Port from Avnet's Internet Of Things full WiGo demo: SmartConfig - WebServer - Exosite - Android sensor Fusion App

Dependencies:   mbed CC3000_Hostdriver TEMT6200 TSI Wi-Go_eCompass_Lib_V3 WiGo_BattCharger

Fork of CC3000_Simple_Socket by Frank Vannieuwkerke

Information

This demo uses the old HostDriver.
A newer release using the mbed socket compatible API HostDriver is available at Wi-Go_IOT_Demo_MKII.

Wi-Go Reference Design Overview


For additional information on Wi-Go, please visit http://www.em.avnet.com/wi-go
For additional information on Freescale eCompass, please visit
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=E-Compass
Ported from Avnet's Wi-Go KEIL code.
Special thanks to Jim Carver from Avnet for providing the Wi-Go board and for his assistance.


Multiple Wi-Fi applications are provided within the latest version of Wi-Go software:

  • SmartConfig App for auto-setup of Wi-Go network parameters.
  • WebServer display of live sensor data.
  • Exosite portal sensor data feed by Wi-Go.
  • Freescale's Sensor Fusion App data feed by Wi-Go.

Wi-Go is intended for "untethered" portable operation (using it's high-capacity Lithium-Polymer battery). The serial terminal text interface is only required for initial setup, thereafter selection of an application from those available is via finger position on the Touch Slider during the initial 6 second startup period.

Running the Wi-Go Demo Suite

Warning

  • We need a large amount of free RAM for the eCompass library:
    Before compiling the code, check if CC3000_MAXIMAL_RX_SIZE is set to (511 + 1) in cc3000_common.h.
  • The on-board Firmware must be updated to mbed enable a Wi-Go system. Goto the Component page to get the FirmwareUpdate tool (scroll down to the FirmwareUpdate topic).

MAG3110 sensor and eCompass Calibration!

As with the other sensor applications, the eCompass function requires quality calibration data to achieve best accuracy.
For the first 15 seconds after power-up it is recommended that "Figure 8" movements with Wi-Go be done in a smooth, repetitive pattern. Don't touch the slider pad during calibration.

Startup
The RGB LED blinks in a GREEN-ORANGE sequence to inform the user the module is waiting for input.
The RGB LED color designates which of the following Apps to launch.

RGB LED ColorApplication to Launch
PurpleSmartConfig
BlueWebServer
RedExosite Data Client
GreenAndroid Server

Swipe your index finger across the slider pad, the RGB LED color will change at approximately 25% intervals.
Removing your finger latches the last color displayed. After about 3 seconds, the selected app will start.
Another app can be selected when the slider pad is touched again within the 3 seconds timeout.

After launch of Exosite or Android Server Apps, the eCompass function then controls the RGB LED.
(not in WebServer mode where RGB LEDs are manually controlled by the User).

RGB LED ColorDirection Indication
BlueNear to North
GreenNorth
RedEast / West
PurpleSouth

__Note!__ The D1, D2 and D3 User LEDs on Wi-Go adhere to the following convention for the different Apps

User LED#Description of function controlling the LED
D1is the board heartbeat, derived from the timer interrupt
D2indicates network activity as follows:
Web Server Wi-Go webpage is being served.
Exosite Client Wi-Go is sending data.
Android App Wi-Go is sending data
D3WLAN Network is Connected

Detail of Wi-Go Applications

App #1: SmartConfig
See TI's pages on how to use the SmartConfig tool:

  • Preferred method : Configuration using the SmartConfig tool
  • SmartConfig download: Smart Config and Home Automation
    • iOS app : available at Apple app store.
    • Android app : download and install the Android SmartConfig Application on a PC.
      This file contains the source code as well as the compiled APK file.
      The APK file is stored in ti\CC3000AndroidApp\SmartConfigCC3X\bin.

App #2: WebServer display of live sensor data
__Note!__
When using the WebServer for the first time on a Wi-Fi network you will need to determine the IP address that's assigned to Wi-Go by the DHCP Server. To do this, it is recommended you use one of the following two methods:

  • While Wi-Go is initially tethered to a laptop via USB, launch of the WebServer Application and note the IP address that is reported on the terminal screen immediately after selection of this App.
  • Alternatively, use a 3rd party LAN SCAN type tool to view Wi-Go's IP address.
    eg. FING, - available for free download from Google Play or iTunes App Stores…

Wi-Go's WebServer Application is selected as follows:

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page).
    Then use index finger on slider to select the WebServer App (RGB LED = BLUE).
    At end of the 3 second selection period the WebServer App shall launch.
  • If you are tethered to a laptop and have a terminal open the Wi-Fi network connection confirmation will be seen, eg.

'*** Wi-Go board DHCP assigned IP Address = 192.168.43.102
  • Once you have noted Wi-Go's reported IP address, the USB cable may be disconnected and Wi-Go then used as intended, running on it's own battery power.
  • Use an Internet Browser on SmartPhone/Tablet/Laptop (connected to same Hot-Spot/Wireless Router subnet), to now connect to the noted Wi-Go IP address and view the WebServer output: /media/uploads/frankvnk/wi-go_webserver.png
  • the Webserver sensor data is auto-updated every 2 seconds a manual refresh (F5 on laptop).
  • In the event of an error, press refresh to regenerate the screen.
  • Use the mouse (or touch-screen) to exercise the RGB LED output.

App #3: Exosite Data Client
Wi-Go's sensor data gets transmitted via Wi-Fi to a cloud-based Exosite portal where the sensor measurements are displayed graphically on a "dashboard". Users can create unique customized dashboards using drag and drop GUI widgets from the library provided on the Exosite website.
__Note!__ For the Exosite application a "live" connection to the Internet is required !!!

