Simple PID example for LabVIEW

Dependencies:   mbed

Committer:
simon
Date:
Tue Aug 03 15:32:30 2010 +0000
Revision:
1:ddfe18427154
Parent:
0:e3b759ab4b5c

        

Who changed what in which revision?

UserRevisionLine numberNew contents of line
simon 0:e3b759ab4b5c 1 //****************************************************************************/
simon 0:e3b759ab4b5c 2 //@section LICENSE
simon 0:e3b759ab4b5c 3 //
simon 0:e3b759ab4b5c 4 //Copyright (c) 2010 ARM Limited
simon 0:e3b759ab4b5c 5 //
simon 0:e3b759ab4b5c 6 //Permission is hereby granted, free of charge, to any person obtaining a copy
simon 0:e3b759ab4b5c 7 //of this software and associated documentation files (the "Software"), to deal
simon 0:e3b759ab4b5c 8 //in the Software without restriction, including without limitation the rights
simon 0:e3b759ab4b5c 9 //to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
simon 0:e3b759ab4b5c 10 //copies of the Software, and to permit persons to whom the Software is
simon 0:e3b759ab4b5c 11 //furnished to do so, subject to the following conditions:
simon 0:e3b759ab4b5c 12 //
simon 0:e3b759ab4b5c 13 //The above copyright notice and this permission notice shall be included in
simon 0:e3b759ab4b5c 14 //all copies or substantial portions of the Software.
simon 0:e3b759ab4b5c 15 //
simon 0:e3b759ab4b5c 16 //THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
simon 0:e3b759ab4b5c 17 //IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
simon 0:e3b759ab4b5c 18 //FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
simon 0:e3b759ab4b5c 19 //AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
simon 0:e3b759ab4b5c 20 //LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
simon 0:e3b759ab4b5c 21 //OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
simon 0:e3b759ab4b5c 22 //THE SOFTWARE.
simon 0:e3b759ab4b5c 23 //****************************************************************************/
simon 0:e3b759ab4b5c 24 //@section DESCRIPTION
simon 0:e3b759ab4b5c 25 //
simon 0:e3b759ab4b5c 26 // Quadrature Encoder Interface.
simon 0:e3b759ab4b5c 27 //
simon 0:e3b759ab4b5c 28 // A quadrature encoder consists of two code tracks on a disk which are 90
simon 0:e3b759ab4b5c 29 // degrees out of phase. It can be used to determine how far a wheel has
simon 0:e3b759ab4b5c 30 // rotated, relative to a known starting position.
simon 0:e3b759ab4b5c 31 //
simon 0:e3b759ab4b5c 32 // Only one code track changes at a time leading to a more robust system than
simon 0:e3b759ab4b5c 33 // a single track, because any jitter around any edge won't cause a state
simon 0:e3b759ab4b5c 34 // change as the other track will remain constant.
simon 0:e3b759ab4b5c 35 //
simon 0:e3b759ab4b5c 36 // Encoders can be a homebrew affair, consisting of infrared emitters/receivers
simon 0:e3b759ab4b5c 37 // and paper code tracks consisting of alternating black and white sections;
simon 0:e3b759ab4b5c 38 // alternatively, complete disk and PCB emitter/receiver encoder systems can
simon 0:e3b759ab4b5c 39 // be bought, but the interface, regardless of implementation is the same.
simon 0:e3b759ab4b5c 40 //
simon 0:e3b759ab4b5c 41 // +-----+ +-----+ +-----+
simon 0:e3b759ab4b5c 42 // Channel A | ^ | | | | |
simon 0:e3b759ab4b5c 43 // ---+ ^ +-----+ +-----+ +-----
simon 0:e3b759ab4b5c 44 // ^ ^
simon 0:e3b759ab4b5c 45 // ^ +-----+ +-----+ +-----+
simon 0:e3b759ab4b5c 46 // Channel B ^ | | | | | |
simon 0:e3b759ab4b5c 47 // ------+ +-----+ +-----+ +-----
simon 0:e3b759ab4b5c 48 // ^ ^
simon 0:e3b759ab4b5c 49 // ^ ^
simon 0:e3b759ab4b5c 50 // 90deg
simon 0:e3b759ab4b5c 51 //
simon 0:e3b759ab4b5c 52 // This interface uses X4 encoding which calculates the pulse count based on
simon 0:e3b759ab4b5c 53 // reading the current state after each rising and falling edge of either
simon 0:e3b759ab4b5c 54 // channel.
simon 0:e3b759ab4b5c 55 //
simon 0:e3b759ab4b5c 56 // +-----+ +-----+ +-----+
