CMSIS DSP Library from CMSIS 2.0. See http://www.onarm.com/cmsis/ for full details

Dependents:   K22F_DSP_Matrix_least_square BNO055-ELEC3810 1BNO055 ECE4180Project--Slave2 ... more

Committer:
simon
Date:
Thu Mar 10 15:07:50 2011 +0000
Revision:
0:1014af42efd9

        

Who changed what in which revision?

UserRevisionLine numberNew contents of line
simon 0:1014af42efd9 1 /* ----------------------------------------------------------------------
simon 0:1014af42efd9 2 * Copyright (C) 2010 ARM Limited. All rights reserved.
simon 0:1014af42efd9 3 *
simon 0:1014af42efd9 4 * $Date: 29. November 2010
simon 0:1014af42efd9 5 * $Revision: V1.0.3
simon 0:1014af42efd9 6 *
simon 0:1014af42efd9 7 * Project: CMSIS DSP Library
simon 0:1014af42efd9 8 * Title: arm_dct4_q31.c
simon 0:1014af42efd9 9 *
simon 0:1014af42efd9 10 * Description: Processing function of DCT4 & IDCT4 Q31.
simon 0:1014af42efd9 11 *
simon 0:1014af42efd9 12 * Target Processor: Cortex-M4/Cortex-M3
simon 0:1014af42efd9 13 *
simon 0:1014af42efd9 14 * Version 1.0.3 2010/11/29
simon 0:1014af42efd9 15 * Re-organized the CMSIS folders and updated documentation.
simon 0:1014af42efd9 16 *
simon 0:1014af42efd9 17 * Version 1.0.2 2010/11/11
simon 0:1014af42efd9 18 * Documentation updated.
simon 0:1014af42efd9 19 *
simon 0:1014af42efd9 20 * Version 1.0.1 2010/10/05
simon 0:1014af42efd9 21 * Production release and review comments incorporated.
simon 0:1014af42efd9 22 *
simon 0:1014af42efd9 23 * Version 1.0.0 2010/09/20
simon 0:1014af42efd9 24 * Production release and review comments incorporated.
simon 0:1014af42efd9 25 * -------------------------------------------------------------------- */
simon 0:1014af42efd9 26
simon 0:1014af42efd9 27 #include "arm_math.h"
simon 0:1014af42efd9 28
simon 0:1014af42efd9 29 /**
simon 0:1014af42efd9 30 * @addtogroup DCT4_IDCT4
simon 0:1014af42efd9 31 * @{
simon 0:1014af42efd9 32 */
simon 0:1014af42efd9 33
simon 0:1014af42efd9 34 /**
simon 0:1014af42efd9 35 * @brief Processing function for the Q31 DCT4/IDCT4.
simon 0:1014af42efd9 36 * @param[in] *S points to an instance of the Q31 DCT4 structure.
simon 0:1014af42efd9 37 * @param[in] *pState points to state buffer.
simon 0:1014af42efd9 38 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
simon 0:1014af42efd9 39 * @return none.
simon 0:1014af42efd9 40 * \par Input an output formats:
simon 0:1014af42efd9 41 * Input samples need to be downscaled by 1 bit to avoid saturations in the Q31 DCT process,
simon 0:1014af42efd9 42 * as the conversion from DCT2 to DCT4 involves one subtraction.
simon 0:1014af42efd9 43 * Internally inputs are downscaled in the RFFT process function to avoid overflows.
simon 0:1014af42efd9 44 * Number of bits downscaled, depends on the size of the transform.
simon 0:1014af42efd9 45 * The input and output formats for different DCT sizes and number of bits to upscale are mentioned in the table below:
simon 0:1014af42efd9 46 *
simon 0:1014af42efd9 47 * \image html dct4FormatsQ31Table.gif
simon 0:1014af42efd9 48 */
simon 0:1014af42efd9 49
simon 0:1014af42efd9 50 void arm_dct4_q31(
simon 0:1014af42efd9 51 const arm_dct4_instance_q31 * S,
simon 0:1014af42efd9 52 q31_t * pState,
simon 0:1014af42efd9 53 q31_t * pInlineBuffer)
simon 0:1014af42efd9 54 {
simon 0:1014af42efd9 55 uint16_t i; /* Loop counter */
simon 0:1014af42efd9 56 q31_t *weights = S->pTwiddle; /* Pointer to the Weights table */
simon 0:1014af42efd9 57 q31_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */
simon 0:1014af42efd9 58 q31_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */
simon 0:1014af42efd9 59 q31_t in; /* Temporary variable */
simon 0:1014af42efd9 60
simon 0:1014af42efd9 61
simon 0:1014af42efd9 62 /* DCT4 computation involves DCT2 (which is calculated using RFFT)
simon 0:1014af42efd9 63 * along with some pre-processing and post-processing.
