Colour sensors calibrated

Dependencies:   mbed-rtos mbed Servo QEI

Fork of ICRSEurobot13 by Thomas Branch

tvmet/xpr/MatrixFunctions.h

Committer:
madcowswe
Date:
2013-04-06
Revision:
15:9c5aaeda36dc

File content as of revision 15:9c5aaeda36dc:

/*
 * Tiny Vector Matrix Library
 * Dense Vector Matrix Libary of Tiny size using Expression Templates
 *
 * Copyright (C) 2001 - 2007 Olaf Petzold <opetzold@users.sourceforge.net>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * lesser General Public License for more details.
 *
 * You should have received a copy of the GNU lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 * $Id: MatrixFunctions.h,v 1.44 2007-06-23 15:59:00 opetzold Exp $
 */

#ifndef TVMET_XPR_MATRIX_FUNCTIONS_H
#define TVMET_XPR_MATRIX_FUNCTIONS_H

namespace tvmet {


/* forwards */
template<class T, std::size_t Rows, std::size_t Cols> class Matrix;
template<class T, std::size_t Sz> class Vector;
template<class E, std::size_t Sz> class XprVector;
template<class E> class XprMatrixTranspose;
template<class E, std::size_t Sz> class XprMatrixDiag;
template<class E, std::size_t Rows, std::size_t Cols> class XprMatrixRow;
template<class E, std::size_t Rows, std::size_t Cols> class XprMatrixCol;


/*********************************************************
 * PART I: DECLARATION
 *********************************************************/


/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 * Matrix arithmetic functions add, sub, mul and div
 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/


/*
 * function(XprMatrix<E1, Rows, Cols>, XprMatrix<E2, Rows, Cols>)
 */
#define TVMET_DECLARE_MACRO(NAME)                    \
template<class E1, class E2, std::size_t Rows, std::size_t Cols>    \
XprMatrix<                                \
  XprBinOp<                                \
    Fcnl_##NAME<typename E1::value_type, typename E2::value_type>,    \
    XprMatrix<E1, Rows, Cols>,                        \
    XprMatrix<E2, Rows, Cols>                        \
  >,                                    \
  Rows, Cols                                \
>                                    \
NAME (const XprMatrix<E1, Rows, Cols>& lhs,                \
      const XprMatrix<E2, Rows, Cols>& rhs) TVMET_CXX_ALWAYS_INLINE;

TVMET_DECLARE_MACRO(add)            // per se element wise
TVMET_DECLARE_MACRO(sub)            // per se element wise
namespace element_wise {
  TVMET_DECLARE_MACRO(mul)            // not defined for matrizes
  TVMET_DECLARE_MACRO(div)            // not defined for matrizes
}

#undef TVMET_DECLARE_MACRO


/*
 * function(XprMatrix<E, Rows, Cols>, POD)
 * function(POD, XprMatrix<E, Rows, Cols>)
 * Note: - operations +,-,*,/ are per se element wise
 */
#define TVMET_DECLARE_MACRO(NAME, POD)                    \
template<class E, std::size_t Rows, std::size_t Cols>            \
XprMatrix<                                \
  XprBinOp<                                \
    Fcnl_##NAME<typename E::value_type, POD >,                \
    XprMatrix<E, Rows, Cols>,                        \
    XprLiteral< POD >                            \
  >,                                    \
  Rows, Cols                                \
>                                    \
NAME (const XprMatrix<E, Rows, Cols>& lhs,                 \
      POD rhs) TVMET_CXX_ALWAYS_INLINE;                    \
                                    \
template<class E, std::size_t Rows, std::size_t Cols>            \
XprMatrix<                                \
  XprBinOp<                                \
    Fcnl_##NAME< POD, typename E::value_type>,                \
    XprLiteral< POD >,                            \
    XprMatrix<E, Rows, Cols>                        \
  >,                                    \
  Rows, Cols                                \
>                                    \
NAME (POD lhs,                                 \
      const XprMatrix<E, Rows, Cols>& rhs) TVMET_CXX_ALWAYS_INLINE;

