USB device stack with Nucleo F401RE support. NOTE: the default clock config needs to be changed to in order for USB to work.

Fork of USBDevice by Tomas Cerskus

Slightly modified original USBDevice library to support F401RE.

On F401RE the data pins of your USB connector should be attached to PA12 (D+) and PA11(D-). It is also required to connect the +5V USB line to PA9.

F401RE requires 48MHz clock for USB. Therefore in order for this to work you will need to change the default clock settings:

Clock settings for USB

#include "stm32f4xx_hal.h"

RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
    error("RTC error: LSI clock initialization failed."); 
}

NOTE: Changing the clock frequency might affect the behavior of other libraries. I only tested the Serial library.

UPDATE: Clock settings should not to be changed anymore! Looks like the newer mbed library has the required clock enabled.

USBAudio/USBAudio.h

Committer:
tolaipner
Date:
2014-03-30
Revision:
24:4ed3e25c3edc
Parent:
4:eaa07ce86d49

File content as of revision 24:4ed3e25c3edc:

/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

#ifndef USBAudio_H
#define USBAudio_H

/* These headers are included for child class. */
#include "USBEndpoints.h"
#include "USBDescriptor.h"
#include "USBDevice_Types.h"

#include "USBDevice.h"


/**
* USBAudio example
*
* @code
* #include "mbed.h"
* #include "USBAudio.h"
*
* Serial pc(USBTX, USBRX);
*
* // frequency: 48 kHz
* #define FREQ 48000
*
* // 1 channel: mono
* #define NB_CHA 1
*
* // length of an audio packet: each ms, we receive 48 * 16bits ->48 * 2 bytes. as there is one channel, the length will be 48 * 2 * 1
* #define AUDIO_LENGTH_PACKET 48 * 2 * 1
*
* // USBAudio
* USBAudio audio(FREQ, NB_CHA);
*
* int main() {
*    int16_t buf[AUDIO_LENGTH_PACKET/2];
*    
*    while (1) {
*        // read an audio packet
*        audio.read((uint8_t *)buf);
*
*
*        // print packet received
*        pc.printf("recv: ");
*        for(int i = 0; i < AUDIO_LENGTH_PACKET/2; i++) {
*            pc.printf("%d ", buf[i]);
*        }
*        pc.printf("\r\n");
*    }
* }
* @endcode
*/
class USBAudio: public USBDevice {
public:

    /**
    * Constructor
    *
    * @param frequency_in frequency in Hz (default: 48000)
    * @param channel_nb_in channel number (1 or 2) (default: 1)
    * @param frequency_out frequency in Hz (default: 8000)
    * @param channel_nb_out_in channel number (1 or 2) (default: 1)
    * @param vendor_id Your vendor_id
    * @param product_id Your product_id
    * @param product_release Your preoduct_release
    */
    USBAudio(uint32_t frequency_in = 48000, uint8_t channel_nb_in = 1, uint32_t frequency_out = 8000, uint8_t channel_nb_out = 1, uint16_t vendor_id = 0x7bb8, uint16_t product_id = 0x1111, uint16_t product_release = 0x0100);

    /**
    * Get current volume between 0.0 and 1.0
    *
    * @returns volume
    */
    float getVolume();
    
    /**
    * Read an audio packet. During a frame, only a single reading (you can't write and read an audio packet during the same frame)can be done using this method. Warning: Blocking
    *
    * @param buf pointer on a buffer which will be filled with an audio packet
    *
    * @returns true if successfull
    */
    bool read(uint8_t * buf);
    
    /**
    * Try to read an audio packet. During a frame, only a single reading (you can't write and read an audio packet during the same frame)can be done using this method. Warning: Non Blocking
    *
    * @param buf pointer on a buffer which will be filled if an audio packet is available
    *
    * @returns true if successfull
    */
    bool readNB(uint8_t * buf);
    
    /**
    * Write an audio packet. During a frame, only a single writing (you can't write and read an audio packet during the same frame)can be done using this method.
    *
    * @param buf pointer on the audio packet which will be sent
    * @returns true if successful
    */
    bool write(uint8_t * buf);
    