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page).
    Then use index finger on slider to select the Exosite Client App (RGB LED = RED)
  • On launching this App, note Wi-Go's MAC address displayed on your terminal
    (if not running a terminal use FING or other WLAN Scan tool to determine Wi-Go's MAC address) /media/uploads/frankvnk/mac_address.png
  • Using your computer's internet browser, go to avnet.exosite.com and sign-up for a free Avnet Trial Exosite Account: /media/uploads/frankvnk/avnet_trial_exosite.png
  • On the next screen, click on the Sign-Up Now button in the displayed Avnet Trial account option.
  • Complete the Account Info and Contact Info then click on Create Account (make sure to use a valid email address!).
  • Check for new incoming email from avnet.exosite.com to the address you provided and click on the link in this email to activate your new Exosite account.
  • Once activated, login using the email address and password that you chose in your registration. Your Exosite Portal and Dashboard should now display. The first time you log-in to your new account, the default Home dashboard will be displayed, pre-configured with two widgets. On the left is the Welcome widget for tips and information. On the right is the Device List widget.
    Dashboards are configurable, so at any time this default dashboard can be changed, widgets deleted and added (Clicking the upside-down triangle icon in a widget's Title bar will allow you to edit it).
  • Before going further with the Dashboard, you need to connect your Wi-Go device to your Exosite account. Do this by going to the left sidebar and selecting Devices followed by selecting the +Add Device link (on right of screen). /media/uploads/frankvnk/add_device.png
  • In the Setup screens that follow, enter the following
Select a supported deviceWi-Go
Enter device MAC Addressnn:nn:nn:nn:nn:nn [your Wi-Go's MAC address including colons]
Enter device Name[choose a descriptive name]
Enter device Location[description of your location]
  • Once completed, under Devices the name chosen for the added Wi-Go device should now be listed.
  • Click on this new Wi-Go device to examine (and edit if necessary) it's Device Information screen.
    /media/uploads/frankvnk/device_information.png
  • Click the CLOSE button to exit the Device Information screen.
  • On your Wi-Go kit now press RESET, followed by the eCompass Calibration (mentioned at the top of this page)
    and again select the Exosite Client App (RGB LED = RED) using your index finger.
  • Refresh your browser (press F5) a couple've times until the Active indicator changes to On (Green).
    /media/uploads/frankvnk/active_indicator.png
  • From the left sidebar click on Home and click on the recently named Wi-Go device which is located under the Device List.
    This will bring-up a default dashboard display similar to what's shown below.
    (Dashboards are typically accessed via the Dashboards menu entry). Check the dashboard is updating with live data by moving your Wi-Go Kit through different orientations.
    /media/uploads/frankvnk/dashboard.png
  • To create a custom dashboard, select Dashboards from the sidebar menu, followed by +Add Dashboard (on right side of Your Dashboards title bar). After completion of the initial configuration screen you will then be able to add Widgets to display the various Wi-Go data sources as well as pictures and text to support your application.
  • More guidance on the creation, editing and sharing of custom dashboards is available under the Exosite support pages

App #4: Android Sensor Fusion App

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page)
    , then use index finger on slider to select the Android App (RGB LED = GREEN)
  • Freescale's ''Xtrinsic Sensor Fusion Toolbox'" will run on Android 3.0 or above phone or tablet. Free to download from Google Play, type Sensor fusion in the search box to find it. freescale.sensors.sfusion /media/uploads/frankvnk/sensor_fusion_toolbox.png
  • The Freescale App is well documented. To access the built-in documentation, press the NAV button at top of screen followed by Documentation from the scroll-down menu:
    /media/uploads/frankvnk/sensor_fusion_doc.png
  • Freescale's sensors site provides additional resources such as this overview: free-android-app-teaches-sensor-fusion-basics
  • Go to the Options Menu and select Preferences… /media/uploads/frankvnk/sensor_fusion_preferences.png
  • The following items need to be taken care of:
Enter WiGo's IP address
Enter the SSID (of the Hot-Spot or Wireless Access Point used by Wi-Go)
  • Press Save and Exit!
    /media/uploads/frankvnk/sensor_fusion_save_and_exit.png
  • Exit the Application completely then re-launch the Sensor Fusion Application.
  • Select the ''Source/Algorithm'" menu and change the data source to Wi-Go mag/accel /media/uploads/frankvnk/sensor_fusion_wigo_mag_accel.png
  • The Android App should now be displaying a 3-D image of Wi-Go that you can rotate and flip-over by moving the Wi-Go board accordingly…
  • Use NAV > Device View to display if this view does not come-up by default. /media/uploads/frankvnk/sensor_fusion_nav_device_view.png
  • A Serial Terminal connection is not necessary but if you happen to have one open you should see the following messages as Wi-Go connects to the Android App:
    "Server waiting for connection" followed by
    "connected, transmit buffer size= 96", and then
    "input = 0123456789"
    at which time Wi-Go starts streaming data to the Android App.
Committer:
frankvnk
Date:
Sun Aug 11 09:46:26 2013 +0000
Revision:
0:a8e46e27d041
Child:
1:32d1ef95eceb
First release

Who changed what in which revision?