simon 0:e3b759ab4b5c 57 // Channel A | | | | | |
simon 0:e3b759ab4b5c 58 // ---+ +-----+ +-----+ +-----
simon 0:e3b759ab4b5c 59 // ^ ^ ^ ^ ^
simon 0:e3b759ab4b5c 60 // ^ +-----+ ^ +-----+ ^ +-----+
simon 0:e3b759ab4b5c 61 // Channel B ^ | ^ | ^ | ^ | ^ | |
simon 0:e3b759ab4b5c 62 // ------+ ^ +-----+ ^ +-----+ +--
simon 0:e3b759ab4b5c 63 // ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
simon 0:e3b759ab4b5c 64 // ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
simon 0:e3b759ab4b5c 65 // Pulse count 0 1 2 3 4 5 6 7 8 9 ...
simon 0:e3b759ab4b5c 66 //
simon 0:e3b759ab4b5c 67 // An optional index channel can be used which determines when a full
simon 0:e3b759ab4b5c 68 // revolution has occured.
simon 0:e3b759ab4b5c 69 //
simon 0:e3b759ab4b5c 70 // If a 4 pules per revolution encoder was used, the following would be
simon 0:e3b759ab4b5c 71 // observed.
simon 0:e3b759ab4b5c 72 //
simon 0:e3b759ab4b5c 73 // +-----+ +-----+ +-----+
simon 0:e3b759ab4b5c 74 // Channel A | | | | | |
simon 0:e3b759ab4b5c 75 // ---+ +-----+ +-----+ +-----
simon 0:e3b759ab4b5c 76 // ^ ^ ^ ^ ^
simon 0:e3b759ab4b5c 77 // ^ +-----+ ^ +-----+ ^ +-----+
simon 0:e3b759ab4b5c 78 // Channel B ^ | ^ | ^ | ^ | ^ | |
simon 0:e3b759ab4b5c 79 // ------+ ^ +-----+ ^ +-----+ +--
simon 0:e3b759ab4b5c 80 // ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
simon 0:e3b759ab4b5c 81 // ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
simon 0:e3b759ab4b5c 82 // ^ ^ ^ +--+ ^ ^ +--+ ^
simon 0:e3b759ab4b5c 83 // ^ ^ ^ | | ^ ^ | | ^
simon 0:e3b759ab4b5c 84 // Index ------------+ +--------+ +-----------
simon 0:e3b759ab4b5c 85 // ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
simon 0:e3b759ab4b5c 86 // Pulse count 0 1 2 3 4 5 6 7 8 9 ...
simon 0:e3b759ab4b5c 87 // Rev. count 0 1 2
simon 0:e3b759ab4b5c 88 //
simon 0:e3b759ab4b5c 89 // Rotational position in degrees can be calculated by:
simon 0:e3b759ab4b5c 90 //
simon 0:e3b759ab4b5c 91 // (pulse count / X * N) * 360
simon 0:e3b759ab4b5c 92 //
simon 0:e3b759ab4b5c 93 // Where X is the encoding type [in our case X=4], and N is the number of
simon 0:e3b759ab4b5c 94 // pulses per revolution.
simon 0:e3b759ab4b5c 95 //
simon 0:e3b759ab4b5c 96 // Linear position can be calculated by:
simon 0:e3b759ab4b5c 97 //
simon 0:e3b759ab4b5c 98 // (pulse count / X * N) * (1 / PPI)
simon 0:e3b759ab4b5c 99 //
simon 0:e3b759ab4b5c 100 // Where X is encoding type [in our case X=4], N is the number of pulses per
simon 0:e3b759ab4b5c 101 // revolution, and PPI is pulses per inch, or the equivalent for any other
simon 0:e3b759ab4b5c 102 // unit of displacement. PPI can be calculated by taking the circumference
simon 0:e3b759ab4b5c 103 // of the wheel or encoder disk and dividing it by the number of pulses per
simon 0:e3b759ab4b5c 104 // revolution.
simon 0:e3b759ab4b5c 105 //****************************************************************************/
simon 0:e3b759ab4b5c 106
simon 0:e3b759ab4b5c 107 #ifndef QEI_H
simon 0:e3b759ab4b5c 108 #define QEI_H
simon 0:e3b759ab4b5c 109
simon 0:e3b759ab4b5c 110 //****************************************************************************/
simon 0:e3b759ab4b5c 111 // Includes
simon 0:e3b759ab4b5c 112 //****************************************************************************/
simon 0:e3b759ab4b5c 113 #include "mbed.h"
simon 0:e3b759ab4b5c 114
simon 0:e3b759ab4b5c 115 //****************************************************************************/
simon 0:e3b759ab4b5c 116 // Defines
simon 0:e3b759ab4b5c 117 //****************************************************************************/
simon 0:e3b759ab4b5c 118 #define PREV_MASK 0x1 //Mask for the previous state in determining direction
simon 0:e3b759ab4b5c 119 //of rotation.
simon 0:e3b759ab4b5c 120 #define CURR_MASK 0x2 //Mask for the current state in determining direction
simon 0:e3b759ab4b5c 121 //of rotation.
