A sample program demonstrating a small but powerful web server using the Wifly module. This uses several libraries from others, but has a custom version of the WiflyInterface library, with numerous improvement to the mbed standard library.

Dependencies:   SW_HTTPServer WiflyInterface mbed C12832 IniManager

Here's the code

But you also might want to check out the SmartBoard-WiFly project page.

Basic Web Server

  • Serves static files from the selected file system. This is a compile-time setting, and a typical configuration supports gif, jpg, jpeg, ico, png, zip, gz, tar, txt, pdf, htm, and html.
  • It is designed to be small, thereby better supporting the limited resources of an embedded environment.

Advanced Web Services

  • Serves dynamically generated pages, where your software registers for a path, and then everything to that path activates your handler. Your handler then defines the header and body response.
  • Dynamic handlers can process GET query parameters (e.g. /dyn1?sky=blue&grass=green).
  • Dynamic handlers can process POST query parameters, as delivered from submission of a form.
  • Dynamic handlers can protect a resource with user:password access.

Run-Time Configurations

  • File System Support - using either the "local" file system supported by the magic chip, or from either an SD-Card or a USB flash drive.
  • Configurable to the maximum number of dynamic handlers (minimize memory requirements).
  • Configurable to the maximum number of name=value pairs for dynamic handlers (minimize memory requirements).

Compile-Time Configurations

  • Default filename for URL ending in '/' - default is 'index.htm'.
  • Configurable buffer sizes permit minimizing RAM requirements.
  • Configurable header response information.
  • Configurable for which serial port is used to communicate to the WiFly module.
  • Improved security option - to disable telnet access.

Diagnostics

  • API to determine the largest header (to more efficiently size the buffers).
  • API to gather the run-time characteristics - header processing time and content delivery time.

Limitations / Constraints

Known Issues

These are known issues, not yet resolved.

  1. Occasionally fails to serve a page - one test will constantly reload a web page every 30 seconds. It may run for hours, or minutes, then fail to load. Behaviors then are:
    • Hit the reload button in the browser and away it goes.
    • Hit the reload and you'll see the Wifly LEDs energize from the request, but no response by the web server. It appears that the embedded code does not "accept()" the connection in the TCP Socket Server.
      • In this case, the Wifly module has gone through an internal watchdog reset and the configuration parameters are such that it does not gracefully recover. Microchip is aware of this issue, but has not solved it.

Wifly Limitations

  • Single thread - it doesn't respond to overlapping requests (e.g. an embedded image may be requested before the main page completes transfer - the request is lost and the image not shown).
  • Single client - goes along with the single thread, but it doesn't support more than one client at a time.

Smart-Wifly-WebServer

  • Dynamic memory allocation - it does use dynamic memory allocation, which would be discouraged/avoided in many embedded systems. Here it uses it in parsing a request and it releases those resources upon completion of that request. If there is no other dynamic allocation that persists beyond a transaction, it should not cause memory fragmentation. Note that with multi-threading (if this is implemented with an OS), you then have race conditions that could cause fragmentation.

Web Server

Here's the web server in action. A combination of static pages served from the file system and dynamically generated pages.

/media/uploads/WiredHome/swsvr_1.pngPart of the main demo page,
which basically has all the
specifications, configurations, and limitations.
/media/uploads/WiredHome/swsvr_2.pngA zoomed out view of the same page.
/media/uploads/WiredHome/swsvr_3.pngIt would be possible to configure
the server via the web.
/media/uploads/WiredHome/swsvr_4.pngOne of the dynamically generated pages.
This one has parsed the query parameters.
/media/uploads/WiredHome/swsvr_5.pngA simple form which has a dynamic handler on the back end.
Here it takes the value associated with "leds"
and uses that to set the 4 LEDs on the mbed module.
/media/uploads/WiredHome/swsvr_6.pngA dynamic handler can require authentication.
/media/uploads/WiredHome/swsvr_7.pngSuccess!

But I've now gone so far beyond that in the current version. Here's what this one can do:

  1. It serves static web pages from a file system. I've only tested with the local file system and an SD card, but should work for any, so long as you remember that the local file system can't read subdirectories.
  2. It can serve dynamically generated web pages. This lets you accept name=value pairs using the URL (using either a GET or POST method). It can also accept them from forms. The demo lets you control the 4 LEDs from a form.
  3. As safely as possible it retrieves your credentials to the Wi-Fi Access Point. After using them, it overwrites that ram so they can't be as easily extracted.
  4. I made a large number of changes to the Wifly driver. It had too short of a timeout and I found quite a number of optimizations for performance and robustness.
  5. I have the start on a security feature - you can configure a resource to require user credentials to access it. The browser typically provides a username and password dialog. Take care however, as it does not support a secure (https) connection, so the credentials are not as securely transferred as I would like.

