RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos

Fork of mbed-RtosI2cDriver by Helmut Schmücker

I2cRtosDriver

Overview

  • Based on RTOS
    • Less busy wait waste of CPU cycles
    • ... but some waste of CPU cycles by context switches
    • Frees up to 80% of CPU resources
  • Fixes the bug described in https://mbed.org/forum/bugs-suggestions/topic/4128/
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
  • Reuses parts of the official I2C implementation
  • The test and example programs work quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises left.
  • If you want to avoid the RTOS overhead MODI2C might be a better choice.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the tests/examples in I2CDriverTest01.h - I2CDriverTest05.h
  • The I2CDriver class is the central interface
    • I2CDriver provides a "fat" API for I2C master and slave access
    • It supports on the fly changes between master and slave mode.
    • All requests are blocking. Other threads might do their work while the calling thread waits for the i2c requests to be completed.
    • It ensures mutual exclusive access to the I2C HW.
      • This is realized by a static RTOS mutex for each I2C channel. The mutex is taken by the calling thread on any call of an I2CDriver-function.
      • Thus accesses are prioritized automatically by the priority of the calling user threads.
      • Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads.
      • Optionally the interface can be locked manually. Useful if one wants to perform a sequence of commands without interruption.
  • I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally
    • the constructors provide parameters for defining the frequency and the slave address
    • I2CMasterRtos provides a function to read data from a given slave register
    • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when the master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
    • The stop function provides a timeout mechanism and returns the status. Thus if someone on the bus inhibits the creation of a stop condition by keeping the scl or the sda line low the mbed master won't get freezed.
    • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead is negligible.

Design

The i2c read and write sequences have been realized in an interrupt service routine. The communicaton between the calling thread and the ISR is realized by a simple static transfer struct and a semaphore ... see i2cRtos_api.c
The start and stop functions still use the busy wait approach. They are not entered that frequently and usually they take less than 12µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be much benefit if one triggers the whole interrupt/task wait/switch sequence for that short period of time.

Performance

The following performance data have been measured with the small test applications in I2CDriverTest01.h and I2CDriverTest04.h . In these applications a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address+register; write address and read x byte of data). The measurements have been performed with the ISR/RTOS approach used by this driver and with the busy wait approach used by the official mbed I2C implementation. The i2c implementation can be selected via #define PREFIX in I2CDriver.cpp.

  • The time for one read cycle is almost the same for both approaches
  • At full load the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas with the RTOS/ISR enabled driver it stays at 80%-90% on the LPC1768 and above 65% on the LPC11U24.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.791.090.593.391.990.386.8
t[µs]421714910141314518961
busy waitDC[%]57.127.78.185.868.748.23.8
t[µs]415710907128299503949
LPC17681byte/ms4byte/ms7byte/ms1byte/ms6byte/ms12byte/ms36byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.590.789.393.091.690.084.2
t[µs]415687959133254398977
busy waitDC[%]57.730.53.386.574.359.71.2
t[µs]408681953121243392974
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms23byte/ms
SRF08@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.277.581.178.771.4
t[µs]474975199374978
busy waitDC[%]51.82.480.5633.3
t[µs]442937156332928
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms32byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.176.881.078.667.1
t[µs]466922188316985
busy waitDC[%]52.87.281.769.87.4
t[µs]433893143268895
Committer:
humlet
Date:
Sat Apr 20 11:56:35 2013 +0000
Revision:
5:8a418c89e515
Parent:
3:967dde37e712
Child:
6:5b98c902a659
pre-publish

Who changed what in which revision?

