPI_ConfigStruct->ClockRate);

    // If interrupt flag is set, Write '1' to Clear interrupt flag
    if (SPIx->SPINT & SPI_SPINT_INTFLAG){
        SPIx->SPINT = SPI_SPINT_INTFLAG;
    }
}



/*****************************************************************************//**
* @brief        Fills each SPI_InitStruct member with its default value:
*                 - CPHA = SPI_CPHA_FIRST
*                 - CPOL = SPI_CPOL_HI
*                 - ClockRate = 1000000
*                 - DataOrder = SPI_DATA_MSB_FIRST
*                 - Databit = SPI_DATABIT_8
*                 - Mode = SPI_MASTER_MODE
* @param[in]    SPI_InitStruct Pointer to a SPI_CFG_Type structure
*                    which will be initialized.
* @return        None
*******************************************************************************/
void SPI_ConfigStructInit(SPI_CFG_Type *SPI_InitStruct)
{
    SPI_InitStruct->CPHA = SPI_CPHA_FIRST;
    SPI_InitStruct->CPOL = SPI_CPOL_HI;
    SPI_InitStruct->ClockRate = 1000000;
    SPI_InitStruct->DataOrder = SPI_DATA_MSB_FIRST;
    SPI_InitStruct->Databit = SPI_DATABIT_8;
    SPI_InitStruct->Mode = SPI_MASTER_MODE;
}

/*********************************************************************//**
 * @brief        Transmit a single data through SPIx peripheral
 * @param[in]    SPIx    SPI peripheral selected, should be SPI
 * @param[in]    Data    Data to transmit (must be 16 or 8-bit long,
 *                         this depend on SPI data bit number configured)
 * @return         none
 **********************************************************************/
void SPI_SendData(LPC_SPI_TypeDef* SPIx, uint16_t Data)
{
    CHECK_PARAM(PARAM_SPIx(SPIx));

    SPIx->SPDR = Data & SPI_SPDR_BITMASK;
}



/*********************************************************************//**
 * @brief        Receive a single data from SPIx peripheral
 * @param[in]    SPIx    SPI peripheral selected, should be SPI
 * @return         Data received (16-bit long)
 **********************************************************************/
uint16_t SPI_ReceiveData(LPC_SPI_TypeDef* SPIx)
{
    CHECK_PARAM(PARAM_SPIx(SPIx));

    return ((uint16_t) (SPIx->SPDR & SPI_SPDR_BITMASK));
}

/*********************************************************************//**
 * @brief         SPI     Read write data function
 * @param[in]    SPIx     Pointer to SPI peripheral, should be SPI
 * @param[in]    dataCfg    Pointer to a SPI_DATA_SETUP_Type structure that
 *                         contains specified information about transmit
 *                         data configuration.
 * @param[in]    xfType    Transfer type, should be:
 *                         - SPI_TRANSFER_POLLING: Polling mode
 *                         - SPI_TRANSFER_INTERRUPT: Interrupt mode
 * @return         Actual Data length has been transferred in polling mode.
 *                 In interrupt mode, always return (0)
 *                 Return (-1) if error.
 * Note: This function can be used in both master and slave mode.
 ***********************************************************************/
int32_t SPI_ReadWrite (LPC_SPI_TypeDef *SPIx, SPI_DATA_SETUP_Type *dataCfg, \
                        SPI_TRANSFER_Type xfType)
{
    uint8_t *rdata8 = NULL;
    uint8_t *wdata8 = NULL;
    uint16_t *rdata16 = NULL;
    uint16_t *wdata16 = NULL;
    uint32_t stat=0;
    uint32_t temp;

    //read for empty buffer
    temp = SPIx->SPDR;
    //dummy to clear status
    temp = SPIx->SPSR;
    dataCfg->counter = 0;
    dataCfg->status = 0;

    if (xfType == SPI_TRANSFER_POLLING){

        if (spidat.dataword == 0){
            rdata8 = (uint8_t *)dataCfg->rx_data;
            wdata8 = (uint8_t *)dataCfg->tx_data;
        } else {
            rdata16 = (uint16_t *)dataCfg->rx_data;
            wdata16 = (uint16_t *)dataCfg->tx_data;
        }

        while(dataCfg->counter < dataCfg->length)
        {
            // Write data to buffer
            if(dataCfg->tx_data == NULL){
                if (spidat.dataword == 0){
                    SPI_SendData(SPIx, 0xFF);
                } else {
                    SPI_SendData(SPIx, 0xFFFF);
                }
            } else {
                if (spidat.dataword == 0){
                    SPI_SendData(SPIx, *wdata8);
                    wdata8++;
                } else {
                    SPI_SendData(SPIx, *wdata16);
                    wdata16++;
                }
            }
            // Wait for transfer complete
            while (!((stat = SPIx->SPSR) & SPI_SPSR_SPIF));
            // Check for error
            if (stat & (SPI_SPSR_ABRT | SPI_SPSR_MODF | SPI_SPSR_ROVR | SPI_SPSR_WCOL)){
                // save status
                dataCfg->status = stat | SPI_STAT_ERROR;
                return (dataCfg->counter);
            }
            // Read data from SPI dat
            temp = (uint32_t) SPI_ReceiveData(SPIx);

            // Store data to destination
            if (dataCfg->rx_data != NULL)
            {
                if (spidat.dataword == 0){
                    *(rdata8) = (uint8_t) temp;
                    rdata8++;
                } else {
                    *(rdata16) = (uint16_t) temp;
                    rdata16++;
                }
            }
            // Increase counter
            if (spidat.dataword == 0){
                dataCfg->counter++;
            } else {
                dataCfg->counter += 2;
            }
        }