simon 0:1014af42efd9 64 * Computational procedure is explained as follows:
simon 0:1014af42efd9 65 * (a) Pre-processing involves multiplying input with cos factor,
simon 0:1014af42efd9 66 * r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n))
simon 0:1014af42efd9 67 * where,
simon 0:1014af42efd9 68 * r(n) -- output of preprocessing
simon 0:1014af42efd9 69 * u(n) -- input to preprocessing(actual Source buffer)
simon 0:1014af42efd9 70 * (b) Calculation of DCT2 using FFT is divided into three steps:
simon 0:1014af42efd9 71 * Step1: Re-ordering of even and odd elements of input.
simon 0:1014af42efd9 72 * Step2: Calculating FFT of the re-ordered input.
simon 0:1014af42efd9 73 * Step3: Taking the real part of the product of FFT output and weights.
simon 0:1014af42efd9 74 * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation:
simon 0:1014af42efd9 75 * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
simon 0:1014af42efd9 76 * where,
simon 0:1014af42efd9 77 * Y4 -- DCT4 output, Y2 -- DCT2 output
simon 0:1014af42efd9 78 * (d) Multiplying the output with the normalizing factor sqrt(2/N).
simon 0:1014af42efd9 79 */
simon 0:1014af42efd9 80
simon 0:1014af42efd9 81 /*-------- Pre-processing ------------*/
simon 0:1014af42efd9 82 /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */
simon 0:1014af42efd9 83 arm_mult_q31(pInlineBuffer, cosFact, pInlineBuffer, S->N);
simon 0:1014af42efd9 84 arm_shift_q31(pInlineBuffer, 1, pInlineBuffer, S->N);
simon 0:1014af42efd9 85
simon 0:1014af42efd9 86 /* ----------------------------------------------------------------
simon 0:1014af42efd9 87 * Step1: Re-ordering of even and odd elements as
simon 0:1014af42efd9 88 * pState[i] = pInlineBuffer[2*i] and
simon 0:1014af42efd9 89 * pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2
simon 0:1014af42efd9 90 ---------------------------------------------------------------------*/
simon 0:1014af42efd9 91
simon 0:1014af42efd9 92 /* pS1 initialized to pState */
simon 0:1014af42efd9 93 pS1 = pState;
simon 0:1014af42efd9 94
simon 0:1014af42efd9 95 /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */
simon 0:1014af42efd9 96 pS2 = pState + (S->N - 1u);
simon 0:1014af42efd9 97
simon 0:1014af42efd9 98 /* pbuff initialized to input buffer */
simon 0:1014af42efd9 99 pbuff = pInlineBuffer;
simon 0:1014af42efd9 100
simon 0:1014af42efd9 101 /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */
simon 0:1014af42efd9 102 i = S->Nby2 >> 2u;
simon 0:1014af42efd9 103
simon 0:1014af42efd9 104 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
simon 0:1014af42efd9 105 ** a second loop below computes the remaining 1 to 3 samples. */
simon 0:1014af42efd9 106 do
simon 0:1014af42efd9 107 {
simon 0:1014af42efd9 108 /* Re-ordering of even and odd elements */
simon 0:1014af42efd9 109 /* pState[i] = pInlineBuffer[2*i] */
simon 0:1014af42efd9 110 *pS1++ = *pbuff++;
simon 0:1014af42efd9 111 /* pState[N-i-1] = pInlineBuffer[2*i+1] */
simon 0:1014af42efd9 112 *pS2-- = *pbuff++;
simon 0:1014af42efd9 113
simon 0:1014af42efd9 114 *pS1++ = *pbuff++;
simon 0:1014af42efd9 115 *pS2-- = *pbuff++;
simon 0:1014af42efd9 116
simon 0:1014af42efd9 117 *pS1++ = *pbuff++;
simon 0:1014af42efd9 118 *pS2-- = *pbuff++;
simon 0:1014af42efd9 119
simon 0:1014af42efd9 120 *pS1++ = *pbuff++;
simon 0:1014af42efd9 121 *pS2-- = *pbuff++;
simon 0:1014af42efd9 122
simon 0:1014af42efd9 123 /* Decrement the loop counter */
simon 0:1014af42efd9 124 i--;
simon 0:1014af42efd9 125 } while(i > 0u);
simon 0:1014af42efd9 126
simon 0:1014af42efd9 127 /* pbuff initialized to input buffer */
simon 0:1014af42efd9 128 pbuff = pInlineBuffer;
simon 0:1014af42efd9 129
simon 0:1014af42efd9 130 /* pS1 initialized to pState */
simon 0:1014af42efd9 131 pS1 = pState;
simon 0:1014af42efd9 132
simon 0:1014af42efd9 133 /* Initializing the loop counter to N/4 instead of N for loop unrolling */
simon 0:1014af42efd9 134 i = S->N >> 2u;
simon 0:1014af42efd9 135
simon 0:1014af42efd9 136 /* Processing with loop unrolling 4 times as N is always multiple of 4.