UserRevisionLine numberNew contents of line
frankvnk 0:a8e46e27d041 1 /*****************************************************************************
frankvnk 0:a8e46e27d041 2 *
frankvnk 0:a8e46e27d041 3 * cc3000 - CC3000 Functions Implementation
frankvnk 0:a8e46e27d041 4 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
frankvnk 0:a8e46e27d041 5 *
frankvnk 0:a8e46e27d041 6 * Redistribution and use in source and binary forms, with or without
frankvnk 0:a8e46e27d041 7 * modification, are permitted provided that the following conditions
frankvnk 0:a8e46e27d041 8 * are met:
frankvnk 0:a8e46e27d041 9 *
frankvnk 0:a8e46e27d041 10 * Redistributions of source code must retain the above copyright
frankvnk 0:a8e46e27d041 11 * notice, this list of conditions and the following disclaimer.
frankvnk 0:a8e46e27d041 12 *
frankvnk 0:a8e46e27d041 13 * Redistributions in binary form must reproduce the above copyright
frankvnk 0:a8e46e27d041 14 * notice, this list of conditions and the following disclaimer in the
frankvnk 0:a8e46e27d041 15 * documentation and/or other materials provided with the
frankvnk 0:a8e46e27d041 16 * distribution.
frankvnk 0:a8e46e27d041 17 *
frankvnk 0:a8e46e27d041 18 * Neither the name of Texas Instruments Incorporated nor the names of
frankvnk 0:a8e46e27d041 19 * its contributors may be used to endorse or promote products derived
frankvnk 0:a8e46e27d041 20 * from this software without specific prior written permission.
frankvnk 0:a8e46e27d041 21 *
frankvnk 0:a8e46e27d041 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
frankvnk 0:a8e46e27d041 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
frankvnk 0:a8e46e27d041 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
frankvnk 0:a8e46e27d041 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
frankvnk 0:a8e46e27d041 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
frankvnk 0:a8e46e27d041 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
frankvnk 0:a8e46e27d041 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
frankvnk 0:a8e46e27d041 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
frankvnk 0:a8e46e27d041 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
frankvnk 0:a8e46e27d041 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
frankvnk 0:a8e46e27d041 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
frankvnk 0:a8e46e27d041 33 *
frankvnk 0:a8e46e27d041 34 *****************************************************************************/
frankvnk 0:a8e46e27d041 35
frankvnk 0:a8e46e27d041 36 #include "cc3000.h"
frankvnk 0:a8e46e27d041 37
frankvnk 0:a8e46e27d041 38
frankvnk 0:a8e46e27d041 39 WLAN_IRQ_PIN_CREATE;
frankvnk 0:a8e46e27d041 40 WLAN_EN_PIN_CREATE;
frankvnk 0:a8e46e27d041 41 WLAN_CS_PIN_CREATE;
frankvnk 0:a8e46e27d041 42 WLAN_SPI_PORT_CREATE;
frankvnk 0:a8e46e27d041 43
frankvnk 0:a8e46e27d041 44 DigitalOut ledr (LED_RED);
frankvnk 0:a8e46e27d041 45 DigitalOut ledg (LED_GREEN);
frankvnk 0:a8e46e27d041 46 DigitalOut ledb (LED_BLUE);
frankvnk 0:a8e46e27d041 47 DigitalOut led1 (PTB8);
frankvnk 0:a8e46e27d041 48 DigitalOut led2 (PTB9);
frankvnk 0:a8e46e27d041 49 DigitalOut led3 (PTB10);
frankvnk 0:a8e46e27d041 50
frankvnk 0:a8e46e27d041 51 long ulSocket;
frankvnk 0:a8e46e27d041 52
frankvnk 0:a8e46e27d041 53 unsigned char pucIP_Addr[4];
frankvnk 0:a8e46e27d041 54 unsigned char pucIP_DefaultGWAddr[4];
frankvnk 0:a8e46e27d041 55 unsigned char pucSubnetMask[4];
frankvnk 0:a8e46e27d041 56 unsigned char pucDNS[4];
frankvnk 0:a8e46e27d041 57
frankvnk 0:a8e46e27d041 58 sockaddr tSocketAddr;
frankvnk 0:a8e46e27d041 59
frankvnk 0:a8e46e27d041 60 unsigned char prefixChangeFlag = 0;
frankvnk 0:a8e46e27d041 61 unsigned char prefixFromUser[3] = {0};