        // Return length of actual data transferred
        // save status
        dataCfg->status = stat | SPI_STAT_DONE;
        return (dataCfg->counter);
    }
    // Interrupt mode
    else {
        spidat.txrx_setup = (uint32_t)dataCfg;
        spidat.inthandler = SPI_IntHandler;

        // Check if interrupt flag is already set
        if(SPIx->SPINT & SPI_SPINT_INTFLAG){
            SPIx->SPINT = SPI_SPINT_INTFLAG;
        }
        if (dataCfg->counter < dataCfg->length){
            // Write data to buffer
            if(dataCfg->tx_data == NULL){
                if (spidat.dataword == 0){
                    SPI_SendData(SPIx, 0xFF);
                } else {
                    SPI_SendData(SPIx, 0xFFFF);
                }
            } else {
                if (spidat.dataword == 0){
                    SPI_SendData(SPIx, (*(uint8_t *)dataCfg->tx_data));
                } else {
                    SPI_SendData(SPIx, (*(uint16_t *)dataCfg->tx_data));
                }
            }
            SPI_IntCmd(SPIx, ENABLE);
        } else {
            // Save status
            dataCfg->status = SPI_STAT_DONE;
        }
        return (0);
    }
}


/********************************************************************//**
 * @brief         Enable or disable SPIx interrupt.
 * @param[in]    SPIx    SPI peripheral selected, should be SPI
 * @param[in]    NewState New state of specified UART interrupt type,
 *                 should be:
 *                 - ENALBE: Enable this SPI interrupt.
*                 - DISALBE: Disable this SPI interrupt.
 * @return         None
 *********************************************************************/
void SPI_IntCmd(LPC_SPI_TypeDef *SPIx, FunctionalState NewState)
{
    CHECK_PARAM(PARAM_SPIx(SPIx));
    CHECK_PARAM(PARAM_FUNCTIONALSTATE(NewState));

    if (NewState == ENABLE)
    {
        SPIx->SPCR |= SPI_SPCR_SPIE;
    }
    else
    {
        SPIx->SPCR &= (~SPI_SPCR_SPIE) & SPI_SPCR_BITMASK;
    }
}


/********************************************************************//**
 * @brief         Checks whether the SPI interrupt flag is set or not.
 * @param[in]    SPIx    SPI peripheral selected, should be SPI
 * @return         The new state of SPI Interrupt Flag (SET or RESET)
 *********************************************************************/
IntStatus SPI_GetIntStatus (LPC_SPI_TypeDef *SPIx)
{
    CHECK_PARAM(PARAM_SPIx(SPIx));

    return ((SPIx->SPINT & SPI_SPINT_INTFLAG) ? SET : RESET);
}


/********************************************************************//**
 * @brief         Clear SPI interrupt flag.
 * @param[in]    SPIx    SPI peripheral selected, should be SPI
 * @return         None
 *********************************************************************/
void SPI_ClearIntPending(LPC_SPI_TypeDef *SPIx)
{
    CHECK_PARAM(PARAM_SPIx(SPIx));

    SPIx->SPINT = SPI_SPINT_INTFLAG;
}


/********************************************************************//**
 * @brief         Get current value of SPI Status register in SPIx peripheral.
 * @param[in]    SPIx    SPI peripheral selected, should be SPI
 * @return        Current value of SPI Status register in SPI peripheral.
 * Note:    The return value of this function must be used with
 *             SPI_CheckStatus() to determine current flag status
 *             corresponding to each SPI status type. Because some flags in
 *             SPI Status register will be cleared after reading, the next reading
 *             SPI Status register could not be correct. So this function used to
 *             read SPI status register in one time only, then the return value
 *             used to check all flags.
 *********************************************************************/
uint32_t SPI_GetStatus(LPC_SPI_TypeDef* SPIx)
{
    CHECK_PARAM(PARAM_SPIx(SPIx));

    return (SPIx->SPSR & SPI_SPSR_BITMASK);
}



/********************************************************************//**
 * @brief         Checks whether the specified SPI Status flag is set or not
 *                 via inputSPIStatus parameter.
 * @param[in]    inputSPIStatus Value to check status of each flag type.
 *                 This value is the return value from SPI_GetStatus().
 * @param[in]    SPIStatus    Specifies the SPI status flag to check,
 *                 should be one of the following:
                - SPI_STAT_ABRT: Slave abort.
                - SPI_STAT_MODF: Mode fault.
                - SPI_STAT_ROVR: Read overrun.
                - SPI_STAT_WCOL: Write collision.
                - SPI_STAT_SPIF: SPI transfer complete.
 * @return         The new state of SPIStatus (SET or RESET)
 *********************************************************************/
FlagStatus SPI_CheckStatus (uint32_t inputSPIStatus,  uint8_t SPIStatus)
{
    CHECK_PARAM(PARAM_SPI_STAT(SPIStatus));

    return ((inputSPIStatus & SPIStatus) ? SET : RESET);
}

/**
 * @brief        Standard SPI Interrupt handler
 * @param[in]     None
 * @return        None
 */
void SPI_StdIntHandler(void)
{
    // Call relevant handler
    spidat.inthandler();
}


/**
 * @}
 */

#endif /* _SPI */

/**
 * @}
 */

/* --------------------------------- End Of File ------------------------------ */