simon 0:1014af42efd9 137 * Compute 4 outputs at a time */
simon 0:1014af42efd9 138 do
simon 0:1014af42efd9 139 {
simon 0:1014af42efd9 140 /* Writing the re-ordered output back to inplace input buffer */
simon 0:1014af42efd9 141 *pbuff++ = *pS1++;
simon 0:1014af42efd9 142 *pbuff++ = *pS1++;
simon 0:1014af42efd9 143 *pbuff++ = *pS1++;
simon 0:1014af42efd9 144 *pbuff++ = *pS1++;
simon 0:1014af42efd9 145
simon 0:1014af42efd9 146 /* Decrement the loop counter */
simon 0:1014af42efd9 147 i--;
simon 0:1014af42efd9 148 } while(i > 0u);
simon 0:1014af42efd9 149
simon 0:1014af42efd9 150
simon 0:1014af42efd9 151 /* ---------------------------------------------------------
simon 0:1014af42efd9 152 * Step2: Calculate RFFT for N-point input
simon 0:1014af42efd9 153 * ---------------------------------------------------------- */
simon 0:1014af42efd9 154 /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
simon 0:1014af42efd9 155 arm_rfft_q31(S->pRfft, pInlineBuffer, pState);
simon 0:1014af42efd9 156
simon 0:1014af42efd9 157 /*----------------------------------------------------------------------
simon 0:1014af42efd9 158 * Step3: Multiply the FFT output with the weights.
simon 0:1014af42efd9 159 *----------------------------------------------------------------------*/
simon 0:1014af42efd9 160 arm_cmplx_mult_cmplx_q31(pState, weights, pState, S->N);
simon 0:1014af42efd9 161
simon 0:1014af42efd9 162 /* The output of complex multiplication is in 3.29 format.
simon 0:1014af42efd9 163 * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.31 format by shifting left by 2 bits. */
simon 0:1014af42efd9 164 arm_shift_q31(pState, 2, pState, S->N * 2);
simon 0:1014af42efd9 165
simon 0:1014af42efd9 166 /* ----------- Post-processing ---------- */
simon 0:1014af42efd9 167 /* DCT-IV can be obtained from DCT-II by the equation,
simon 0:1014af42efd9 168 * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
simon 0:1014af42efd9 169 * Hence, Y4(0) = Y2(0)/2 */
simon 0:1014af42efd9 170 /* Getting only real part from the output and Converting to DCT-IV */
simon 0:1014af42efd9 171
simon 0:1014af42efd9 172 /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */
simon 0:1014af42efd9 173 i = (S->N - 1u) >> 2u;
simon 0:1014af42efd9 174
simon 0:1014af42efd9 175 /* pbuff initialized to input buffer. */
simon 0:1014af42efd9 176 pbuff = pInlineBuffer;
simon 0:1014af42efd9 177
simon 0:1014af42efd9 178 /* pS1 initialized to pState */
simon 0:1014af42efd9 179 pS1 = pState;
simon 0:1014af42efd9 180
simon 0:1014af42efd9 181 /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
simon 0:1014af42efd9 182 in = *pS1++ >> 1u;
simon 0:1014af42efd9 183 /* input buffer acts as inplace, so output values are stored in the input itself. */
simon 0:1014af42efd9 184 *pbuff++ = in;
simon 0:1014af42efd9 185
simon 0:1014af42efd9 186 /* pState pointer is incremented twice as the real values are located alternatively in the array */
simon 0:1014af42efd9 187 pS1++;
simon 0:1014af42efd9 188
simon 0:1014af42efd9 189 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
simon 0:1014af42efd9 190 ** a second loop below computes the remaining 1 to 3 samples. */
simon 0:1014af42efd9 191 do
simon 0:1014af42efd9 192 {
simon 0:1014af42efd9 193 /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