TVMET_DECLARE_MACRO(add, int)
TVMET_DECLARE_MACRO(sub, int)
TVMET_DECLARE_MACRO(mul, int)
TVMET_DECLARE_MACRO(div, int)

#if defined(TVMET_HAVE_LONG_LONG)
TVMET_DECLARE_MACRO(add, long long int)
TVMET_DECLARE_MACRO(sub, long long int)
TVMET_DECLARE_MACRO(mul, long long int)
TVMET_DECLARE_MACRO(div, long long int)
#endif

TVMET_DECLARE_MACRO(add, float)
TVMET_DECLARE_MACRO(sub, float)
TVMET_DECLARE_MACRO(mul, float)
TVMET_DECLARE_MACRO(div, float)

TVMET_DECLARE_MACRO(add, double)
TVMET_DECLARE_MACRO(sub, double)
TVMET_DECLARE_MACRO(mul, double)
TVMET_DECLARE_MACRO(div, double)

#if defined(TVMET_HAVE_LONG_DOUBLE)
TVMET_DECLARE_MACRO(add, long double)
TVMET_DECLARE_MACRO(sub, long double)
TVMET_DECLARE_MACRO(mul, long double)
TVMET_DECLARE_MACRO(div, long double)
#endif

#undef TVMET_DECLARE_MACRO


#if defined(TVMET_HAVE_COMPLEX)
/*
 * function(XprMatrix<E, Rows, Cols>, complex<T>)
 * function(complex<T>, XprMatrix<E, Rows, Cols>)
 * Note: - operations +,-,*,/ are per se element wise
 * \todo type promotion
 */
#define TVMET_DECLARE_MACRO(NAME)                    \
template<class E, class T, std::size_t Rows, std::size_t Cols>        \
XprMatrix<                                \
  XprBinOp<                                \
    Fcnl_##NAME<typename E::value_type, std::complex<T> >,        \
    XprMatrix<E, Rows, Cols>,                        \
    XprLiteral< std::complex<T> >                    \
  >,                                    \
  Rows, Cols                                \
>                                    \
NAME (const XprMatrix<E, Rows, Cols>& lhs,                \
      const std::complex<T>& rhs) TVMET_CXX_ALWAYS_INLINE;        \
                                    \
template<class T, class E, std::size_t Rows, std::size_t Cols>        \
XprMatrix<                                \
  XprBinOp<                                \
    Fcnl_##NAME< std::complex<T>, typename E::value_type>,        \
    XprLiteral< std::complex<T> >,                    \
    XprMatrix<E, Rows, Cols>                        \
  >,                                    \
  Rows, Cols                                \
>                                    \
NAME (const std::complex<T>& lhs,                    \
      const XprMatrix<E, Rows, Cols>& rhs) TVMET_CXX_ALWAYS_INLINE;

TVMET_DECLARE_MACRO(add)
TVMET_DECLARE_MACRO(sub)
TVMET_DECLARE_MACRO(mul)
TVMET_DECLARE_MACRO(div)

#undef TVMET_DECLARE_MACRO

#endif // defined(TVMET_HAVE_COMPLEX)


/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 * matrix prod( ... ) functions
 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/


template<class E1, std::size_t Rows1, std::size_t Cols1,
     class E2, std::size_t Cols2>
XprMatrix<
  XprMMProduct<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    // M1(Rows1, Cols1)
    XprMatrix<E2, Cols1, Cols2>, Cols2
  >,
  Rows1, Cols2                    // return Dim
>
prod(const XprMatrix<E1, Rows1, Cols1>& lhs,
     const XprMatrix<E2, Cols1, Cols2>& rhs) TVMET_CXX_ALWAYS_INLINE;