frankvnk 0:a8e46e27d041 62 char * ftcPrefixptr;
frankvnk 0:a8e46e27d041 63
frankvnk 0:a8e46e27d041 64 char aucCC3000_prefix[] = {'T', 'T', 'T'}; // Smart Config Prefix
frankvnk 0:a8e46e27d041 65
frankvnk 0:a8e46e27d041 66 tNetappIpconfigRetArgs ipinfo;
frankvnk 0:a8e46e27d041 67
frankvnk 0:a8e46e27d041 68 char cc3000state = CC3000_UNINIT;
frankvnk 0:a8e46e27d041 69 extern unsigned char ConnectUsingSmartConfig;
frankvnk 0:a8e46e27d041 70 extern volatile unsigned long ulCC3000Connected;
frankvnk 0:a8e46e27d041 71 extern volatile unsigned long SendmDNSAdvertisment;
frankvnk 0:a8e46e27d041 72 extern int server_running;
frankvnk 0:a8e46e27d041 73 extern unsigned char *DevServname;
frankvnk 0:a8e46e27d041 74 volatile unsigned long ulSmartConfigFinished, ulCC3000DHCP, OkToDoShutDown, ulCC3000DHCP_configured;
frankvnk 0:a8e46e27d041 75 volatile unsigned char ucStopSmartConfig;
frankvnk 0:a8e46e27d041 76 unsigned char pucCC3000_Rx_Buffer[CC3000_APP_BUFFER_SIZE + CC3000_RX_BUFFER_OVERHEAD_SIZE];
frankvnk 0:a8e46e27d041 77
frankvnk 0:a8e46e27d041 78 #ifndef CC3000_UNENCRYPTED_SMART_CONFIG
frankvnk 0:a8e46e27d041 79 const unsigned char smartconfigkey[] = {0x73,0x6d,0x61,0x72,0x74,0x63,0x6f,0x6e,0x66,0x69,0x67,0x41,0x45,0x53,0x31,0x36};
frankvnk 0:a8e46e27d041 80 #endif
frankvnk 0:a8e46e27d041 81
frankvnk 0:a8e46e27d041 82 void Init_HostDriver(void)
frankvnk 0:a8e46e27d041 83 {
frankvnk 0:a8e46e27d041 84 // Clear pending interrupt
frankvnk 0:a8e46e27d041 85 WLAN_ISF_PCR |= PORT_PCR_ISF_MASK;
frankvnk 0:a8e46e27d041 86 WLAN_ISF_ISFR |= WLAN_ISF_MASK;
frankvnk 0:a8e46e27d041 87 //Initial state for wlan module : EN = 0 (disabled) and CS = 1 (not selected).
frankvnk 0:a8e46e27d041 88 WLAN_DEASSERT_EN;
frankvnk 0:a8e46e27d041 89 WLAN_DEASSERT_CS;
frankvnk 0:a8e46e27d041 90
frankvnk 0:a8e46e27d041 91 WLAN_SPI_PORT_INIT;
frankvnk 0:a8e46e27d041 92 WLAN_SPI_SET_FREQ;
frankvnk 0:a8e46e27d041 93 WLAN_SPI_SET_IRQ_HANDLER;
frankvnk 0:a8e46e27d041 94 }
frankvnk 0:a8e46e27d041 95
frankvnk 0:a8e46e27d041 96 void initLEDs(void)
frankvnk 0:a8e46e27d041 97 {
frankvnk 0:a8e46e27d041 98 RED_OFF;
frankvnk 0:a8e46e27d041 99 GREEN_OFF;
frankvnk 0:a8e46e27d041 100 BLUE_OFF;
frankvnk 0:a8e46e27d041 101 LED_D1_OFF;
frankvnk 0:a8e46e27d041 102 LED_D2_OFF;
frankvnk 0:a8e46e27d041 103 LED_D3_OFF;
frankvnk 0:a8e46e27d041 104 }
frankvnk 0:a8e46e27d041 105
frankvnk 0:a8e46e27d041 106 char *sendDriverPatch(unsigned long *Length)
frankvnk 0:a8e46e27d041 107 {
frankvnk 0:a8e46e27d041 108 *Length = 0;
frankvnk 0:a8e46e27d041 109 return NULL;
frankvnk 0:a8e46e27d041 110 }
frankvnk 0:a8e46e27d041 111
frankvnk 0:a8e46e27d041 112
frankvnk 0:a8e46e27d041 113 char *sendBootLoaderPatch(unsigned long *Length)
frankvnk 0:a8e46e27d041 114 {
frankvnk 0:a8e46e27d041 115 *Length = 0;
frankvnk 0:a8e46e27d041 116 return NULL;
frankvnk 0:a8e46e27d041 117 }
frankvnk 0:a8e46e27d041 118
frankvnk 0:a8e46e27d041 119
frankvnk 0:a8e46e27d041 120 char *sendWLFWPatch(unsigned long *Length)
frankvnk 0:a8e46e27d041 121 {
frankvnk 0:a8e46e27d041 122 *Length = 0;
frankvnk 0:a8e46e27d041 123 return NULL;
frankvnk 0:a8e46e27d041 124 }
frankvnk 0:a8e46e27d041 125
frankvnk 0:a8e46e27d041 126
frankvnk 0:a8e46e27d041 127 long ReadWlanInterruptPin(void)
frankvnk 0:a8e46e27d041 128 {
frankvnk 0:a8e46e27d041 129 return (WLAN_READ_IRQ);
frankvnk 0:a8e46e27d041 130 }
frankvnk 0:a8e46e27d041 131
frankvnk 0:a8e46e27d041 132
frankvnk 0:a8e46e27d041 133 void WlanInterruptEnable()
frankvnk 0:a8e46e27d041 134 {
frankvnk 0:a8e46e27d041 135 WLAN_ENABLE_IRQ;
frankvnk 0:a8e46e27d041 136 }
frankvnk 0:a8e46e27d041 137
frankvnk 0:a8e46e27d041 138
frankvnk 0:a8e46e27d041 139 void WlanInterruptDisable()
frankvnk 0:a8e46e27d041 140 {