simon 0:1014af42efd9 194 /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
simon 0:1014af42efd9 195 in = *pS1++ - in;
simon 0:1014af42efd9 196 *pbuff++ = in;
simon 0:1014af42efd9 197 /* points to the next real value */
simon 0:1014af42efd9 198 pS1++;
simon 0:1014af42efd9 199
simon 0:1014af42efd9 200 in = *pS1++ - in;
simon 0:1014af42efd9 201 *pbuff++ = in;
simon 0:1014af42efd9 202 pS1++;
simon 0:1014af42efd9 203
simon 0:1014af42efd9 204 in = *pS1++ - in;
simon 0:1014af42efd9 205 *pbuff++ = in;
simon 0:1014af42efd9 206 pS1++;
simon 0:1014af42efd9 207
simon 0:1014af42efd9 208 in = *pS1++ - in;
simon 0:1014af42efd9 209 *pbuff++ = in;
simon 0:1014af42efd9 210 pS1++;
simon 0:1014af42efd9 211
simon 0:1014af42efd9 212 /* Decrement the loop counter */
simon 0:1014af42efd9 213 i--;
simon 0:1014af42efd9 214 } while(i > 0u);
simon 0:1014af42efd9 215
simon 0:1014af42efd9 216 /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
simon 0:1014af42efd9 217 ** No loop unrolling is used. */
simon 0:1014af42efd9 218 i = (S->N - 1u) % 0x4u;
simon 0:1014af42efd9 219
simon 0:1014af42efd9 220 while(i > 0u)
simon 0:1014af42efd9 221 {
simon 0:1014af42efd9 222 /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
simon 0:1014af42efd9 223 /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
simon 0:1014af42efd9 224 in = *pS1++ - in;
simon 0:1014af42efd9 225 *pbuff++ = in;
simon 0:1014af42efd9 226 /* points to the next real value */
simon 0:1014af42efd9 227 pS1++;
simon 0:1014af42efd9 228
simon 0:1014af42efd9 229 /* Decrement the loop counter */
simon 0:1014af42efd9 230 i--;
simon 0:1014af42efd9 231 }
simon 0:1014af42efd9 232
simon 0:1014af42efd9 233
simon 0:1014af42efd9 234 /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
simon 0:1014af42efd9 235
simon 0:1014af42efd9 236 /* Initializing the loop counter to N/4 instead of N for loop unrolling */
simon 0:1014af42efd9 237 i = S->N >> 2u;
simon 0:1014af42efd9 238
simon 0:1014af42efd9 239 /* pbuff initialized to the pInlineBuffer(now contains the output values) */
simon 0:1014af42efd9 240 pbuff = pInlineBuffer;
simon 0:1014af42efd9 241
simon 0:1014af42efd9 242 /* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */
simon 0:1014af42efd9 243 do
simon 0:1014af42efd9 244 {
simon 0:1014af42efd9 245 /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
simon 0:1014af42efd9 246 in = *pbuff;
simon 0:1014af42efd9 247 *pbuff++ = ((q31_t) (((q63_t) in * S->normalize) >> 31));
simon 0:1014af42efd9 248
simon 0:1014af42efd9 249 in = *pbuff;
simon 0:1014af42efd9 250 *pbuff++ = ((q31_t) (((q63_t) in * S->normalize) >> 31));
simon 0:1014af42efd9 251
simon 0:1014af42efd9 252 in = *pbuff;
simon 0:1014af42efd9 253 *pbuff++ = ((q31_t) (((q63_t) in * S->normalize) >> 31));
simon 0:1014af42efd9 254
simon 0:1014af42efd9 255 in = *pbuff;
simon 0:1014af42efd9 256 *pbuff++ = ((q31_t) (((q63_t) in * S->normalize) >> 31));
simon 0:1014af42efd9 257
simon 0:1014af42efd9 258 /* Decrement the loop counter */
simon 0:1014af42efd9 259 i--;
simon 0:1014af42efd9 260 } while(i > 0u);
simon 0:1014af42efd9 261
simon 0:1014af42efd9 262 }
simon 0:1014af42efd9 263
simon 0:1014af42efd9 264 /**
simon 0:1014af42efd9 265 * @} end of DCT4_IDCT4 group
simon 0:1014af42efd9 266 */