template<class E1, std::size_t Rows1, std::size_t Cols1,
     class E2, std::size_t Cols2>
XprMatrix<
  XprMMProductTransposed<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    // M1(Rows1, Cols1)
    XprMatrix<E2, Cols1, Cols2>, Cols2        // M2(Cols1, Cols2)
  >,
  Cols2, Rows1                    // return Dim
>
trans_prod(const XprMatrix<E1, Rows1, Cols1>& lhs,
       const XprMatrix<E2, Cols1, Cols2>& rhs) TVMET_CXX_ALWAYS_INLINE;


template<class E1, std::size_t Rows1, std::size_t Cols1,
     class E2, std::size_t Cols2>    // Rows2 = Rows1
XprMatrix<
  XprMtMProduct<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    // M1(Rows1, Cols1)
    XprMatrix<E2, Rows1, Cols2>, Cols2        // M2(Rows1, Cols2)
  >,
  Cols1, Cols2                    // return Dim
>
MtM_prod(const XprMatrix<E1, Rows1, Cols1>& lhs,
     const XprMatrix<E2, Rows1, Cols2>& rhs) TVMET_CXX_ALWAYS_INLINE;


template<class E1, std::size_t Rows1, std::size_t Cols1,
     class E2, std::size_t Rows2>         // Cols2 = Cols1
XprMatrix<
  XprMMtProduct<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    // M1(Rows1, Cols1)
    XprMatrix<E2, Rows2, Cols1>, Cols1         // M2(Rows2, Cols1)
  >,
  Rows1, Rows2                    // return Dim
>
MMt_prod(const XprMatrix<E1, Rows1, Cols1>& lhs,
     const XprMatrix<E2, Rows2, Cols1>& rhs) TVMET_CXX_ALWAYS_INLINE;


/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 * matrix-vector specific prod( ... ) functions
 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/


template<class E1, std::size_t Rows, std::size_t Cols,
     class E2>
XprVector<
  XprMVProduct<
    XprMatrix<E1, Rows, Cols>, Rows, Cols,
    XprVector<E2, Cols>
  >,
  Rows
>
prod(const XprMatrix<E1, Rows, Cols>& lhs,
     const XprVector<E2, Cols>& rhs) TVMET_CXX_ALWAYS_INLINE;


/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 * matrix specific functions
 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/


template<class E, std::size_t Rows, std::size_t Cols>
XprMatrix<
  XprMatrixTranspose<
    XprMatrix<E, Rows, Cols>
  >,
  Cols, Rows
>
trans(const XprMatrix<E, Rows, Cols>& rhs) TVMET_CXX_ALWAYS_INLINE;


template<class E, std::size_t Sz>
typename NumericTraits<typename E::value_type>::sum_type
trace(const XprMatrix<E, Sz, Sz>& m) TVMET_CXX_ALWAYS_INLINE;


template<class E, std::size_t Rows, std::size_t Cols>
XprVector<
  XprMatrixRow<
    XprMatrix<E, Rows, Cols>,
    Rows, Cols
  >,
  Cols
>
row(const XprMatrix<E, Rows, Cols>& m,
    std::size_t no) TVMET_CXX_ALWAYS_INLINE;


template<class E, std::size_t Rows, std::size_t Cols>
XprVector<
  XprMatrixCol<
    XprMatrix<E, Rows, Cols>,
    Rows, Cols
  >,
  Rows
>
col(const XprMatrix<E, Rows, Cols>& m, std::size_t no) TVMET_CXX_ALWAYS_INLINE;


template<class E, std::size_t Sz>
XprVector<
  XprMatrixDiag<
    XprMatrix<E, Sz, Sz>,
    Sz
  >,
  Sz
>
diag(const XprMatrix<E, Sz, Sz>& m) TVMET_CXX_ALWAYS_INLINE;


/*********************************************************
 * PART II: IMPLEMENTATION
 *********************************************************/


/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 * Matrix arithmetic functions add, sub, mul and div
 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/