UserRevisionLine numberNew contents of line
humlet 0:13c962fecb13 1 #ifndef I2CDRIVER_H
humlet 0:13c962fecb13 2 #define I2CDRIVER_H
humlet 0:13c962fecb13 3
humlet 0:13c962fecb13 4 #include "stdint.h"
humlet 0:13c962fecb13 5
humlet 0:13c962fecb13 6 #include "I2C.h"
humlet 0:13c962fecb13 7
humlet 0:13c962fecb13 8 #include "Thread.h"
humlet 0:13c962fecb13 9 #include "Mutex.h"
humlet 0:13c962fecb13 10
humlet 0:13c962fecb13 11 namespace mbed
humlet 0:13c962fecb13 12 {
humlet 5:8a418c89e515 13 /// I2C driver based on mbed RTOS and I2C-C-API.
humlet 5:8a418c89e515 14 /// Supports Master and Slave mode
humlet 3:967dde37e712 15 class I2CDriver
humlet 0:13c962fecb13 16 {
humlet 0:13c962fecb13 17 public:
humlet 5:8a418c89e515 18 /// Status returned by the receiveSlave() function
humlet 3:967dde37e712 19 enum SlaveRxStatus {
humlet 3:967dde37e712 20 NoData = 0,
humlet 3:967dde37e712 21 ReadAddressed = 1,
humlet 3:967dde37e712 22 WriteGeneral = 2,
humlet 3:967dde37e712 23 WriteAddressed = 3
humlet 3:967dde37e712 24 };
humlet 0:13c962fecb13 25
humlet 5:8a418c89e515 26 /** Create an I2C Master interface, connected to the specified pins.
humlet 0:13c962fecb13 27 *
humlet 0:13c962fecb13 28 * @param sda I2C data line pin
humlet 0:13c962fecb13 29 * @param scl I2C clock line pin
humlet 5:8a418c89e515 30 *
humlet 5:8a418c89e515 31 * @note Has to be created in a thread context, i.e. within the main or some other function. A global delaration does not work
humlet 0:13c962fecb13 32 */
humlet 3:967dde37e712 33 I2CDriver(PinName sda, PinName scl, int hz=100000, int slaveAdr=0);
humlet 3:967dde37e712 34
humlet 3:967dde37e712 35 /** Set the frequency of the I2C interface
humlet 3:967dde37e712 36 *
humlet 3:967dde37e712 37 * @param hz The bus frequency in hertz
humlet 3:967dde37e712 38 */
humlet 3:967dde37e712 39 void frequency(int hz) {
humlet 3:967dde37e712 40 m_freq = hz;
humlet 3:967dde37e712 41 }
humlet 0:13c962fecb13 42
humlet 0:13c962fecb13 43 /** Read from an I2C slave
humlet 0:13c962fecb13 44 *
humlet 0:13c962fecb13 45 * Performs a complete read transaction. The bottom bit of
humlet 0:13c962fecb13 46 * the address is forced to 1 to indicate a read.
humlet 0:13c962fecb13 47 *
humlet 0:13c962fecb13 48 * @param address 8-bit I2C slave address [ addr | 1 ]
humlet 0:13c962fecb13 49 * @param data Pointer to the byte-array to read data in to
humlet 0:13c962fecb13 50 * @param length Number of bytes to read
humlet 0:13c962fecb13 51 * @param repeated Repeated start, true - don't send stop at end
humlet 0:13c962fecb13 52 *
humlet 0:13c962fecb13 53 * @returns
humlet 0:13c962fecb13 54 * 0 on success (ack),
humlet 0:13c962fecb13 55 * non-0 on failure (nack)
humlet 0:13c962fecb13 56 */
humlet 3:967dde37e712 57 int readMaster(int address, char *data, int length, bool repeated = false);
humlet 0:13c962fecb13 58
humlet 3:967dde37e712 59 /** Read from a given I2C slave register
humlet 3:967dde37e712 60 *
humlet 3:967dde37e712 61 * Performs a complete write-register-read-data-transaction. The bottom bit of
humlet 3:967dde37e712 62 * the address is forced to 1 to indicate a read.
humlet 3:967dde37e712 63 *
humlet 3:967dde37e712 64 * @param address 8-bit I2C slave address [ addr | 1 ]