frankvnk 0:a8e46e27d041 141 WLAN_DISABLE_IRQ;
frankvnk 0:a8e46e27d041 142 }
frankvnk 0:a8e46e27d041 143
frankvnk 0:a8e46e27d041 144
frankvnk 0:a8e46e27d041 145 void WriteWlanPin( unsigned char val )
frankvnk 0:a8e46e27d041 146 {
frankvnk 0:a8e46e27d041 147 if (val)
frankvnk 0:a8e46e27d041 148 {
frankvnk 0:a8e46e27d041 149 WLAN_ASSERT_EN;
frankvnk 0:a8e46e27d041 150 }
frankvnk 0:a8e46e27d041 151 else
frankvnk 0:a8e46e27d041 152 {
frankvnk 0:a8e46e27d041 153 WLAN_DEASSERT_EN;
frankvnk 0:a8e46e27d041 154 }
frankvnk 0:a8e46e27d041 155 }
frankvnk 0:a8e46e27d041 156
frankvnk 0:a8e46e27d041 157
frankvnk 0:a8e46e27d041 158 int ConnectUsingSSID(char * ssidName)
frankvnk 0:a8e46e27d041 159 {
frankvnk 0:a8e46e27d041 160 unsetCC3000MachineState(CC3000_ASSOC);
frankvnk 0:a8e46e27d041 161 // Disable Profiles and Fast Connect
frankvnk 0:a8e46e27d041 162 wlan_ioctl_set_connection_policy(0, 0, 0);
frankvnk 0:a8e46e27d041 163 wlan_disconnect();
frankvnk 0:a8e46e27d041 164 wait_ms(3);
frankvnk 0:a8e46e27d041 165 // This triggers the CC3000 to connect to specific AP with certain parameters
frankvnk 0:a8e46e27d041 166 //sends a request to connect (does not necessarily connect - callback checks that for me)
frankvnk 0:a8e46e27d041 167 // wlan_connect(SECURITY, SSID, strlen(SSID), NULL, PASSPHRASE, strlen(PASSPHRASE));
frankvnk 0:a8e46e27d041 168 #ifndef CC3000_TINY_DRIVER
frankvnk 0:a8e46e27d041 169 wlan_connect(0, ssidName, strlen(ssidName), NULL, NULL, 0);
frankvnk 0:a8e46e27d041 170 #else
frankvnk 0:a8e46e27d041 171 wlan_connect(ssidName, strlen(ssidName));
frankvnk 0:a8e46e27d041 172 #endif
frankvnk 0:a8e46e27d041 173 // We don't wait for connection. This is handled somewhere else (in the main
frankvnk 0:a8e46e27d041 174 // loop for example).
frankvnk 0:a8e46e27d041 175 return 0;
frankvnk 0:a8e46e27d041 176 }
frankvnk 0:a8e46e27d041 177
frankvnk 0:a8e46e27d041 178
frankvnk 0:a8e46e27d041 179 void CC3000_UsynchCallback(long lEventType, char * data, unsigned char length)
frankvnk 0:a8e46e27d041 180 {
frankvnk 0:a8e46e27d041 181 if (lEventType == HCI_EVNT_WLAN_ASYNC_SIMPLE_CONFIG_DONE)
frankvnk 0:a8e46e27d041 182 {
frankvnk 0:a8e46e27d041 183 ulSmartConfigFinished = 1;
frankvnk 0:a8e46e27d041 184 ucStopSmartConfig = 1;
frankvnk 0:a8e46e27d041 185 }
frankvnk 0:a8e46e27d041 186 if (lEventType == HCI_EVNT_WLAN_UNSOL_CONNECT)
frankvnk 0:a8e46e27d041 187 {
frankvnk 0:a8e46e27d041 188 ulCC3000Connected = 1;
frankvnk 0:a8e46e27d041 189 // Turn on LED2
frankvnk 0:a8e46e27d041 190 }
frankvnk 0:a8e46e27d041 191 if (lEventType == HCI_EVNT_WLAN_UNSOL_DISCONNECT)
frankvnk 0:a8e46e27d041 192 {
frankvnk 0:a8e46e27d041 193 ulCC3000Connected = 0;
frankvnk 0:a8e46e27d041 194 ulCC3000DHCP = 0;
frankvnk 0:a8e46e27d041 195 ulCC3000DHCP_configured = 0;
frankvnk 0:a8e46e27d041 196 }
frankvnk 0:a8e46e27d041 197 if (lEventType == HCI_EVNT_WLAN_UNSOL_DHCP)
frankvnk 0:a8e46e27d041 198 {
frankvnk 0:a8e46e27d041 199 // Notes:
frankvnk 0:a8e46e27d041 200 // 1) IP config parameters are received swapped
frankvnk 0:a8e46e27d041 201 // 2) IP config parameters are valid only if status is OK, i.e. ulCC3000DHCP becomes 1
frankvnk 0:a8e46e27d041 202 // only if status is OK, the flag is set to 1 and the addresses are valid
frankvnk 0:a8e46e27d041 203 if ( *(data + NETAPP_IPCONFIG_MAC_OFFSET) == 0)
frankvnk 0:a8e46e27d041 204 {
frankvnk 0:a8e46e27d041 205 sprintf( (char*)pucCC3000_Rx_Buffer,"IP:%d.%d.%d.%d\f\r", data[3],data[2], data[1], data[0] );
frankvnk 0:a8e46e27d041 206 ulCC3000DHCP = 1;
frankvnk 0:a8e46e27d041 207 }
frankvnk 0:a8e46e27d041 208 else
frankvnk 0:a8e46e27d041 209 {
frankvnk 0:a8e46e27d041 210 ulCC3000DHCP = 0;
frankvnk 0:a8e46e27d041 211 }
frankvnk 0:a8e46e27d041 212 }