/*
 * function(XprMatrix<E1, Rows, Cols>, XprMatrix<E2, Rows, Cols>)
 */
#define TVMET_IMPLEMENT_MACRO(NAME)                    \
template<class E1, class E2, std::size_t Rows, std::size_t Cols>    \
inline                                    \
XprMatrix<                                \
  XprBinOp<                                \
    Fcnl_##NAME<typename E1::value_type, typename E2::value_type>,    \
    XprMatrix<E1, Rows, Cols>,                        \
    XprMatrix<E2, Rows, Cols>                        \
  >,                                    \
  Rows, Cols                                \
>                                    \
NAME (const XprMatrix<E1, Rows, Cols>& lhs,                 \
      const XprMatrix<E2, Rows, Cols>& rhs) {                \
  typedef XprBinOp<                            \
    Fcnl_##NAME<typename E1::value_type, typename E2::value_type>,    \
    XprMatrix<E1, Rows, Cols>,                        \
    XprMatrix<E2, Rows, Cols>                        \
  >                              expr_type;    \
  return XprMatrix<expr_type, Rows, Cols>(expr_type(lhs, rhs));        \
}

TVMET_IMPLEMENT_MACRO(add)            // per se element wise
TVMET_IMPLEMENT_MACRO(sub)            // per se element wise
namespace element_wise {
  TVMET_IMPLEMENT_MACRO(mul)            // not defined for matrizes
  TVMET_IMPLEMENT_MACRO(div)            // not defined for matrizes
}

#undef TVMET_IMPLEMENT_MACRO


/*
 * function(XprMatrix<E, Rows, Cols>, POD)
 * function(POD, XprMatrix<E, Rows, Cols>)
 * Note: - operations +,-,*,/ are per se element wise
 */
#define TVMET_IMPLEMENT_MACRO(NAME, POD)                \
template<class E, std::size_t Rows, std::size_t Cols>            \
inline                                    \
XprMatrix<                                \
  XprBinOp<                                \
    Fcnl_##NAME<typename E::value_type, POD >,                \
    XprMatrix<E, Rows, Cols>,                        \
    XprLiteral< POD >                            \
  >,                                    \
  Rows, Cols                                \
>                                    \
NAME (const XprMatrix<E, Rows, Cols>& lhs, POD rhs) {            \
  typedef XprBinOp<                            \
    Fcnl_##NAME<typename E::value_type, POD >,                \
    XprMatrix<E, Rows, Cols>,                        \
    XprLiteral< POD >                            \
  >                            expr_type;    \
  return XprMatrix<expr_type, Rows, Cols>(                \
    expr_type(lhs, XprLiteral< POD >(rhs)));                \
}                                    \
                                    \
template<class E, std::size_t Rows, std::size_t Cols>            \
inline                                    \
XprMatrix<                                \
  XprBinOp<                                \
    Fcnl_##NAME< POD, typename E::value_type>,                \
    XprLiteral< POD >,                            \
    XprMatrix<E, Rows, Cols>                        \
  >,                                    \
  Rows, Cols                                \
>                                    \
NAME (POD lhs, const XprMatrix<E, Rows, Cols>& rhs) {            \
  typedef XprBinOp<                            \
    Fcnl_##NAME< POD, typename E::value_type>,                \
    XprLiteral< POD >,                            \
    XprMatrix<E, Rows, Cols>                        \
  >                            expr_type;    \
  return XprMatrix<expr_type, Rows, Cols>(                \
    expr_type(XprLiteral< POD >(lhs), rhs));                \
}

TVMET_IMPLEMENT_MACRO(add, int)
TVMET_IMPLEMENT_MACRO(sub, int)
TVMET_IMPLEMENT_MACRO(mul, int)
TVMET_IMPLEMENT_MACRO(div, int)

#if defined(TVMET_HAVE_LONG_LONG)
TVMET_IMPLEMENT_MACRO(add, long long int)
TVMET_IMPLEMENT_MACRO(sub, long long int)
TVMET_IMPLEMENT_MACRO(mul, long long int)
TVMET_IMPLEMENT_MACRO(div, long long int)
#endif

TVMET_IMPLEMENT_MACRO(add, float)
TVMET_IMPLEMENT_MACRO(sub, float)
TVMET_IMPLEMENT_MACRO(mul, float)
TVMET_IMPLEMENT_MACRO(div, float)

