CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details

Dependents:   K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more

src/Cortex-M4-M3/TransformFunctions/arm_rfft_q15.c

Committer:
simon
Date:
2011-03-10
Revision:
0:1014af42efd9

File content as of revision 0:1014af42efd9:

/* ----------------------------------------------------------------------  
* Copyright (C) 2010 ARM Limited. All rights reserved.  
*  
* $Date:        29. November 2010  
* $Revision: 	V1.0.3  
*  
* Project: 	    CMSIS DSP Library  
* Title:	    arm_rfft_q15.c  
*  
* Description:	RFFT & RIFFT Q15 process function  
*  
*  
* Target Processor: Cortex-M4/Cortex-M3
*  
* Version 1.0.3 2010/11/29 
*    Re-organized the CMSIS folders and updated documentation.  
*   
* Version 1.0.2 2010/11/11  
*    Documentation updated.   
*  
* Version 1.0.1 2010/10/05   
*    Production release and review comments incorporated.  
*  
* Version 1.0.0 2010/09/20   
*    Production release and review comments incorporated  
*  
* Version 0.0.7  2010/06/10   
*    Misra-C changes done  
* -------------------------------------------------------------------- */ 
 
 
#include "arm_math.h" 
 
/*--------------------------------------------------------------------  
*		Internal functions prototypes  
--------------------------------------------------------------------*/ 
 
void arm_split_rfft_q15( 
  q15_t * pSrc, 
  uint32_t fftLen, 
  q15_t * pATable, 
  q15_t * pBTable, 
  q15_t * pDst, 
  uint32_t modifier); 
 
void arm_split_rifft_q15( 
  q15_t * pSrc, 
  uint32_t fftLen, 
  q15_t * pATable, 
  q15_t * pBTable, 
  q15_t * pDst, 
  uint32_t modifier); 
 
/**  
 * @addtogroup RFFT_RIFFT  
 * @{  
 */ 
 
/**  
 * @brief Processing function for the Q15 RFFT/RIFFT. 
 * @param[in]  *S    points to an instance of the Q15 RFFT/RIFFT structure. 
 * @param[in]  *pSrc points to the input buffer. 
 * @param[out] *pDst points to the output buffer. 
 * @return none. 
 *  
 * \par Input an output formats: 
 * \par  
 * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.  
 * Hence the output format is different for different RFFT sizes.  
 * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT: 
 * \par  
 * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"  
 * \par  
 * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"  
 */ 
 
void arm_rfft_q15( 
  const arm_rfft_instance_q15 * S, 
  q15_t * pSrc, 
  q15_t * pDst) 
{ 
  const arm_cfft_radix4_instance_q15 *S_CFFT = S->pCfft; 
 
  /* Calculation of RIFFT of input */ 
  if(S->ifftFlagR == 1u) 
  { 
    /*  Real IFFT core process */ 
    arm_split_rifft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal, 
                        S->pTwiddleBReal, pDst, S->twidCoefRModifier); 
 
    /* Complex readix-4 IFFT process */ 
    arm_radix4_butterfly_inverse_q15(pDst, S_CFFT->fftLen, 
                                     S_CFFT->pTwiddle, 
                                     S_CFFT->twidCoefModifier); 
 
    /* Bit reversal process */ 
    if(S->bitReverseFlagR == 1u) 
    { 
      arm_bitreversal_q15(pDst, S_CFFT->fftLen, 
                          S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); 
    } 
  } 
  else 
  { 
    /* Calculation of RFFT of input */ 
 
    /* Complex readix-4 FFT process */ 
    arm_radix4_butterfly_q15(pSrc, S_CFFT->fftLen, 
                             S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); 
 
    /* Bit reversal process */ 
    if(S->bitReverseFlagR == 1u) 
    { 
      arm_bitreversal_q15(pSrc, S_CFFT->fftLen, 
                          S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); 
    } 
 
    arm_split_rfft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal, 
                       S->pTwiddleBReal, pDst, S->twidCoefRModifier); 
  } 
 