frankvnk 0:a8e46e27d041 213 if (lEventType == HCI_EVENT_CC3000_CAN_SHUT_DOWN)
frankvnk 0:a8e46e27d041 214 {
frankvnk 0:a8e46e27d041 215 OkToDoShutDown = 1;
frankvnk 0:a8e46e27d041 216 }
frankvnk 0:a8e46e27d041 217 }
frankvnk 0:a8e46e27d041 218
frankvnk 0:a8e46e27d041 219
frankvnk 0:a8e46e27d041 220 int initDriver(void)
frankvnk 0:a8e46e27d041 221 {
frankvnk 0:a8e46e27d041 222 // WLAN On API Implementation
frankvnk 0:a8e46e27d041 223 /* wlan_init( CC3000_UsynchCallback,
frankvnk 0:a8e46e27d041 224 sendWLFWPatch,
frankvnk 0:a8e46e27d041 225 sendDriverPatch,
frankvnk 0:a8e46e27d041 226 sendBootLoaderPatch,
frankvnk 0:a8e46e27d041 227 ReadWlanInterruptPin,
frankvnk 0:a8e46e27d041 228 WlanInterruptEnable,
frankvnk 0:a8e46e27d041 229 WlanInterruptDisable,
frankvnk 0:a8e46e27d041 230 WriteWlanPin);*/
frankvnk 0:a8e46e27d041 231
frankvnk 0:a8e46e27d041 232 wlan_start(0);
frankvnk 0:a8e46e27d041 233 #if IP_ALLOC_METHOD == USE_DHCP
frankvnk 0:a8e46e27d041 234
frankvnk 0:a8e46e27d041 235 // DHCP is used by default
frankvnk 0:a8e46e27d041 236 // Subnet mask is assumed to be 255.255.255.0
frankvnk 0:a8e46e27d041 237 pucSubnetMask[0] = 0;
frankvnk 0:a8e46e27d041 238 pucSubnetMask[1] = 0;
frankvnk 0:a8e46e27d041 239 pucSubnetMask[2] = 0;
frankvnk 0:a8e46e27d041 240 pucSubnetMask[3] = 0;
frankvnk 0:a8e46e27d041 241
frankvnk 0:a8e46e27d041 242 // CC3000's IP
frankvnk 0:a8e46e27d041 243 pucIP_Addr[0] = 0;
frankvnk 0:a8e46e27d041 244 pucIP_Addr[1] = 0;
frankvnk 0:a8e46e27d041 245 pucIP_Addr[2] = 0;
frankvnk 0:a8e46e27d041 246 pucIP_Addr[3] = 0;
frankvnk 0:a8e46e27d041 247
frankvnk 0:a8e46e27d041 248 // Default Gateway/Router IP
frankvnk 0:a8e46e27d041 249 // 192.168.1.1
frankvnk 0:a8e46e27d041 250 pucIP_DefaultGWAddr[0] = 0;
frankvnk 0:a8e46e27d041 251 pucIP_DefaultGWAddr[1] = 0;
frankvnk 0:a8e46e27d041 252 pucIP_DefaultGWAddr[2] = 0;
frankvnk 0:a8e46e27d041 253 pucIP_DefaultGWAddr[3] = 0;
frankvnk 0:a8e46e27d041 254
frankvnk 0:a8e46e27d041 255 // We assume the router is also a DNS server
frankvnk 0:a8e46e27d041 256 pucDNS[0] = 0;
frankvnk 0:a8e46e27d041 257 pucDNS[1] = 0;
frankvnk 0:a8e46e27d041 258 pucDNS[2] = 0;
frankvnk 0:a8e46e27d041 259 pucDNS[3] = 0;
frankvnk 0:a8e46e27d041 260
frankvnk 0:a8e46e27d041 261 // Force DHCP
frankvnk 0:a8e46e27d041 262 netapp_dhcp((unsigned long *)pucIP_Addr,
frankvnk 0:a8e46e27d041 263 (unsigned long *)pucSubnetMask,
frankvnk 0:a8e46e27d041 264 (unsigned long *)pucIP_DefaultGWAddr,
frankvnk 0:a8e46e27d041 265 (unsigned long *)pucDNS);
frankvnk 0:a8e46e27d041 266
frankvnk 0:a8e46e27d041 267 // reset the CC3000
frankvnk 0:a8e46e27d041 268 wlan_stop();
frankvnk 0:a8e46e27d041 269 wait(1);
frankvnk 0:a8e46e27d041 270 wlan_start(0);
frankvnk 0:a8e46e27d041 271
frankvnk 0:a8e46e27d041 272 #elif IP_ALLOC_METHOD == USE_STATIC_IP
frankvnk 0:a8e46e27d041 273
frankvnk 0:a8e46e27d041 274 // Subnet mask is assumed to be 255.255.255.0
frankvnk 0:a8e46e27d041 275 pucSubnetMask[0] = 0xFF;
frankvnk 0:a8e46e27d041 276 pucSubnetMask[1] = 0xFF;
frankvnk 0:a8e46e27d041 277 pucSubnetMask[2] = 0xFF;
frankvnk 0:a8e46e27d041 278 pucSubnetMask[3] = 0x0;
frankvnk 0:a8e46e27d041 279
frankvnk 0:a8e46e27d041 280 // CC3000's IP
frankvnk 0:a8e46e27d041 281 pucIP_Addr[0] = STATIC_IP_OCT1;
frankvnk 0:a8e46e27d041 282 pucIP_Addr[1] = STATIC_IP_OCT2;
frankvnk 0:a8e46e27d041 283 pucIP_Addr[2] = STATIC_IP_OCT3;
frankvnk 0:a8e46e27d041 284 pucIP_Addr[3] = STATIC_IP_OCT4;
frankvnk 0:a8e46e27d041 285
frankvnk 0:a8e46e27d041 286 // Default Gateway/Router IP
frankvnk 0:a8e46e27d041 287 // 192.168.1.1
frankvnk 0:a8e46e27d041 288 pucIP_DefaultGWAddr[0] = STATIC_IP_OCT1;
frankvnk 0:a8e46e27d041 289 pucIP_DefaultGWAddr[1] = STATIC_IP_OCT2;
frankvnk 0:a8e46e27d041 290 pucIP_DefaultGWAddr[2] = STATIC_IP_OCT3;
frankvnk 0:a8e46e27d041 291 pucIP_DefaultGWAddr[3] = 1;
frankvnk 0:a8e46e27d041 292
frankvnk 0:a8e46e27d041 293 // We assume the router is also a DNS server
frankvnk 0:a8e46e27d041 294 pucDNS[0] = STATIC_IP_OCT1;
frankvnk 0:a8e46e27d041 295 pucDNS[1] = STATIC_IP_OCT2;
frankvnk 0:a8e46e27d041 296 pucDNS[2] = STATIC_IP_OCT3;
frankvnk 0:a8e46e27d041 297 pucDNS[3] = 1;
frankvnk 0:a8e46e27d041 298
frankvnk 0:a8e46e27d041 299 netapp_dhcp((unsigned long *)pucIP_Addr,
frankvnk 0:a8e46e27d041 300 (unsigned long *)pucSubnetMask,
frankvnk 0:a8e46e27d041 301 (unsigned long *)pucIP_DefaultGWAddr,
frankvnk 0:a8e46e27d041 302 (unsigned long *)pucDNS);
frankvnk 0:a8e46e27d041 303
frankvnk 0:a8e46e27d041 304 // reset the CC3000 to apply Static Setting
frankvnk 0:a8e46e27d041 305 wlan_stop();
frankvnk 0:a8e46e27d041 306 wait(1);
frankvnk 0:a8e46e27d041 307 wlan_start(0);
frankvnk 0:a8e46e27d041 308
frankvnk 0:a8e46e27d041 309 #else
frankvnk 0:a8e46e27d041 310 #error No IP Configuration Method Selected. One must be configured.
frankvnk 0:a8e46e27d041 311 #endif
frankvnk 0:a8e46e27d041 312
frankvnk 0:a8e46e27d041 313 // Mask out all non-required events from CC3000
frankvnk 0:a8e46e27d041 314 wlan_set_event_mask(HCI_EVNT_WLAN_KEEPALIVE|
frankvnk 0:a8e46e27d041 315 HCI_EVNT_WLAN_UNSOL_INIT|
frankvnk 0:a8e46e27d041 316 HCI_EVNT_WLAN_ASYNC_PING_REPORT);
frankvnk 0:a8e46e27d041 317
frankvnk 0:a8e46e27d041 318 // CC3000 has been initialized
frankvnk 0:a8e46e27d041 319 setCC3000MachineState(CC3000_INIT);
frankvnk 0:a8e46e27d041 320 return(0);
frankvnk 0:a8e46e27d041 321 }
frankvnk 0:a8e46e27d041 322
frankvnk 0:a8e46e27d041 323
frankvnk 0:a8e46e27d041 324 char highestCC3000State()
frankvnk 0:a8e46e27d041 325 {
frankvnk 0:a8e46e27d041 326 // We start at the highest state and go down, checking if the state
frankvnk 0:a8e46e27d041 327 // is set.
frankvnk 0:a8e46e27d041 328 char mask = 0x80;
frankvnk 0:a8e46e27d041 329 while(!(cc3000state & mask))
frankvnk 0:a8e46e27d041 330 {
frankvnk 0:a8e46e27d041 331 mask = mask >> 1;
frankvnk 0:a8e46e27d041 332 }
frankvnk 0:a8e46e27d041 333 return mask;
frankvnk 0:a8e46e27d041 334 }
frankvnk 0:a8e46e27d041 335
frankvnk 0:a8e46e27d041 336
frankvnk 0:a8e46e27d041 337 char currentCC3000State(void)
frankvnk 0:a8e46e27d041 338 {
frankvnk 0:a8e46e27d041 339 return cc3000state;
frankvnk 0:a8e46e27d041 340 }
frankvnk 0:a8e46e27d041 341
frankvnk 0:a8e46e27d041 342
frankvnk 0:a8e46e27d041 343 void setCC3000MachineState(char stat)
frankvnk 0:a8e46e27d041 344 {
frankvnk 0:a8e46e27d041 345 cc3000state |= stat;
frankvnk 0:a8e46e27d041 346 }
frankvnk 0:a8e46e27d041 347
frankvnk 0:a8e46e27d041 348
frankvnk 0:a8e46e27d041 349 void unsetCC3000MachineState(char stat)
frankvnk 0:a8e46e27d041 350 {
frankvnk 0:a8e46e27d041 351 char bitmask = stat;
frankvnk 0:a8e46e27d041 352 cc3000state &= ~bitmask;
frankvnk 0:a8e46e27d041 353
frankvnk 0:a8e46e27d041 354 // Set all upper bits to 0 as well since state machine cannot have
frankvnk 0:a8e46e27d041 355 // those states.
frankvnk 0:a8e46e27d041 356 while(bitmask < 0x80)
frankvnk 0:a8e46e27d041 357 {
frankvnk 0:a8e46e27d041 358 cc3000state &= ~bitmask;
frankvnk 0:a8e46e27d041 359 bitmask = bitmask << 1;
frankvnk 0:a8e46e27d041 360 }
frankvnk 0:a8e46e27d041 361 }
frankvnk 0:a8e46e27d041 362
frankvnk 0:a8e46e27d041 363
frankvnk 0:a8e46e27d041 364 void resetCC3000StateMachine()
frankvnk 0:a8e46e27d041 365 {
frankvnk 0:a8e46e27d041 366 cc3000state = CC3000_UNINIT;
frankvnk 0:a8e46e27d041 367 }
frankvnk 0:a8e46e27d041 368
frankvnk 0:a8e46e27d041 369
frankvnk 0:a8e46e27d041 370 #ifndef CC3000_TINY_DRIVER
frankvnk 0:a8e46e27d041 371 tNetappIpconfigRetArgs * getCC3000Info()