TVMET_IMPLEMENT_MACRO(add, double)
TVMET_IMPLEMENT_MACRO(sub, double)
TVMET_IMPLEMENT_MACRO(mul, double)
TVMET_IMPLEMENT_MACRO(div, double)

#if defined(TVMET_HAVE_LONG_DOUBLE)
TVMET_IMPLEMENT_MACRO(add, long double)
TVMET_IMPLEMENT_MACRO(sub, long double)
TVMET_IMPLEMENT_MACRO(mul, long double)
TVMET_IMPLEMENT_MACRO(div, long double)
#endif

#undef TVMET_IMPLEMENT_MACRO


#if defined(TVMET_HAVE_COMPLEX)
/*
 * function(XprMatrix<E, Rows, Cols>, complex<T>)
 * function(complex<T>, XprMatrix<E, Rows, Cols>)
 * Note: - operations +,-,*,/ are per se element wise
 * \todo type promotion
 */
#define TVMET_IMPLEMENT_MACRO(NAME)                    \
template<class E, class T, std::size_t Rows, std::size_t Cols>        \
inline                                    \
XprMatrix<                                \
  XprBinOp<                                \
    Fcnl_##NAME<typename E::value_type, std::complex<T> >,        \
    XprMatrix<E, Rows, Cols>,                        \
    XprLiteral< std::complex<T> >                    \
  >,                                    \
  Rows, Cols                                \
>                                    \
NAME (const XprMatrix<E, Rows, Cols>& lhs,                 \
      const std::complex<T>& rhs) {                    \
  typedef XprBinOp<                            \
    Fcnl_##NAME<typename E::value_type, std::complex<T> >,        \
    XprMatrix<E, Rows, Cols>,                        \
    XprLiteral< std::complex<T> >                    \
  >                            expr_type;    \
  return XprMatrix<expr_type, Rows, Cols>(                \
    expr_type(lhs, XprLiteral< std::complex<T> >(rhs)));        \
}                                    \
                                    \
template<class T, class E, std::size_t Rows, std::size_t Cols>        \
inline                                    \
XprMatrix<                                \
  XprBinOp<                                \
    Fcnl_##NAME< std::complex<T>, typename E::value_type>,        \
    XprLiteral< std::complex<T> >,                    \
    XprMatrix<E, Rows, Cols>                        \
  >,                                    \
  Rows, Cols                                \
>                                    \
NAME (const std::complex<T>& lhs,                     \
      const XprMatrix<E, Rows, Cols>& rhs) {                \
  typedef XprBinOp<                            \
    Fcnl_##NAME< std::complex<T>, typename E::value_type>,        \
    XprLiteral< std::complex<T> >,                    \
    XprMatrix<E, Rows, Cols>                        \
  >                            expr_type;    \
  return XprMatrix<expr_type, Rows, Cols>(                \
    expr_type(XprLiteral< std::complex<T> >(lhs), rhs));        \
}

TVMET_IMPLEMENT_MACRO(add)
TVMET_IMPLEMENT_MACRO(sub)
TVMET_IMPLEMENT_MACRO(mul)
TVMET_IMPLEMENT_MACRO(div)

#undef TVMET_IMPLEMENT_MACRO

#endif // defined(TVMET_HAVE_COMPLEX)


/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 * matrix prod( ... ) functions
 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/


/**
 * \fn prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Cols1, Cols2>& rhs)
 * \brief Evaluate the product of two XprMatrix.
 * Perform on given Matrix M1 and M2:
 * \f[
 * M_1\,M_2
 * \f]
 * \note The numer of Rows2 has to be equal to Cols1.
 * \ingroup _binary_function
 */
template<class E1, std::size_t Rows1, std::size_t Cols1,
     class E2, std::size_t Cols2>
inline
XprMatrix<
  XprMMProduct<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    // M1(Rows1, Cols1)
    XprMatrix<E2, Cols1, Cols2>, Cols2
  >,
  Rows1, Cols2                    // return Dim
>
prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Cols1, Cols2>& rhs) {
  typedef XprMMProduct<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,
    XprMatrix<E2, Cols1, Cols2>, Cols2
  >                            expr_type;
  return XprMatrix<expr_type, Rows1, Cols2>(expr_type(lhs, rhs));
}