Optimizations I'd like to do:

  1. speed it up - I'm running the mbed to wifly module interface at 230K, which is about the top speed w/o flow control. There are other places where some time delays remain - I have eliminated a number of them.
  2. make it non-blocking, so other work can happen.
  3. integrate it with the rtos
  4. When a web page has referenced resources (e.g. an image tag), it rarely loads the image on the first try. I think the request for the resource comes in while it is still in the WiflyInterface cleaning up from the last connection. The Wifly module supports only a single connection at a time. I worked around this with a small bit of javascript to load the images after the web page.

But all in all I think it is a good start.

Program prerequisite

Here's the link to the program, but when you open it up, note a few very important items.

  1. Port Numbers listed in the constructor match the SmartBoard Baseboard.
  2. I sped up the communication baud rate to the mbed from the default 9600. Match your terminal program accordingly.
  3. Download this zip. Place it and an unzipped copy into the mbed local file system. These are the demo files.
  4. The typical ssid and password are not shown. See below to set yours.

ssid and password

You need to create a simple text file on your mbed root folder named "config.ini". The easiest way perhaps is to create "config.txt", add the information shown below and then rename it. This will be read at startup to connect you to the network. Something quite simple, like this:

[Wifi]
ssid=your_ssid
pass=your_pass_code

The program

And the program.

Import programSmart-WiFly-WebServer

A sample program demonstrating a small but powerful web server using the Wifly module. This uses several libraries from others, but has a custom version of the WiflyInterface library, with numerous improvement to the mbed standard library.

Committer:
WiredHome
Date:
Thu Sep 05 23:00:21 2013 +0000
Revision:
16:ab1867ffcf94
Parent:
15:1f2b62130ffb
Child:
29:14c47d31a9dc
Primarily performance tuning activities to help speed it up.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
WiredHome 15:1f2b62130ffb 1
WiredHome 15:1f2b62130ffb 2 #include "mbed.h"
WiredHome 15:1f2b62130ffb 3
WiredHome 15:1f2b62130ffb 4 #include "SW_HTTPServer.h"
WiredHome 15:1f2b62130ffb 5 #include "DynamicPages.h"
WiredHome 15:1f2b62130ffb 6 #include "Utility.h"
WiredHome 15:1f2b62130ffb 7 #include "Base64.h"
WiredHome 15:1f2b62130ffb 8
WiredHome 15:1f2b62130ffb 9
WiredHome 15:1f2b62130ffb 10 Base64 bc64;
WiredHome 15:1f2b62130ffb 11 char * converted = NULL;
WiredHome 15:1f2b62130ffb 12 size_t convertedLen = 0;
WiredHome 15:1f2b62130ffb 13 bool accessGranted = false;
WiredHome 15:1f2b62130ffb 14
WiredHome 15:1f2b62130ffb 15 bool CredentialCheck(char * user, char * pass)
WiredHome 15:1f2b62130ffb 16 {
WiredHome 15:1f2b62130ffb 17 printf("CredentialCheck(%s,%s)\r\n", user, pass);
WiredHome 15:1f2b62130ffb 18 if (strcmp(user, "user1") == 0 && strcmp(pass, "pass1") == 0)
WiredHome 15:1f2b62130ffb 19 return true;
WiredHome 15:1f2b62130ffb 20 else
WiredHome 15:1f2b62130ffb 21 return false;
WiredHome 15:1f2b62130ffb 22 }
WiredHome 15:1f2b62130ffb 23
WiredHome 15:1f2b62130ffb 24
WiredHome 15:1f2b62130ffb 25 /// SimpleSecurityCheck
WiredHome 15:1f2b62130ffb 26 bool SimpleSecurityCheck(HTTPServer *svr, HTTPServer::CallBackType type, const char * path, const HTTPServer::namevalue *params, int paramcount)
WiredHome 15:1f2b62130ffb 27 {
WiredHome 15:1f2b62130ffb 28 bool ret = false;
WiredHome 15:1f2b62130ffb 29 char buf[150];
WiredHome 15:1f2b62130ffb 30
WiredHome 15:1f2b62130ffb 31 switch (type) {
WiredHome 15:1f2b62130ffb 32 case HTTPServer::SEND_PAGE:
WiredHome 15:1f2b62130ffb 33 accessGranted = false;
WiredHome 15:1f2b62130ffb 34 if (svr->GetHeaderValue("Authorization") != NULL) {
WiredHome 15:1f2b62130ffb 35 const char * p = svr->GetHeaderValue("Authorization");
WiredHome 15:1f2b62130ffb 36 if (p && strncmp(p, "Basic ", 6) == 0) {
WiredHome 15:1f2b62130ffb 37 p += 6;
WiredHome 15:1f2b62130ffb 38 if (converted) // this should never be true, but is a nice safeguard
WiredHome 15:1f2b62130ffb 39 free(converted);
WiredHome 15:1f2b62130ffb 40 converted = bc64.Decode(p, strlen(p), &convertedLen);
WiredHome 15:1f2b62130ffb 41 if (converted) {
WiredHome 15:1f2b62130ffb 42 // Now check the actual credentials...
WiredHome 15:1f2b62130ffb 43 char *colon;
WiredHome 15:1f2b62130ffb 44 converted[convertedLen] = '\0';
WiredHome 15:1f2b62130ffb 45 colon = strchr(converted, ':');
WiredHome 15:1f2b62130ffb 46 if (colon) {
WiredHome 15:1f2b62130ffb 47 *colon++ = '\0';
WiredHome 15:1f2b62130ffb 48 if (CredentialCheck(converted, colon))
WiredHome 15:1f2b62130ffb 49 accessGranted = true;
WiredHome 15:1f2b62130ffb 50 }
WiredHome 15:1f2b62130ffb 51 }
WiredHome 15:1f2b62130ffb 52 }
WiredHome 15:1f2b62130ffb 53 }
WiredHome 15:1f2b62130ffb 54 if (!accessGranted)
WiredHome 15:1f2b62130ffb 55 svr->header(401, "Access Denied", "WWW-Authenticate: Basic realm='Smart HTTPServer insecure logon'\r\n");
WiredHome 15:1f2b62130ffb 56 else {
WiredHome 15:1f2b62130ffb 57 svr->header(200, "OK", "Content-Type: text/html\r\n");
WiredHome 15:1f2b62130ffb 58 svr->send("<html><head><title>Security Check</title></head>\r\n");
WiredHome 15:1f2b62130ffb 59 svr->send("<body>\r\n");
WiredHome 15:1f2b62130ffb 60 sprintf(buf, "<h1>Welcome %s</h1>\r\n", converted);
WiredHome 15:1f2b62130ffb 61 svr->send(buf);
WiredHome 16:ab1867ffcf94 62 svr->send("Authorization was approved.<p/>\r\n");
WiredHome 16:ab1867ffcf94 63 svr->send("Your browser will now cache the credentials until you close it.");
WiredHome 16:ab1867ffcf94 64 svr->send("So, be sure to close it for maximum security (and don't let it save your credentials).<p/>\r\n");
WiredHome 15:1f2b62130ffb 65 svr->send("<a href='/'>back to main</a></body></html>\r\n");
WiredHome 15:1f2b62130ffb 66 }
WiredHome 15:1f2b62130ffb 67 if (converted)
WiredHome 15:1f2b62130ffb 68 free(converted); // don't leak memory
WiredHome 15:1f2b62130ffb 69 ret = true;
WiredHome 15:1f2b62130ffb 70 break;
WiredHome 15:1f2b62130ffb 71 case HTTPServer::CONTENT_LENGTH_REQUEST:
WiredHome 15:1f2b62130ffb 72 ret = true;
WiredHome 15:1f2b62130ffb 73 break;
WiredHome 15:1f2b62130ffb 74 case HTTPServer::DATA_TRANSFER:
WiredHome 15:1f2b62130ffb 75 ret = true;
WiredHome 15:1f2b62130ffb 76 break;
WiredHome 15:1f2b62130ffb 77 default:
WiredHome 15:1f2b62130ffb 78 ret = false;
WiredHome 15:1f2b62130ffb 79 break;
WiredHome 15:1f2b62130ffb 80 }
WiredHome 15:1f2b62130ffb 81 return ret;
WiredHome 15:1f2b62130ffb 82 }