} 
 
  /**  
   * @} end of RFFT_RIFFT group  
   */ 
 
/**  
 * @brief  Core Real FFT process  
 * @param  *pSrc 				points to the input buffer. 
 * @param  fftLen  				length of FFT. 
 * @param  *pATable 			points to the A twiddle Coef buffer.  
 * @param  *pBTable 			points to the B twiddle Coef buffer. 
 * @param  *pDst 				points to the output buffer. 
 * @param  modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. 
 * @return none.  
 * The function implements a Real FFT  
 */ 
 
void arm_split_rfft_q15( 
  q15_t * pSrc, 
  uint32_t fftLen, 
  q15_t * pATable, 
  q15_t * pBTable, 
  q15_t * pDst, 
  uint32_t modifier) 
{ 
  uint32_t i;                                    /* Loop Counter */ 
  q31_t outR, outI;                              /* Temporary variables for output */ 
  q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */ 
  q15_t *pSrc1, *pSrc2; 
 
 
  pSrc[2u * fftLen] = pSrc[0]; 
  pSrc[(2u * fftLen) + 1u] = pSrc[1]; 
 
  pCoefA = &pATable[modifier * 2u]; 
  pCoefB = &pBTable[modifier * 2u]; 
 
  pSrc1 = &pSrc[2]; 
  pSrc2 = &pSrc[(2u * fftLen) - 2u]; 
 
  i = 1u; 
 
  while(i < fftLen) 
  { 
    /*  
       outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]  
       + pSrc[2 * n - 2 * i] * pBTable[2 * i] +  
       pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);  
     */ 
 
    /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +  
       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -  
       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ 
 
    /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */ 
    outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)); 
 
    /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +  
       pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */ 
    outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 15u; 
 
    /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -  
       pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ 
    outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB)); 
 
    /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */ 
    outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI); 
 
    /* write output */ 
    pDst[2u * i] = (q15_t) outR; 
    pDst[(2u * i) + 1u] = outI >> 15u; 
 
    /* write complex conjugate output */ 
    pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR; 
    pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 15u); 
 
    /* update coefficient pointer */ 
    pCoefB = pCoefB + (2u * modifier); 
    pCoefA = pCoefA + (2u * modifier); 
 
    i++; 
 
  } 
 
  pDst[2u * fftLen] = pSrc[0] - pSrc[1]; 
  pDst[(2u * fftLen) + 1u] = 0; 
 
  pDst[0] = pSrc[0] + pSrc[1]; 
  pDst[1] = 0; 
 
} 
 
 
/**  
 * @brief  Core Real IFFT process  
 * @param[in]   *pSrc 				points to the input buffer.  
 * @param[in]   fftLen  		    length of FFT. 
 * @param[in]   *pATable 			points to the twiddle Coef A buffer. 
 * @param[in]   *pBTable 			points to the twiddle Coef B buffer.  
 * @param[out]  *pDst 				points to the output buffer. 
 * @param[in]   modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. 
 * @return none.  
 * The function implements a Real IFFT  
 */ 
 
void arm_split_rifft_q15( 
  q15_t * pSrc, 
  uint32_t fftLen, 
  q15_t * pATable, 
  q15_t * pBTable, 
  q15_t * pDst, 
  uint32_t modifier) 
{ 
  uint32_t i;                                    /* Loop Counter */ 
  q31_t outR, outI;                              /* Temporary variables for output */ 
  q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */ 
  q15_t *pSrc1, *pSrc2; 
  q15_t *pDst1 = &pDst[0]; 
 
  pCoefA = &pATable[0]; 
  pCoefB = &pBTable[0]; 
 
  pSrc1 = &pSrc[0]; 
  pSrc2 = &pSrc[2u * fftLen]; 
 
  i = fftLen; 
 
  while(i > 0u) 
  { 
 
    /*  
       outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +  
       pIn[2 * n - 2 * i] * pBTable[2 * i] -  
       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);  
 
       outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -  
       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -  
       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);  
 
     */ 
 
    /* pIn[2 * n - 2 * i] * pBTable[2 * i] -  
       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */ 
    outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)); 
 
    /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +  
       pIn[2 * n - 2 * i] * pBTable[2 * i] */ 
    outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 15u; 
 
    /*  
       -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +  
       pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ 
    outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB)); 
 
    /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */ 
    outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI); 
 
    /* write output */ 
    *__SIMD32(pDst1)++ = 
      (q31_t) ((outI << 1u) & 0xFFFF0000) | (outR & 0x0000FFFF); 
 
    /* update coefficient pointer */ 
    pCoefB = pCoefB + (2u * modifier); 
    pCoefA = pCoefA + (2u * modifier); 
 
    i--; 
 
  } 
 
}