/**
 * \fn trans_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Cols1, Cols2>& rhs)
 * \brief Function for the trans(matrix-matrix-product)
 * Perform on given Matrix M1 and M2:
 * \f[
 * (M_1\,M_2)^T
 * \f]
 * \note The numer of Rows2 has to be equal to Cols1.
 * \ingroup _binary_function
 */
template<class E1, std::size_t Rows1, std::size_t Cols1,
     class E2, std::size_t Cols2>
inline
XprMatrix<
  XprMMProductTransposed<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    // M1(Rows1, Cols1)
    XprMatrix<E2, Cols1, Cols2>, Cols2        // M2(Cols1, Cols2)
  >,
  Cols2, Rows1                    // return Dim
>
trans_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Cols1, Cols2>& rhs) {
  typedef XprMMProductTransposed<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,
    XprMatrix<E2, Cols1, Cols2>, Cols2
  >                            expr_type;
  return XprMatrix<expr_type, Cols2, Rows1>(expr_type(lhs, rhs));
}


/**
 * \fn MtM_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Rows1, Cols2>& rhs)
 * \brief Function for the trans(matrix)-matrix-product.
 *        using formula
 *        \f[
 *        M_1^{T}\,M_2
 *        \f]
 * \note The number of cols of matrix 2 have to be equal to number of rows of
 *       matrix 1, since matrix 1 is trans - the result is a (Cols1 x Cols2)
 *       matrix.
 * \ingroup _binary_function
 */
template<class E1, std::size_t Rows1, std::size_t Cols1,
     class E2, std::size_t Cols2>    // Rows2 = Rows1
inline
XprMatrix<
  XprMtMProduct<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    // M1(Rows1, Cols1)
    XprMatrix<E2, Rows1, Cols2>, Cols2        // M2(Rows1, Cols2)
  >,
  Cols1, Cols2                    // return Dim
>
MtM_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Rows1, Cols2>& rhs) {
  typedef XprMtMProduct<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,
    XprMatrix<E2, Rows1, Cols2>, Cols2
  >                            expr_type;
  return XprMatrix<expr_type, Cols1, Cols2>(expr_type(lhs, rhs));
}


/**
 * \fn MMt_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Rows2, Cols1>& rhs)
 * \brief Function for the matrix-trans(matrix)-product.
 * \ingroup _binary_function
 * \note The cols2 has to be equal to cols1.
 */
template<class E1, std::size_t Rows1, std::size_t Cols1,
     class E2, std::size_t Rows2> // Cols2 = Cols1
inline
XprMatrix<
  XprMMtProduct<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,    // M1(Rows1, Cols1)
    XprMatrix<E2, Rows2, Cols1>, Cols1         // M2(Rows2, Cols1)
  >,
  Rows1, Rows2                    // return Dim
>
MMt_prod(const XprMatrix<E1, Rows1, Cols1>& lhs, const XprMatrix<E2, Rows2, Cols1>& rhs) {
  typedef XprMMtProduct<
    XprMatrix<E1, Rows1, Cols1>, Rows1, Cols1,
    XprMatrix<E2, Rows2, Cols1>, Cols1
  >                            expr_type;
  return XprMatrix<expr_type, Rows1, Rows2>(expr_type(lhs, rhs));
}


/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 * matrix-vector specific prod( ... ) functions
 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/


