CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details

Dependents:   K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more

Revision:
0:1014af42efd9
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Cortex-M4-M3/FilteringFunctions/arm_lms_q15.c	Thu Mar 10 15:07:50 2011 +0000
@@ -0,0 +1,226 @@
+/* ----------------------------------------------------------------------  
+* Copyright (C) 2010 ARM Limited. All rights reserved.  
+*  
+* $Date:        29. November 2010  
+* $Revision: 	V1.0.3  
+*  
+* Project: 	    CMSIS DSP Library  
+* Title:	    arm_lms_q15.c  
+*  
+* Description:	Processing function for the Q15 LMS filter.  
+*  
+* Target Processor: Cortex-M4/Cortex-M3
+*  
+* Version 1.0.3 2010/11/29 
+*    Re-organized the CMSIS folders and updated documentation.  
+*   
+* Version 1.0.2 2010/11/11  
+*    Documentation updated.   
+*  
+* Version 1.0.1 2010/10/05   
+*    Production release and review comments incorporated.  
+*  
+* Version 1.0.0 2010/09/20   
+*    Production release and review comments incorporated  
+*  
+* Version 0.0.7  2010/06/10   
+*    Misra-C changes done  
+* -------------------------------------------------------------------- */ 
+ 
+#include "arm_math.h" 
+/**  
+ * @ingroup groupFilters  
+ */ 
+ 
+/**  
+ * @addtogroup LMS  
+ * @{  
+ */ 
+ 
+ /**  
+ * @brief Processing function for Q15 LMS filter.  
+ * @param[in] *S points to an instance of the Q15 LMS filter structure.  
+ * @param[in] *pSrc points to the block of input data.  
+ * @param[in] *pRef points to the block of reference data.  
+ * @param[out] *pOut points to the block of output data.  
+ * @param[out] *pErr points to the block of error data.  
+ * @param[in] blockSize number of samples to process.  
+ * @return none.  
+ *  
+ * \par Scaling and Overflow Behavior:  
+ * The function is implemented using a 64-bit internal accumulator.  
+ * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.  
+ * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.  
+ * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.  
+ * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.  
+ * Lastly, the accumulator is saturated to yield a result in 1.15 format.  
+ * 
+ * \par 
+ * 	In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted. 
+ *  
+ */ 
+ 
+void arm_lms_q15( 
+  const arm_lms_instance_q15 * S, 
+  q15_t * pSrc, 
+  q15_t * pRef, 
+  q15_t * pOut, 
+  q15_t * pErr, 
+  uint32_t blockSize) 
+{ 
+  q15_t *pState = S->pState;                     /* State pointer */ 
+  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */ 
+  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */ 
+  q15_t *pStateCurnt;                            /* Points to the current sample of the state */ 
+  q15_t mu = S->mu;                              /* Adaptive factor */ 
+  q15_t *px;                                     /* Temporary pointer for state */ 
+  q15_t *pb;                                     /* Temporary pointer for coefficient buffer */ 
+  uint32_t tapCnt, blkCnt;                       /* Loop counters */ 
+  q63_t acc;                                     /* Accumulator */ 
+  q15_t e = 0;                                   /* error of data sample */ 
+  q15_t alpha;                                   /* Intermediate constant for taps update */ 
+  uint32_t shift = S->postShift + 1u;            /* Shift to be applied to the output */ 
+  q31_t coef;                                    /* Teporary variable for coefficient */ 
+ 
+  /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */ 
+  /* pStateCurnt points to the location where the new input data should be written */ 
+  pStateCurnt = &(S->pState[(numTaps - 1u)]); 