    /**
    * Write and read an audio packet at the same time (on the same frame)
    *
    * @param buf_read pointer on a buffer which will be filled with an audio packet
    * @param buf_write pointer on the audio packet which will be sent
    * @returns true if successful
    */
    bool readWrite(uint8_t * buf_read, uint8_t * buf_write);
    

    /** attach a handler to update the volume
     *
     * @param function Function to attach
     *
     */
    void attach(void(*fptr)(void)) {
        updateVol.attach(fptr);
    }

    /** Attach a nonstatic void/void member function to update the volume
     *
     * @param tptr Object pointer
     * @param mptr Member function pointer
     *
     */
    template<typename T>
    void attach(T *tptr, void(T::*mptr)(void)) {
        updateVol.attach(tptr, mptr);
    }


protected:

    /*
    * Called by USBDevice layer. Set configuration of the device.
    * For instance, you can add all endpoints that you need on this function.
    *
    * @param configuration Number of the configuration
    * @returns true if class handles this request
    */
    virtual bool USBCallback_setConfiguration(uint8_t configuration);

    /*
    * Called by USBDevice on Endpoint0 request. Warning: Called in ISR context
    * This is used to handle extensions to standard requests
    * and class specific requests
    *
    * @returns true if class handles this request
    */
    virtual bool USBCallback_request();

    /*
    * Get string product descriptor
    *
    * @returns pointer to the string product descriptor
    */
    virtual uint8_t * stringIproductDesc();

    /*
    * Get string interface descriptor
    *
    * @returns pointer to the string interface descriptor
    */
    virtual uint8_t * stringIinterfaceDesc();

    /*
    * Get configuration descriptor
    *
    * @returns pointer to the configuration descriptor
    */
    virtual uint8_t * configurationDesc();

    /*
     * Called by USBDevice layer. Set interface/alternate of the device.
     *
     * @param interface Number of the interface to be configured
     * @param alternate Number of the alternate to be configured
     * @returns true if class handles this request
     */
    virtual bool USBCallback_setInterface(uint16_t interface, uint8_t alternate);

    /*
    * Called by USBDevice on Endpoint0 request completion
    * if the 'notify' flag has been set to true. Warning: Called in ISR context
    *
    * In this case it is used to indicate that a HID report has
    * been received from the host on endpoint 0
    *
    * @param buf buffer received on endpoint 0
    * @param length length of this buffer
    */
    virtual void USBCallback_requestCompleted(uint8_t * buf, uint32_t length);

    /*
    * Callback called on each Start of Frame event
    */
    virtual void SOF(int frameNumber);
    
    /*
    * Callback called when a packet is received
    */
    virtual bool EP3_OUT_callback();
    
    /*
    * Callback called when a packet has been sent
    */
    virtual bool EP3_IN_callback();

private:

    // stream available ?
    volatile bool available;
    
    // interrupt OUT has been received
    volatile bool interruptOUT;
    
    // interrupt IN has been received
    volatile bool interruptIN;
    
    // audio packet has been written
    volatile bool writeIN;

    // FREQ
    uint32_t FREQ_OUT;
    uint32_t FREQ_IN;

    // size of the maximum packet for the isochronous endpoint
    uint32_t PACKET_SIZE_ISO_IN;
    uint32_t PACKET_SIZE_ISO_OUT;

    // mono, stereo,...
    uint8_t channel_nb_in;
    uint8_t channel_nb_out;
    
    // channel config: master, left, right
    uint8_t channel_config_in;
    uint8_t channel_config_out;

    // mute state
    uint8_t mute;

    // Volume Current Value
    uint16_t volCur;

    // Volume Minimum Value
    uint16_t volMin;

    // Volume Maximum Value
    uint16_t volMax;

    // Volume Resolution
    uint16_t volRes;

    // Buffer containing one audio packet (to be read)
    volatile uint8_t * buf_stream_in;
    
    // Buffer containing one audio packet (to be written)
    volatile uint8_t * buf_stream_out;
    
    // callback to update volume
    FunctionPointer updateVol;
    
    // boolean showing that the SOF handler has been called. Useful for readNB.
    volatile bool SOF_handler;
    
    volatile float volume;

};

#endif