frankvnk 0:a8e46e27d041 372 {
frankvnk 0:a8e46e27d041 373 if(!(currentCC3000State() & CC3000_SERVER_INIT))
frankvnk 0:a8e46e27d041 374 {
frankvnk 0:a8e46e27d041 375 // If we're not blocked by accept or others, obtain the latest
frankvnk 0:a8e46e27d041 376 netapp_ipconfig(&ipinfo);
frankvnk 0:a8e46e27d041 377 }
frankvnk 0:a8e46e27d041 378 return (&ipinfo);
frankvnk 0:a8e46e27d041 379 }
frankvnk 0:a8e46e27d041 380 #endif
frankvnk 0:a8e46e27d041 381
frankvnk 0:a8e46e27d041 382
frankvnk 0:a8e46e27d041 383 void StartSmartConfig(void)
frankvnk 0:a8e46e27d041 384 {
frankvnk 0:a8e46e27d041 385 server_running = 1;
frankvnk 0:a8e46e27d041 386 RED_OFF;
frankvnk 0:a8e46e27d041 387 GREEN_OFF;
frankvnk 0:a8e46e27d041 388 BLUE_ON;
frankvnk 0:a8e46e27d041 389
frankvnk 0:a8e46e27d041 390 // Reset all the previous configuration
frankvnk 0:a8e46e27d041 391 wlan_ioctl_set_connection_policy(0, 0, 0);
frankvnk 0:a8e46e27d041 392 wlan_ioctl_del_profile(255);
frankvnk 0:a8e46e27d041 393
frankvnk 0:a8e46e27d041 394 //Wait until CC3000 is disconected
frankvnk 0:a8e46e27d041 395 while (ulCC3000Connected == 1)
frankvnk 0:a8e46e27d041 396 {
frankvnk 0:a8e46e27d041 397 wait_us(5);
frankvnk 0:a8e46e27d041 398 hci_unsolicited_event_handler();
frankvnk 0:a8e46e27d041 399 }
frankvnk 0:a8e46e27d041 400
frankvnk 0:a8e46e27d041 401 // Trigger the Smart Config process
frankvnk 0:a8e46e27d041 402 // Start blinking RED/GREEN during Smart Configuration process
frankvnk 0:a8e46e27d041 403 wlan_smart_config_set_prefix(aucCC3000_prefix);
frankvnk 0:a8e46e27d041 404 // Start the Smart Config process with AES disabled
frankvnk 0:a8e46e27d041 405 wlan_smart_config_start(0);
frankvnk 0:a8e46e27d041 406 BLUE_OFF;
frankvnk 0:a8e46e27d041 407 RED_ON;
frankvnk 0:a8e46e27d041 408 // Wait for Smart config finished
frankvnk 0:a8e46e27d041 409 while (ulSmartConfigFinished == 0)
frankvnk 0:a8e46e27d041 410 {
frankvnk 0:a8e46e27d041 411 wait_ms(250);
frankvnk 0:a8e46e27d041 412 RED_ON;
frankvnk 0:a8e46e27d041 413 GREEN_OFF;
frankvnk 0:a8e46e27d041 414 wait_ms(250);
frankvnk 0:a8e46e27d041 415 GREEN_ON;
frankvnk 0:a8e46e27d041 416 RED_OFF;
frankvnk 0:a8e46e27d041 417 }
frankvnk 0:a8e46e27d041 418 BLUE_ON;
frankvnk 0:a8e46e27d041 419 #ifndef CC3000_UNENCRYPTED_SMART_CONFIG
frankvnk 0:a8e46e27d041 420 // create new entry for AES encryption key
frankvnk 0:a8e46e27d041 421 nvmem_create_entry(NVMEM_AES128_KEY_FILEID,16);
frankvnk 0:a8e46e27d041 422 // write AES key to NVMEM
frankvnk 0:a8e46e27d041 423 aes_write_key((unsigned char *)(&smartconfigkey[0]));
frankvnk 0:a8e46e27d041 424 // Decrypt configuration information and add profile
frankvnk 0:a8e46e27d041 425 wlan_smart_config_process();
frankvnk 0:a8e46e27d041 426 #endif
frankvnk 0:a8e46e27d041 427 // wlan_smart_config_process();
frankvnk 0:a8e46e27d041 428
frankvnk 0:a8e46e27d041 429 // Configure to connect automatically to the AP retrieved in the
frankvnk 0:a8e46e27d041 430 // Smart config process
frankvnk 0:a8e46e27d041 431 wlan_ioctl_set_connection_policy(0, 1, 1);
frankvnk 0:a8e46e27d041 432
frankvnk 0:a8e46e27d041 433 // reset the CC3000
frankvnk 0:a8e46e27d041 434 wlan_stop();
frankvnk 0:a8e46e27d041 435 wait(2);
frankvnk 0:a8e46e27d041 436 wlan_start(0);
frankvnk 0:a8e46e27d041 437 wait(2);
frankvnk 0:a8e46e27d041 438 ConnectUsingSmartConfig = 1;
frankvnk 0:a8e46e27d041 439
frankvnk 0:a8e46e27d041 440 // Mask out all non-required events
frankvnk 0:a8e46e27d041 441 wlan_set_event_mask(HCI_EVNT_WLAN_KEEPALIVE|HCI_EVNT_WLAN_UNSOL_INIT|HCI_EVNT_WLAN_ASYNC_PING_REPORT);
frankvnk 0:a8e46e27d041 442 RED_OFF;
frankvnk 0:a8e46e27d041 443 BLUE_OFF;
frankvnk 0:a8e46e27d041 444 GREEN_OFF;
frankvnk 0:a8e46e27d041 445 }
frankvnk 0:a8e46e27d041 446