humlet 3:967dde37e712 65 * @param _register 8-bit regster address
humlet 3:967dde37e712 66 * @param data Pointer to the byte-array to read data in to
humlet 3:967dde37e712 67 * @param length Number of bytes to read
humlet 3:967dde37e712 68 * @param repeated Repeated start, true - don't send stop at end
humlet 3:967dde37e712 69 *
humlet 3:967dde37e712 70 * @returns
humlet 3:967dde37e712 71 * 0 on success (ack),
humlet 3:967dde37e712 72 * non-0 on failure (nack)
humlet 3:967dde37e712 73 */
humlet 3:967dde37e712 74 int readMaster(int address, uint8_t _register, char *data, int length, bool repeated = false);
humlet 1:90455d5bdd8c 75
humlet 0:13c962fecb13 76 /** Read a single byte from the I2C bus
humlet 0:13c962fecb13 77 *
humlet 0:13c962fecb13 78 * @param ack indicates if the byte is to be acknowledged (1 = acknowledge)
humlet 0:13c962fecb13 79 *
humlet 0:13c962fecb13 80 * @returns
humlet 0:13c962fecb13 81 * the byte read
humlet 0:13c962fecb13 82 */
humlet 3:967dde37e712 83 int readMaster(int ack=1);
humlet 0:13c962fecb13 84
humlet 0:13c962fecb13 85 /** Write to an I2C slave
humlet 0:13c962fecb13 86 *
humlet 0:13c962fecb13 87 * Performs a complete write transaction. The bottom bit of
humlet 0:13c962fecb13 88 * the address is forced to 0 to indicate a write.
humlet 0:13c962fecb13 89 *
humlet 0:13c962fecb13 90 * @param address 8-bit I2C slave address [ addr | 0 ]
humlet 0:13c962fecb13 91 * @param data Pointer to the byte-array data to send
humlet 0:13c962fecb13 92 * @param length Number of bytes to send
humlet 0:13c962fecb13 93 * @param repeated Repeated start, true - do not send stop at end
humlet 0:13c962fecb13 94 *
humlet 0:13c962fecb13 95 * @returns
humlet 0:13c962fecb13 96 * 0 on success (ack),
humlet 0:13c962fecb13 97 * non-0 on failure (nack)
humlet 0:13c962fecb13 98 */
humlet 3:967dde37e712 99 int writeMaster(int address, const char *data, int length, bool repeated = false);
humlet 0:13c962fecb13 100
humlet 0:13c962fecb13 101 /** Write single byte out on the I2C bus
humlet 0:13c962fecb13 102 *
humlet 0:13c962fecb13 103 * @param data data to write out on bus
humlet 0:13c962fecb13 104 *
humlet 0:13c962fecb13 105 * @returns
humlet 0:13c962fecb13 106 * '1' if an ACK was received,
humlet 0:13c962fecb13 107 * '0' otherwise
humlet 0:13c962fecb13 108 */
humlet 3:967dde37e712 109 int writeMaster(int data);
humlet 3:967dde37e712 110
humlet 3:967dde37e712 111 /** Sets the I2C slave address.
humlet 3:967dde37e712 112 *
humlet 3:967dde37e712 113 * @param address The address to set for the slave (ignoring the least
humlet 3:967dde37e712 114 * signifcant bit). If set to 0, the slave will only respond to the
humlet 3:967dde37e712 115 * general call address.
humlet 3:967dde37e712 116 */
humlet 3:967dde37e712 117 void addressSlave(int address) {
humlet 3:967dde37e712 118 m_slaveAdr=address;
humlet 3:967dde37e712 119 }
humlet 3:967dde37e712 120
humlet 3:967dde37e712 121 /** Checks to see if this I2C Slave has been addressed.
humlet 3:967dde37e712 122 *
humlet 3:967dde37e712 123 * @returns
humlet 3:967dde37e712 124 * A status indicating if the device has been addressed, and how
humlet 3:967dde37e712 125 * - NoData - the slave has not been addressed
humlet 3:967dde37e712 126 * - ReadAddressed - the master has requested a read from this slave