simon 0:e3b759ab4b5c 122 #define INVALID 0x3 //XORing two states where both bits have changed.
simon 0:e3b759ab4b5c 123
simon 0:e3b759ab4b5c 124 /**
simon 0:e3b759ab4b5c 125 * Quadrature Encoder Interface.
simon 0:e3b759ab4b5c 126 */
simon 0:e3b759ab4b5c 127 class QEI {
simon 0:e3b759ab4b5c 128
simon 0:e3b759ab4b5c 129 public:
simon 0:e3b759ab4b5c 130
simon 0:e3b759ab4b5c 131 /**
simon 0:e3b759ab4b5c 132 * Constructor.
simon 0:e3b759ab4b5c 133 *
simon 0:e3b759ab4b5c 134 * Reads the current values on channel A and channel B to determine the
simon 0:e3b759ab4b5c 135 * initial state.
simon 0:e3b759ab4b5c 136 *
simon 0:e3b759ab4b5c 137 * Attaches the encode function to the rise/fall interrupt edges of
simon 0:e3b759ab4b5c 138 * channels A and B to perform X4 encoding.
simon 0:e3b759ab4b5c 139 *
simon 0:e3b759ab4b5c 140 * Attaches the index function to the rise interrupt edge of channel index
simon 0:e3b759ab4b5c 141 * (if it is used) to count revolutions.
simon 0:e3b759ab4b5c 142 *
simon 0:e3b759ab4b5c 143 * @param channelA mbed pin for channel A input.
simon 0:e3b759ab4b5c 144 * @param channelB mbed pin for channel B input.
simon 0:e3b759ab4b5c 145 * @param index mbed pin for optional index channel input,
simon 0:e3b759ab4b5c 146 * (pass NC if not needed).
simon 0:e3b759ab4b5c 147 * @param pulsesPerRev Number of pulses in one revolution.
simon 0:e3b759ab4b5c 148 */
simon 0:e3b759ab4b5c 149 QEI(PinName channelA, PinName channelB, PinName index, int pulsesPerRev);
simon 0:e3b759ab4b5c 150
simon 0:e3b759ab4b5c 151 /**
simon 0:e3b759ab4b5c 152 * Reset the encoder.
simon 0:e3b759ab4b5c 153 *
simon 0:e3b759ab4b5c 154 * Sets the pulses and revolutions count to zero.
simon 0:e3b759ab4b5c 155 */
simon 0:e3b759ab4b5c 156 void reset(void);
simon 0:e3b759ab4b5c 157
simon 0:e3b759ab4b5c 158 /**
simon 0:e3b759ab4b5c 159 * Read the state of the encoder.
simon 0:e3b759ab4b5c 160 *
simon 0:e3b759ab4b5c 161 * @return The current state of the encoder as a 2-bit number, where:
simon 0:e3b759ab4b5c 162 * bit 1 = The reading from channel B
simon 0:e3b759ab4b5c 163 * bit 2 = The reading from channel A
simon 0:e3b759ab4b5c 164 */
simon 0:e3b759ab4b5c 165 int getCurrentState(void);
simon 0:e3b759ab4b5c 166
simon 0:e3b759ab4b5c 167 /**
simon 0:e3b759ab4b5c 168 * Read the number of pulses recorded by the encoder.
simon 0:e3b759ab4b5c 169 *
simon 0:e3b759ab4b5c 170 * @return Number of pulses which have occured.
simon 0:e3b759ab4b5c 171 */
simon 0:e3b759ab4b5c 172 int getPulses(void);
simon 0:e3b759ab4b5c 173
simon 0:e3b759ab4b5c 174 private:
simon 0:e3b759ab4b5c 175
simon 0:e3b759ab4b5c 176 /**
simon 0:e3b759ab4b5c 177 * Update the pulse count.
simon 0:e3b759ab4b5c 178 *
simon 0:e3b759ab4b5c 179 * Called on every rising/falling edge of channels A/B.
simon 0:e3b759ab4b5c 180 *
simon 0:e3b759ab4b5c 181 * Reads the state of the channels and determines whether a pulse forward
simon 0:e3b759ab4b5c 182 * or backward has occured, updating the count appropriately.
simon 0:e3b759ab4b5c 183 */
simon 0:e3b759ab4b5c 184 void encode(void);
simon 0:e3b759ab4b5c 185
simon 0:e3b759ab4b5c 186 /**
simon 0:e3b759ab4b5c 187 * Called on every rising edge of channel index to update revolution
simon 0:e3b759ab4b5c 188 * count by one.
simon 0:e3b759ab4b5c 189 */
simon 0:e3b759ab4b5c 190 void index(void);
simon 0:e3b759ab4b5c 191
simon 0:e3b759ab4b5c 192 InterruptIn* channelA_;
simon 0:e3b759ab4b5c 193 InterruptIn* channelB_;
simon 0:e3b759ab4b5c 194 InterruptIn* index_;
simon 0:e3b759ab4b5c 195
simon 0:e3b759ab4b5c 196 int pulsesPerRev_;
simon 0:e3b759ab4b5c 197 int revolutions_;
simon 0:e3b759ab4b5c 198 int prevState_;
simon 0:e3b759ab4b5c 199 int currState_;
simon 0:e3b759ab4b5c 200
simon 0:e3b759ab4b5c 201 volatile int pulses_;
simon 0:e3b759ab4b5c 202
simon 0:e3b759ab4b5c 203 };
simon 0:e3b759ab4b5c 204
simon 0:e3b759ab4b5c 205 #endif /* QEI_H */