+ 
+  /* Initializing blkCnt with blockSize */ 
+  blkCnt = blockSize; 
+ 
+  while(blkCnt > 0u) 
+  { 
+    /* Copy the new input sample into the state buffer */ 
+    *pStateCurnt++ = *pSrc++; 
+ 
+    /* Initialize state pointer */ 
+    px = pState; 
+ 
+    /* Initialize coefficient pointer */ 
+    pb = pCoeffs; 
+ 
+    /* Set the accumulator to zero */ 
+    acc = 0; 
+ 
+    /* Loop unrolling.  Process 4 taps at a time. */ 
+    tapCnt = numTaps >> 2u; 
+ 
+    while(tapCnt > 0u) 
+    { 
+      /* acc +=  b[N] * x[n-N] + b[N-1] * x[n-N-1] */ 
+      /* Perform the multiply-accumulate */ 
+      acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc); 
+      acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc); 
+ 
+      /* Decrement the loop counter */ 
+      tapCnt--; 
+    } 
+ 
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 
+    tapCnt = numTaps % 0x4u; 
+ 
+    while(tapCnt > 0u) 
+    { 
+      /* Perform the multiply-accumulate */ 
+      acc += (q63_t) (((q31_t) (*px++) * (*pb++))); 
+ 
+      /* Decrement the loop counter */ 
+      tapCnt--; 
+    } 
+ 
+    /* Converting the result to 1.15 format and saturate the output */ 
+    acc = __SSAT((acc >> (16 - shift)), 16); 
+ 
+    /* Store the result from accumulator into the destination buffer. */ 
+    *pOut++ = (q15_t) acc; 
+ 
+    /* Compute and store error */ 
+    e = *pRef++ - (q15_t) acc; 
+ 
+    *pErr++ = (q15_t) e; 
+ 
+    /* Compute alpha i.e. intermediate constant for taps update */ 
+    alpha = (q15_t) (((q31_t) e * (mu)) >> 15); 
+ 
+    /* Initialize state pointer */ 
+    /* Advance state pointer by 1 for the next sample */ 
+    px = pState++; 
+ 
+    /* Initialize coefficient pointer */ 
+    pb = pCoeffs; 
+ 
+    /* Loop unrolling.  Process 4 taps at a time. */ 
+    tapCnt = numTaps >> 2u; 
+ 
+    /* Update filter coefficients */ 
+    while(tapCnt > 0u) 
+    { 
+      coef = (q31_t) *pb + (((q31_t) alpha * (*px++)) >> 15); 
+      *pb++ = (q15_t) __SSAT((coef), 16); 
+      coef = (q31_t) *pb + (((q31_t) alpha * (*px++)) >> 15); 
+      *pb++ = (q15_t) __SSAT((coef), 16); 
+      coef = (q31_t) *pb + (((q31_t) alpha * (*px++)) >> 15); 
+      *pb++ = (q15_t) __SSAT((coef), 16); 
+      coef = (q31_t) *pb + (((q31_t) alpha * (*px++)) >> 15); 
+      *pb++ = (q15_t) __SSAT((coef), 16); 
+ 
+      /* Decrement the loop counter */ 
+      tapCnt--; 
+    } 
+ 
+    /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 
+    tapCnt = numTaps % 0x4u; 
+ 
+    while(tapCnt > 0u) 
+    { 
+      /* Perform the multiply-accumulate */ 
+      coef = (q31_t) *pb + (((q31_t) alpha * (*px++)) >> 15); 
+      *pb++ = (q15_t) __SSAT((coef), 16); 
+ 
+      /* Decrement the loop counter */ 
+      tapCnt--; 
+    } 
+ 
+    /* Decrement the loop counter */ 
+    blkCnt--; 
+ 
+  } 
+ 
+  /* Processing is complete. Now copy the last numTaps - 1 samples to the  
+     satrt of the state buffer. This prepares the state buffer for the  
+     next function call. */ 
+ 
+  /* Points to the start of the pState buffer */ 
+  pStateCurnt = S->pState; 
+ 
+  /* Calculation of count for copying integer writes */ 
+  tapCnt = (numTaps - 1u) >> 2; 
+ 
+  while(tapCnt > 0u) 
+  { 
+ 
+    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; 
+    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; 
+ 
+    tapCnt--; 
+ 
+  } 
+ 
+  /* Calculation of count for remaining q15_t data */ 
+  tapCnt = (numTaps - 1u) % 0x4u; 
+ 
+  /* copy data */ 
+  while(tapCnt > 0u) 
+  { 
+    *pStateCurnt++ = *pState++; 
+ 
+    /* Decrement the loop counter */ 
+    tapCnt--; 
+  } 
+ 
+} 
+ 
+/**  
+   * @} end of LMS group  
+   */