humlet 3:967dde37e712 127 * - WriteAddressed - the master is writing to this slave
humlet 3:967dde37e712 128 * - WriteGeneral - the master is writing to all slave
humlet 3:967dde37e712 129 */
humlet 3:967dde37e712 130 int receiveSlave(uint32_t timeout_ms=osWaitForever);
humlet 3:967dde37e712 131
humlet 3:967dde37e712 132 /** Read from an I2C master.
humlet 3:967dde37e712 133 *
humlet 3:967dde37e712 134 * @param data pointer to the byte array to read data in to
humlet 3:967dde37e712 135 * @param length maximum number of bytes to read
humlet 3:967dde37e712 136 *
humlet 3:967dde37e712 137 * @returns
humlet 3:967dde37e712 138 * 0 on success,
humlet 3:967dde37e712 139 * non-0 otherwise
humlet 3:967dde37e712 140 */
humlet 3:967dde37e712 141 int readSlave(char *data, int length);
humlet 3:967dde37e712 142
humlet 3:967dde37e712 143 /** Read a single byte from an I2C master.
humlet 3:967dde37e712 144 *
humlet 3:967dde37e712 145 * @returns
humlet 3:967dde37e712 146 * the byte read
humlet 3:967dde37e712 147 */
humlet 3:967dde37e712 148 int readSlave(void);
humlet 3:967dde37e712 149
humlet 3:967dde37e712 150 /** Write to an I2C master.
humlet 3:967dde37e712 151 *
humlet 3:967dde37e712 152 * @param data pointer to the byte array to be transmitted
humlet 3:967dde37e712 153 * @param length the number of bytes to transmite
humlet 3:967dde37e712 154 *
humlet 3:967dde37e712 155 * @returns
humlet 3:967dde37e712 156 * 0 on success,
humlet 3:967dde37e712 157 * non-0 otherwise
humlet 3:967dde37e712 158 */
humlet 3:967dde37e712 159 int writeSlave(const char *data, int length);
humlet 3:967dde37e712 160
humlet 3:967dde37e712 161 /** Write a single byte to an I2C master.
humlet 3:967dde37e712 162 *
humlet 3:967dde37e712 163 * @data the byte to write
humlet 3:967dde37e712 164 *
humlet 3:967dde37e712 165 * @returns
humlet 3:967dde37e712 166 * '1' if an ACK was received,
humlet 3:967dde37e712 167 * '0' otherwise
humlet 3:967dde37e712 168 */
humlet 3:967dde37e712 169 int writeSlave(int data);
humlet 3:967dde37e712 170
humlet 0:13c962fecb13 171
humlet 0:13c962fecb13 172 /// Creates a start condition on the I2C bus
humlet 3:967dde37e712 173 void startMaster(void);
humlet 0:13c962fecb13 174
humlet 0:13c962fecb13 175 ///Creates a stop condition on the I2C bus
humlet 3:967dde37e712 176 void stopSlave(void);
humlet 3:967dde37e712 177
humlet 3:967dde37e712 178 ///Creates a stop condition on the I2C bus
humlet 3:967dde37e712 179 void stopMaster(void);
humlet 3:967dde37e712 180
humlet 3:967dde37e712 181
humlet 0:13c962fecb13 182
humlet 0:13c962fecb13 183 /// Wait until the i2c driver becomes available.
humlet 3:967dde37e712 184 ///
humlet 3:967dde37e712 185 /// Useful if you want to run a sequence of command without interrution by another thread.
humlet 3:967dde37e712 186 /// There's no need to call this function for running single request, because all driver functions
humlet 3:967dde37e712 187 /// will lock the device for exclusive access automatically.
humlet 2:514105beb343 188 void lock() {
humlet 3:967dde37e712 189 // One and the same thread can lock twice, but then it needs also to unlock twice.
humlet 0:13c962fecb13 190 // exactly what we need here
humlet 1:90455d5bdd8c 191 m_channel->mutex.lock(osWaitForever);
humlet 0:13c962fecb13 192 }
humlet 0:13c962fecb13 193
humlet 3:967dde37e712 194 /// Unlock the driver that has previously been locked by the same thread.
humlet 2:514105beb343 195 void unlock() {
humlet 1:90455d5bdd8c 196 m_channel->mutex.unlock();
humlet 0:13c962fecb13 197 }
humlet 0:13c962fecb13 198
humlet 0:13c962fecb13 199 protected:
humlet 5:8a418c89e515 200 // commands sent from user to drive thread
humlet 0:13c962fecb13 201 enum Command {
humlet 0:13c962fecb13 202 START,
humlet 0:13c962fecb13 203 STOP,
humlet 3:967dde37e712 204 READ_MST,
humlet 3:967dde37e712 205 READ_MST_REG,
humlet 3:967dde37e712 206 READ_SLV,
humlet 0:13c962fecb13 207 READ_BYTE,
humlet 3:967dde37e712 208 WRITE_MST,
humlet 3:967dde37e712 209 WRITE_SLV,
humlet 3:967dde37e712 210 WRITE_BYTE,
humlet 3:967dde37e712 211 RECEIVE
humlet 1:90455d5bdd8c 212 };
humlet 5:8a418c89e515 213
humlet 5:8a418c89e515 214 // data transfer struct for communication between user and driver thread
humlet 0:13c962fecb13 215 struct Transfer {
humlet 0:13c962fecb13 216 Command cmd;
humlet 3:967dde37e712 217 int ret;
humlet 0:13c962fecb13 218 int freq;
humlet 0:13c962fecb13 219 int adr;
humlet 0:13c962fecb13 220 char* dta;
humlet 1:90455d5bdd8c 221 const char* wdta;
humlet 0:13c962fecb13 222 int len;
humlet 1:90455d5bdd8c 223 int ack;
humlet 0:13c962fecb13 224 bool rep;
humlet 3:967dde37e712 225 uint8_t reg;
humlet 3:967dde37e712 226 bool slv;
humlet 3:967dde37e712 227 uint32_t tmout;
humlet 3:967dde37e712 228 osThreadId caller;
humlet 1:90455d5bdd8c 229 };
humlet 0:13c962fecb13 230
humlet 5:8a418c89e515 231 // structure that holds handles/locks for accessing the I2C channels
humlet 0:13c962fecb13 232 struct Channel {
humlet 5:8a418c89e515 233 osThreadId driver;
humlet 1:90455d5bdd8c 234 rtos::Mutex mutex;
humlet 1:90455d5bdd8c 235 volatile Transfer transfer;
humlet 1:90455d5bdd8c 236 };
humlet 5:8a418c89e515 237
humlet 5:8a418c89e515 238 // current frequency setting
humlet 3:967dde37e712 239 int m_freq;
humlet 5:8a418c89e515 240 // current slave address setting
humlet 3:967dde37e712 241 int m_slaveAdr;
humlet 5:8a418c89e515 242
humlet 5:8a418c89e515 243 // the pin names fo the i2c channels
humlet 1:90455d5bdd8c 244 static const PinName c_sdas[2];
humlet 1:90455d5bdd8c 245 static const PinName c_scls[2];
humlet 0:13c962fecb13 246
humlet 5:8a418c89e515 247 // static storage for the I2C channel access objects
humlet 2:514105beb343 248 static Channel* s_channels[2];
humlet 5:8a418c89e515 249
humlet 5:8a418c89e515 250 // i2c channel object of this driver interface, in fact just pointer
humlet 5:8a418c89e515 251 /// to one of the entries in s_channels
humlet 2:514105beb343 252 Channel* m_channel;
humlet 5:8a418c89e515 253
humlet 5:8a418c89e515 254 // ISRs
humlet 0:13c962fecb13 255 static void channel_0_ISR();
humlet 0:13c962fecb13 256 static void channel_1_ISR();
humlet 5:8a418c89e515 257
humlet 5:8a418c89e515 258 // the driver thread function
humlet 1:90455d5bdd8c 259 static void threadFun(void const *args);
humlet 5:8a418c89e515 260
humlet 3:967dde37e712 261 int sendNwait();
humlet 1:90455d5bdd8c 262 };
humlet 0:13c962fecb13 263 }
humlet 0:13c962fecb13 264 #endif