MODIFIED from mbed official WiflyInterface (interface for Roving Networks Wifly modules). Numerous performance and reliability improvements (see the detailed documentation). Also, tracking changes in mbed official version to retain functional parity.

Dependents:   Smart-WiFly-WebServer PUB_WiflyInterface_Demo

Fork of WiflyInterface by mbed official

Resources

Derivative from mbed Official

  • Documentation update, improved consistency, documented parameters that were inadvertently omitted.
  • Avoid c++ string handling, which causes dynamic allocation and free, side effect, fewer CPU cycles spent for same purpose.
  • Fixed socket APIs to support non-blocking mode.
  • Increase communication baud-rate to Wifly module
  • sendCommand - added retries for improved robustness.
  • setConnectionState - method to force the connection state (used by TCPSocketServer)
  • gethostbyname - added a length parameter to the size of the buffer being written
  • flushIn - a private method to flush the input buffer
  • Changed the timeout from 500 to 2500 msec for commands - measured some at 700 to 850 msec.
  • Performance improvements - reduced some unnecessary delays.
  • Added additional security options for the wi-fi connection (that are supported by the WiFly module).
  • Added setSecurity API which permits revising the security when connecting to, or selecting from, one of several access points.
  • Improved DEBUG interface (slightly more consistent printout).
  • gathers information from the Wifly module on reboot (SW version info), which permits customizing behavior based on Wifly capabilities (like the improved security).
  • Avoid potential for recursive crash (if exit fails, it calls sendcommand, which calls exit...)
  • Update to support permissible SSID and PassCode lengths.

Robustness testing

I've had some mixed behavior with the Wifly module, some of which seems to be traceable to the module itself, and some in my derivative code. The result, after running for minutes, hours, sometimes days, it hangs and I have to reset the module.

To test, I created a fairly simple test program -

  • check for Watchdog induced reset and count it.
  • initialize the Watchdog for 60 sec timeout.
  • Init the Wifly interface and connect to my network.
  • Wait 10 seconds and force mbed_reset().

If the Watchdog induces the restart, then it is pretty clear that either:

  • The communications hung with the Wifly module causing the failure.
  • The Wifly module decided to go unresponsive.

If it gets to the end, it typically takes about 4 to 6 seconds for the boot and connect, then the 10 second delay.

But I can't really pin down the root cause easily. My strongest theory is that the Wifly module has rebooted, and since I don't store the high baud rate I configure it for, it resets back to 9600.

Also, one of the objectives for my revised send( ) is to avoid the c++ string, as that can fragment memory, and it wasn't very well bounded in behavior.

Latest tests:

Warm BootsWatchdog EventsNotes
100's30An early version of my derivative WiflyInterface, including my derivative of "send( )" API. Let's call this version 0.1.
26684My derivative WiflyInterface, but with the mbed official "send( )" API. Much improved. This was over the course of about 12 hours.
24003Most recent derivative - incremental change to "send( )", but this relative number does not rule out the Wifly module itself.

I think with these numbers, +/- 1 means that the changes have had no measurable effect. Which is good, since this incremental change eliminates the c++ string handling.

Test Software

This is pieces of a test program, clipped and copied to here. What I have compiled and run for hours and hours is almost exactly what you see. This uses this simple Watchdog library.

#include "mbed.h"
#include "WiflyInterface.h"
#include "Watchdog.h"

Serial pc(USBTX, USBRX);

Watchdog wd;
extern "C" void mbed_reset();

// Pinout for SmartBoard
WiflyInterface wifly(p9, p10, p30, p29, "ssid", "pass", WPA);

int main() {
    pc.baud(460800);                         // I like a snappy terminal
    
    wd.Configure(60.0);                     // Set time limit for the test to 1 minute
    LPC_RTC->GPREG0++;                      // Count boots here
    if (wd.WatchdogCausedReset()) {
        LPC_RTC->GPREG1++;                  // Count Watchdog events here
        pc.printf("\r\n\r\nWatchdog event.\r\n");
    }
    pc.printf("\r\nWifly Test: %d boots, %d watchdogs. %s %s\r\n", LPC_RTC->GPREG0, LPC_RTC->GPREG1, __DATE__, __TIME__);
    
    wifly.init(); // use DHCP
    pc.printf("Connect...  ");
    while (!wifly.connect());               // join the network
    pc.printf("Address is %s.  ", wifly.getIPAddress());
    pc.printf("Disconnect...  ");
    wifly.disconnect();
    pc.printf("OK. Reset in 10 sec...\r\n");
    wait(10);
    if (pc.readable()) {
        if (pc.getc() == 'r') {             // secret 'r'eset of the counters
            LPC_RTC->GPREG0 = 0;
            LPC_RTC->GPREG1 = 0;
            pc.printf("counters reset\r\n");
        }
    }
    mbed_reset();                           // reset here indicates successful communication
}
Committer:
WiredHome
Date:
Wed Oct 09 20:47:09 2013 +0000
Revision:
38:30e142b93ce4
Parent:
1:fb4494783863
Child:
41:698be43f9233
Minor documentation changes