/**
 * \fn prod(const XprMatrix<E1, Rows, Cols>& lhs, const XprVector<E2, Cols>& rhs)
 * \brief Evaluate the product of XprMatrix and XprVector.
 * \ingroup _binary_function
 */
template<class E1, std::size_t Rows, std::size_t Cols,
     class E2>
inline
XprVector<
  XprMVProduct<
    XprMatrix<E1, Rows, Cols>, Rows, Cols,
    XprVector<E2, Cols>
  >,
  Rows
>
prod(const XprMatrix<E1, Rows, Cols>& lhs, const XprVector<E2, Cols>& rhs) {
  typedef XprMVProduct<
    XprMatrix<E1, Rows, Cols>, Rows, Cols,
    XprVector<E2, Cols>
  >                            expr_type;
  return XprVector<expr_type, Rows>(expr_type(lhs, rhs));
}


/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 * matrix specific functions
 *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/


/**
 * \fn trans(const XprMatrix<E, Rows, Cols>& rhs)
 * \brief Transpose an expression matrix.
 * \ingroup _unary_function
 */
template<class E, std::size_t Rows, std::size_t Cols>
inline
XprMatrix<
  XprMatrixTranspose<
    XprMatrix<E, Rows, Cols>
  >,
  Cols, Rows
>
trans(const XprMatrix<E, Rows, Cols>& rhs) {
  typedef XprMatrixTranspose<
    XprMatrix<E, Rows, Cols>
  >                            expr_type;
  return XprMatrix<expr_type, Cols, Rows>(expr_type(rhs));
}


/*
 * \fn trace(const XprMatrix<E, Sz, Sz>& m)
 * \brief Compute the trace of a square matrix.
 * \ingroup _unary_function
 *
 * Simply compute the trace of the given matrix expression as:
 * \f[
 *  \sum_{k = 0}^{Sz-1} m(k, k)
 * \f]
 */
template<class E, std::size_t Sz>
inline
typename NumericTraits<typename E::value_type>::sum_type
trace(const XprMatrix<E, Sz, Sz>& m) {
  return meta::Matrix<Sz, Sz, 0, 0>::trace(m);
}


/**
 * \fn row(const XprMatrix<E, Rows, Cols>& m, std::size_t no)
 * \brief Returns a row vector of the given matrix.
 * \ingroup _binary_function
 */
template<class E, std::size_t Rows, std::size_t Cols>
inline
XprVector<
  XprMatrixRow<
    XprMatrix<E, Rows, Cols>,
    Rows, Cols
  >,
  Cols
>
row(const XprMatrix<E, Rows, Cols>& m, std::size_t no) {
  typedef XprMatrixRow<
    XprMatrix<E, Rows, Cols>,
    Rows, Cols
  >                            expr_type;

  return XprVector<expr_type, Cols>(expr_type(m, no));
}


/**
 * \fn col(const XprMatrix<E, Rows, Cols>& m, std::size_t no)
 * \brief Returns a column vector of the given matrix.
 * \ingroup _binary_function
 */
template<class E, std::size_t Rows, std::size_t Cols>
inline
XprVector<
  XprMatrixCol<
    XprMatrix<E, Rows, Cols>,
    Rows, Cols
  >,
  Rows
>
col(const XprMatrix<E, Rows, Cols>& m, std::size_t no) {
  typedef XprMatrixCol<
    XprMatrix<E, Rows, Cols>,
    Rows, Cols
  >                            expr_type;

  return XprVector<expr_type, Cols>(expr_type(m, no));
}


/**
 * \fn diag(const XprMatrix<E, Sz, Sz>& m)
 * \brief Returns the diagonal vector of the given square matrix.
 * \ingroup _unary_function
 */
template<class E, std::size_t Sz>
inline
XprVector<
  XprMatrixDiag<
    XprMatrix<E, Sz, Sz>,
    Sz
  >,
  Sz
>
diag(const XprMatrix<E, Sz, Sz>& m) {
  typedef XprMatrixDiag<
    XprMatrix<E, Sz, Sz>,
  Sz>                         expr_type;

  return XprVector<expr_type, Sz>(expr_type(m));
}


} // namespace tvmet

#endif // TVMET_XPR_MATRIX_FUNCTIONS_H

// Local Variables:
// mode:C++
// tab-width:8
// End: