mbed SDK library sources

Fork of mbed-src by mbed official

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_NXP/TARGET_LPC11XX_11CXX/TARGET_LPC11CXX/can_api.c

Committer:
mbed_official
Date:
2013-10-25
Revision:
41:e8b66477f5bf

File content as of revision 41:e8b66477f5bf:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "can_api.h"

#include "cmsis.h"
#include "error.h"

#include <math.h>
#include <string.h>

/* Handy defines */
#define MSG_OBJ_MAX      32
#define DLC_MAX          8

#define ID_STD_MASK      0x07FF
#define ID_EXT_MASK      0x1FFFFFFF
#define DLC_MASK         0x0F

static uint32_t can_irq_id = 0;
static can_irq_handler irq_handler;

static uint32_t can_disable(can_t *obj) {
    uint32_t sm = LPC_CAN->CNTL;
    LPC_CAN->CNTL |= CANCNTL_INIT;
    return sm;
}

static inline void can_enable(can_t *obj) {
    if (LPC_CAN->CNTL & CANCNTL_INIT) {
        LPC_CAN->CNTL &= ~CANCNTL_INIT;
    }
}

int can_mode(can_t *obj, CanMode mode) {
    return 0; // not implemented
}

int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) {
    uint16_t i;

    // Find first free message object
    if(handle == 0) {
        uint32_t msgval = LPC_CAN->MSGV1 | (LPC_CAN->MSGV2 << 16);
        // Find first free messagebox
        for(i = 0; i < 32; i++) {
            if((msgval & (1 << i)) == 0) {
                handle = i+1;
                break;
            }
        }
    }
    
    if(handle > 0 && handle < 32) {
        if(format == CANExtended) {
            // Mark message valid, Direction = TX, Extended Frame, Set Identifier and mask everything
            LPC_CAN->IF1_ARB1 = BFN_PREP(id, CANIFn_ARB1_ID);
            LPC_CAN->IF1_ARB2 = CANIFn_ARB2_MSGVAL | CANIFn_ARB2_XTD | BFN_PREP(id >> 16, CANIFn_ARB2_ID);
            LPC_CAN->IF1_MSK1 = BFN_PREP(mask, CANIFn_MSK1_MSK);
            LPC_CAN->IF1_MSK2 = CANIFn_MSK2_MXTD | CANIFn_MSK2_MDIR | BFN_PREP(mask >> 16, CANIFn_MSK2_MSK);
        }
        else {
            // Mark message valid, Direction = TX, Set Identifier and mask everything
            LPC_CAN->IF1_ARB2 = CANIFn_ARB2_MSGVAL | BFN_PREP(id << 2, CANIFn_ARB2_ID);
            LPC_CAN->IF1_MSK2 = CANIFn_MSK2_MDIR | BFN_PREP(mask << 2, CANIFn_MSK2_MSK);
        }
        
        // Use mask, single message object and set DLC
        LPC_CAN->IF1_MCTRL = CANIFn_MCTRL_UMASK | CANIFn_MCTRL_EOB | CANIFn_MCTRL_RXIE | BFN_PREP(DLC_MAX, CANIFn_MCTRL_DLC);

        // Transfer all fields to message object
        LPC_CAN->IF1_CMDMSK = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL;
        
        // Start Transfer to given message number
        LPC_CAN->IF1_CMDREQ = BFN_PREP(handle, CANIFn_CMDREQ_MN);
        
        // Wait until transfer to message ram complete - TODO: maybe not block??
        while( LPC_CAN->IF1_CMDREQ & CANIFn_CMDREQ_BUSY );    
    }
    
    return handle;
}

static inline void can_irq() {
    irq_handler(can_irq_id, IRQ_RX);
}

// Register CAN object's irq handler
void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) {
    irq_handler = handler;
    can_irq_id = id;    
}

// Unregister CAN object's irq handler
void can_irq_free(can_t *obj) {
        LPC_CAN->CNTL &= ~CANCNTL_IE; // Disable Interrupts :)

    can_irq_id = 0;
    NVIC_DisableIRQ(CAN_IRQn);
}

// Clear or set a irq
void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) {
    // Put CAN in Reset Mode and enable interrupt
    can_disable(obj);
    if(enable == 0) {
        LPC_CAN->CNTL &= ~(CANCNTL_IE | CANCNTL_SIE);
    }
    else {
        LPC_CAN->CNTL |= CANCNTL_IE | CANCNTL_SIE;
    }
    // Take it out of reset...
    can_enable(obj);
    
    // Enable NVIC if at least 1 interrupt is active
    NVIC_SetVector(CAN_IRQn, (uint32_t) &can_irq);
    NVIC_EnableIRQ(CAN_IRQn);
}

// This table has the sampling points as close to 75% as possible. The first
// value is TSEG1, the second TSEG2.
static const int timing_pts[23][2] = {
    {0x0, 0x0},      // 2,  50%
    {0x1, 0x0},      // 3,  67%
    {0x2, 0x0},      // 4,  75%
    {0x3, 0x0},      // 5,  80%
    {0x3, 0x1},      // 6,  67%
    {0x4, 0x1},      // 7,  71%
    {0x5, 0x1},      // 8,  75%
    {0x6, 0x1},      // 9,  78%
    {0x6, 0x2},      // 10, 70%
    {0x7, 0x2},      // 11, 73%
    {0x8, 0x2},      // 12, 75%
    {0x9, 0x2},      // 13, 77%
    {0x9, 0x3},      // 14, 71%
    {0xA, 0x3},      // 15, 73%
    {0xB, 0x3},      // 16, 75%
    {0xC, 0x3},      // 17, 76%
    {0xD, 0x3},      // 18, 78%
    {0xD, 0x4},      // 19, 74%
    {0xE, 0x4},      // 20, 75%
    {0xF, 0x4},      // 21, 76%
    {0xF, 0x5},      // 22, 73%
    {0xF, 0x6},      // 23, 70%
    {0xF, 0x7},      // 24, 67%
};

static unsigned int can_speed(unsigned int sclk, unsigned int cclk, unsigned char psjw) {
    uint32_t    btr;
    uint32_t    clkdiv = 1;
    uint16_t    brp = 0;
    uint32_t    calcbit;
    uint32_t    bitwidth;
    int         hit = 0;
    int         bits = 0;
    
    bitwidth = sclk / cclk;
    
    brp = bitwidth / 0x18;
    while ((!hit) && (brp < bitwidth / 4)) {
        brp++;
        for (bits = 22; bits > 0; bits--) {
            calcbit = (bits + 3) * (brp + 1);
            if (calcbit == bitwidth) {
                hit = 1;
                break;
            }
        }
    }
    
    /* This might be funky
    while(btr > 63 && clkdiv < 16) {
        btr = btr / 2;
        clkdiv = clkdiv * 2;
    }
    */
    clkdiv = clkdiv - 1;
        
    if (hit) {
        btr = BFN_PREP(timing_pts[bits][1], CANBT_TSEG2)
            | BFN_PREP(timing_pts[bits][0], CANBT_TSEG1)
            | BFN_PREP(psjw, CANBT_SJW)
            | BFN_PREP(brp, CANBT_BRP);
        btr = btr | (clkdiv << 16);
                
    } else {
        btr = 0;
    }
    
    return btr;
}


int can_config_rxmsgobj(can_t *obj) {
    uint16_t i = 0;

    // Make sure the interface is available
    //while( LPC_CAN->IF1_CMDREQ & CANIFn_CMDREQ_BUSY );

    // Mark message valid, Direction = RX, Don't care about anything else
    LPC_CAN->IF1_ARB1 = 0;
    LPC_CAN->IF1_ARB2 = 0;
    LPC_CAN->IF1_MCTRL = 0;

    for ( i = 0; i < MSG_OBJ_MAX; i++ )
    {
        // Transfer arb and control fields to message object
        LPC_CAN->IF1_CMDMSK = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL | CANIFn_CMDMSK_TXRQST;
        
        // Start Transfer to given message number
        LPC_CAN->IF1_CMDREQ = BFN_PREP(i, CANIFn_CMDREQ_MN);
        
        // Wait until transfer to message ram complete - TODO: maybe not block??
        while( LPC_CAN->IF1_CMDREQ & CANIFn_CMDREQ_BUSY );
    }
    
    // Accept all messages
    can_filter(obj, 0, 0, CANStandard, 1);
    
    return 1;
}


void can_init(can_t *obj, PinName rd, PinName td) {
    // Enable power and clock
    LPC_SYSCON->PRESETCTRL |= PRESETCTRL_CAN_RST_N;
    LPC_SYSCON->SYSAHBCLKCTRL |= SYSAHBCLKCTRL_CAN;
    
    // Enable Initialization mode
    if (!(LPC_CAN->CNTL & CANCNTL_INIT)) {
        LPC_CAN->CNTL |= CANCNTL_INIT;
    }
    
    can_frequency(obj, 125000);
    
    // Resume operation
    LPC_CAN->CNTL &= ~CANCNTL_INIT;
    while ( LPC_CAN->CNTL & CANCNTL_INIT );
    
    // Initialize RX message object
    can_config_rxmsgobj(obj);
}

void can_free(can_t *obj) {
    LPC_SYSCON->SYSAHBCLKCTRL &= ~(SYSAHBCLKCTRL_CAN);
    LPC_SYSCON->PRESETCTRL &= ~(PRESETCTRL_CAN_RST_N);
}

int can_frequency(can_t *obj, int f) {
    int btr = can_speed(SystemCoreClock, (unsigned int)f, 1);
    int clkdiv = (btr >> 16) & 0x0F;
    btr = btr & 0xFFFF;
    
    if (btr > 0) {
        // Set the bit clock
        LPC_CAN->CNTL |= CANCNTL_CCE;
        LPC_CAN->CLKDIV = clkdiv;
        LPC_CAN->BT = btr;
        LPC_CAN->BRPE = 0x0000;
        LPC_CAN->CNTL &= ~CANCNTL_CCE;
        return 1;
    }
    return 0;
}

int can_write(can_t *obj, CAN_Message msg, int cc) {    
    uint16_t msgnum = 0;
    
    // Make sure controller is enabled
    can_enable(obj);
    
    // Make sure the interface is available
    while( LPC_CAN->IF1_CMDREQ & CANIFn_CMDREQ_BUSY );

    if(msg.format == CANExtended)    {
        // Mark message valid, Direction = TX, Extended Frame, Set Identifier and mask everything
        LPC_CAN->IF1_ARB1 = BFN_PREP(msg.id, CANIFn_ARB1_ID);
        LPC_CAN->IF1_ARB2 = CANIFn_ARB2_MSGVAL | CANIFn_ARB2_XTD | CANIFn_ARB2_DIR | BFN_PREP(msg.id >> 16, CANIFn_ARB2_ID);
        LPC_CAN->IF1_MSK1 = BFN_PREP(ID_EXT_MASK, CANIFn_MSK1_MSK);
        LPC_CAN->IF1_MSK2 = CANIFn_MSK2_MXTD | CANIFn_MSK2_MDIR | BFN_PREP(ID_EXT_MASK >> 16, CANIFn_MSK2_MSK);
    }
    else {
        // Mark message valid, Direction = TX, Set Identifier and mask everything
        LPC_CAN->IF1_ARB2 = CANIFn_ARB2_MSGVAL | CANIFn_ARB2_DIR | BFN_PREP(msg.id << 2, CANIFn_ARB2_ID);
        LPC_CAN->IF1_MSK2 = CANIFn_MSK2_MDIR | BFN_PREP(ID_STD_MASK << 2, CANIFn_MSK2_MSK);
    }
    
    // Use mask, request transmission, single message object and set DLC
    LPC_CAN->IF1_MCTRL = CANIFn_MCTRL_UMASK | CANIFn_MCTRL_TXRQST | CANIFn_MCTRL_EOB | BFN_PREP(msg.len, CANIFn_MCTRL_DLC);

    LPC_CAN->IF1_DA1 = BFN_PREP(msg.data[1], CANIFn_DA1_DATA1) | BFN_PREP(msg.data[0], CANIFn_DA1_DATA0);
    LPC_CAN->IF1_DA2 = BFN_PREP(msg.data[3], CANIFn_DA2_DATA3) | BFN_PREP(msg.data[2], CANIFn_DA2_DATA2);
    LPC_CAN->IF1_DB1 = BFN_PREP(msg.data[5], CANIFn_DB1_DATA5) | BFN_PREP(msg.data[4], CANIFn_DB1_DATA4);
    LPC_CAN->IF1_DB2 = BFN_PREP(msg.data[7], CANIFn_DB2_DATA7) | BFN_PREP(msg.data[6], CANIFn_DB2_DATA6);

    // Transfer all fields to message object
    LPC_CAN->IF1_CMDMSK = CANIFn_CMDMSK_WR | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL | CANIFn_CMDMSK_TXRQST | CANIFn_CMDMSK_DATA_A | CANIFn_CMDMSK_DATA_B;
    
    // Start Transfer to given message number
    LPC_CAN->IF1_CMDREQ = BFN_PREP(msgnum, CANIFn_CMDREQ_MN);
    
    // Wait until transfer to message ram complete - TODO: maybe not block??
    while( LPC_CAN->IF1_CMDREQ & CANIFn_CMDREQ_BUSY);
    
    // Wait until TXOK is set, then clear it - TODO: maybe not block
    //while( !(LPC_CAN->STAT & CANSTAT_TXOK) );
    LPC_CAN->STAT &= ~(CANSTAT_TXOK);
    
    return 1;
}

int can_read(can_t *obj, CAN_Message *msg, int handle) {
    uint16_t i;
    
    // Make sure controller is enabled
    can_enable(obj);
    
    // Find first message object with new data
    if(handle == 0) {
        uint32_t newdata = LPC_CAN->ND1 | (LPC_CAN->ND2 << 16);
        // Find first free messagebox
        for(i = 0; i < 32; i++) {
            if(newdata & (1 << i)) {
                handle = i+1;
                break;
            }
        }
    }
    
    if(handle > 0 && handle < 32) {
        // Wait until message interface is free
        while( LPC_CAN->IF2_CMDREQ & CANIFn_CMDREQ_BUSY );

        // Transfer all fields to message object
        LPC_CAN->IF2_CMDMSK = CANIFn_CMDMSK_RD | CANIFn_CMDMSK_MASK | CANIFn_CMDMSK_ARB | CANIFn_CMDMSK_CTRL | CANIFn_CMDMSK_CLRINTPND | CANIFn_CMDMSK_TXRQST | CANIFn_CMDMSK_DATA_A | CANIFn_CMDMSK_DATA_B;
        
        // Start Transfer from given message number
        LPC_CAN->IF2_CMDREQ = BFN_PREP(handle, CANIFn_CMDREQ_MN);
        
        // Wait until transfer to message ram complete
        while( LPC_CAN->IF2_CMDREQ & CANIFn_CMDREQ_BUSY );
                    
        if (LPC_CAN->IF2_ARB2 & CANIFn_ARB2_XTD) {  
            msg->format = CANExtended;    
            msg->id = (LPC_CAN->IF2_ARB1 & CANIFn_ARB2_ID_MASK) << 16;
            msg->id |= (LPC_CAN->IF2_ARB2 & CANIFn_ARB2_ID_MASK);
        }
        else {
            msg->format = CANStandard;  
            msg->id = (LPC_CAN->IF2_ARB2 & CANIFn_ARB2_ID_MASK) >> 2;
        }

        // TODO: Remote frame support
        msg->type       = CANData;
        msg->len        = BFN_GET(LPC_CAN->IF2_MCTRL, CANIFn_MCTRL_DLC); // TODO: If > 8, len = 8
        msg->data[0]    = BFN_GET(LPC_CAN->IF2_DA1, CANIFn_DA1_DATA0);
        msg->data[1]    = BFN_GET(LPC_CAN->IF2_DA1, CANIFn_DA1_DATA1);
        msg->data[2]    = BFN_GET(LPC_CAN->IF2_DA2, CANIFn_DA2_DATA2);
        msg->data[3]    = BFN_GET(LPC_CAN->IF2_DA2, CANIFn_DA2_DATA3);
        msg->data[4]    = BFN_GET(LPC_CAN->IF2_DB1, CANIFn_DB1_DATA4);
        msg->data[5]    = BFN_GET(LPC_CAN->IF2_DB1, CANIFn_DB1_DATA5);
        msg->data[6]    = BFN_GET(LPC_CAN->IF2_DB2, CANIFn_DB2_DATA6);
        msg->data[7]    = BFN_GET(LPC_CAN->IF2_DB2, CANIFn_DB2_DATA7);
        
        LPC_CAN->STAT &= ~(CANSTAT_RXOK);
        return 1;
    }

    return 0;
}

void can_reset(can_t *obj) {
    LPC_SYSCON->PRESETCTRL &= ~PRESETCTRL_CAN_RST_N;
    LPC_CAN->STAT = 0;
    
    can_config_rxmsgobj(obj);
}

unsigned char can_rderror(can_t *obj) {
    return BFN_GET(LPC_CAN->EC, CANEC_REC);
}

unsigned char can_tderror(can_t *obj) {
    return BFN_GET(LPC_CAN->EC, CANEC_TEC);
}

void can_monitor(can_t *obj, int silent) {
    if (silent) {
        LPC_CAN->CNTL |= CANCNTL_TEST;
        LPC_CAN->TEST |= CANTEST_SILENT;
    } else {
        LPC_CAN->CNTL &= ~(CANCNTL_TEST);
        LPC_CAN->TEST &= ~CANTEST_SILENT;
    }

    if (!(LPC_CAN->CNTL & CANCNTL_INIT)) {
        LPC_CAN->CNTL |= CANCNTL_INIT;
    }
}