Who changed what in which revision?

UserRevisionLine numberNew contents of line
samux 1:fb4494783863 1 #include "WiflyInterface.h"
samux 1:fb4494783863 2
samux 1:fb4494783863 3 WiflyInterface::WiflyInterface( PinName tx, PinName rx, PinName reset, PinName tcp_status,
samux 1:fb4494783863 4 const char * ssid, const char * phrase, Security sec) :
samux 1:fb4494783863 5 Wifly(tx, rx, reset, tcp_status, ssid, phrase, sec)
samux 1:fb4494783863 6 {
samux 1:fb4494783863 7 ip_set = false;
samux 1:fb4494783863 8 }
samux 1:fb4494783863 9
samux 1:fb4494783863 10 int WiflyInterface::init()
samux 1:fb4494783863 11 {
samux 1:fb4494783863 12 state.dhcp = true;
samux 1:fb4494783863 13 reset();
samux 1:fb4494783863 14 return 0;
samux 1:fb4494783863 15 }
samux 1:fb4494783863 16
samux 1:fb4494783863 17 int WiflyInterface::init(const char* ip, const char* mask, const char* gateway)
samux 1:fb4494783863 18 {
samux 1:fb4494783863 19 state.dhcp = false;
samux 1:fb4494783863 20 this->ip = ip;
samux 1:fb4494783863 21 strcpy(ip_string, ip);
samux 1:fb4494783863 22 ip_set = true;
samux 1:fb4494783863 23 this->netmask = mask;
samux 1:fb4494783863 24 this->gateway = gateway;
samux 1:fb4494783863 25 reset();
samux 1:fb4494783863 26
samux 1:fb4494783863 27 return 0;
samux 1:fb4494783863 28 }
samux 1:fb4494783863 29
samux 1:fb4494783863 30 int WiflyInterface::connect()
samux 1:fb4494783863 31 {
samux 1:fb4494783863 32 return join();
samux 1:fb4494783863 33 }
samux 1:fb4494783863 34
samux 1:fb4494783863 35 int WiflyInterface::disconnect()
samux 1:fb4494783863 36 {
samux 1:fb4494783863 37 return Wifly::disconnect();
samux 1:fb4494783863 38 }
samux 1:fb4494783863 39
WiredHome 38:30e142b93ce4 40 // typical response might be
WiredHome 38:30e142b93ce4 41 // 192.168.43.107\r
WiredHome 38:30e142b93ce4 42 // <4.00>
samux 1:fb4494783863 43 char * WiflyInterface::getIPAddress()
samux 1:fb4494783863 44 {
samux 1:fb4494783863 45 char * match = 0;
samux 1:fb4494783863 46 if (!ip_set) {
samux 1:fb4494783863 47 if (!sendCommand("get ip a\r", NULL, ip_string))
samux 1:fb4494783863 48 return NULL;
samux 1:fb4494783863 49 exit();
samux 1:fb4494783863 50 flush();
samux 1:fb4494783863 51 match = strstr(ip_string, "<");
samux 1:fb4494783863 52 if (match != NULL) {
samux 1:fb4494783863 53 *match = '\0';
samux 1:fb4494783863 54 }
samux 1:fb4494783863 55 if (strlen(ip_string) < 6) {
samux 1:fb4494783863 56 match = strstr(ip_string, ">");
samux 1:fb4494783863 57 if (match != NULL) {
samux 1:fb4494783863 58 int len = strlen(match + 1);
samux 1:fb4494783863 59 memcpy(ip_string, match + 1, len);
samux 1:fb4494783863 60 }
samux 1:fb4494783863 61 }
samux 1:fb4494783863 62 ip_set = true;
samux 1:fb4494783863 63 }
samux 1:fb4494783863 64 return ip_string;
samux 1:fb4494783863 65 }