This is Webservice SDK for mbed. LPCXpresso1769/LPC1768/FRDM-K64F/LPC4088

Dependents:   MbedFileServer_1768MiniDK2 RedWireBridge IssueDebug_gcc MiMicRemoteMCU-for-Mbed ... more

libMiMic(MiMic library for mbed)は、WebService機能を提供するSDKです。 mbedでWebAPIに対応したネットワークデバイスを簡単に作ることが出来ます。

libMiMicはMiMic projectで開発しています。MiMic projectについてはこちらをご覧ください。 http://nyatla.jp/mimic/wp/

構成

libMiMicはmbedRTOS上で動作し、ユーザアプリケーションにAPIを提供します。コアAPIはC言語で記述されていますが、使用頻度の高いものについてはmbed向けのC++APIが準備されています。

/media/uploads/nyatla/libmimic-sdk.png

※libMiMicはmbedの標準イーサネットドライバをしようしていません。

標準イーサネットドライバと同時に使用することはできません。

  • MiMicIP - IPv4スタックです。レテンシとメモリ消費量を抑えたuipベースのライブラリです。
  • ARP/ICMP/UDP/TCP - 基礎的なソケットAPIを提供します。APIは独自です。
  • HTTP/1.1 Server - HTTP/1.1に対応したサーバです。マルチセッション・Chunked・持続性接続に対応しています。
  • HTTP Modules - HTTP/1.1の機能モジュールです。以下のモジュールがあります。
    • ROM file provider - ROMに格納したファイルイメージを公開します。
    • File system provider - mbedファイルシステムを公開します。
    • Onchip configuration - プログラムフラッシュを利用して設定を保存します。
    • MiMicVM processor - RPCリクエスト(MiMicVM)を処理します。
    • FileUpload - ファイルアップロードを受け取ります。
    • URL decoder - HTTPリクエストを解析します。
    • UPnP handler -UPnPメッセージを処理します。
    • WebSocket - Websocketサーバです。
  • mDNS - マルチキャストDNSサービスです。
  • UPnP - UPnP/1.0の機能を提供します。UPnP handlerと協調して動作します。(現在はデバイス探索(SSDP)・デスクリプション(Description)のみ実装してあります。)
  • DHCP/APIPA - ゼロコンフィギュレーション用のモジュールです。
  • HTTP/1.1 Client
  • mbed C++ class library - mbed向けのC++CPIです。C言語のものより簡単です。

対応機種

  • mbed(mbed LPC1768)
  • LPCXpresso1769

プログラム

Import programMiMicRemoteMCU-for-Mbed

MiMic RemoteMCU for mbed. This program provides MCU control API over REST API. It can control MCU from Javascript,PHP or any HTTP rest client directly. And, The application has self development environment.

Import programMbedFileServer

The program publishes files at local directory and SD filesystem. It is a full-fledged webServer somewhat.

サンプル

Import programMiMicSimpleHttpd

This is a simplest HTTP server made ​​of libMiMic. It will echo back a request path.

Import programUPnPBasicDevice

Simplest UPnP basic device example. This program to run UPnP basic device on the mbed.

Import programWebSocketSample

MiMicSDK Websocket module sample program.

Import programHttpClientSamlpe

A http client sample program.

Import programTcpSocketClientSamlpe

MiMicSDK Tcp client socket sample program.

Import programUdpSocketSamlpe

Udp socket sample program. This program will send back the received packet.

チュートリアル

English

libMiMic(MiMic library for mbed) is SDK which provides Webservice functions. It can be created networking device easily using mbed.

See more MiMic information, See MiMic project website. http://nyatla.jp/mimic/wp/

Structure

libMiMic run on mbed RTOS and provides networking API to user application. This library has C++ class API for the mbed, and low-level C language API.

/media/uploads/nyatla/libmimic-sdk.png

For WebService general, it can be written in a simple C + + API.

libMiMic does not have the standard Ethernet driver of mbed. It is not possible that will be used with the standard Ethernet driver.

  • MiMicIP - IPv4 protocol stack. This is based uip which is reduced memory and latency.
  • ARP / ICMP / UDP / TCP - Those are provide basic IP protocols.
  • HTTP/1.1 Server - The Http server compatible HTTP/1.1. It supports multi-session, chunked transport, persistent connection.
  • HTTP Modules - There are addon-module for HTTP server. The following modules.
    • ROM file module - Publish the file images in ROM.
    • File system module - Publish thefiles in mbed file system.
    • Onchip configuration module - To save the network settings to the program flash via REST.
    • MiMicVM module - To handle the (MiMicVM) RPC request.
    • FileUpload module - Accept a file via HTTP POST.
    • URL dedoce module - A versatility URL decoder.
    • UPnP handle module - To handle UPnP messages.
    • UPnP - This provides UPnP/1.0 device functions. It works together with UPnP handler.
    • Websocket - websocket (version13) server
  • mDNS Service - DNS-SD protocol server.
  • UPnP - This provides UPnP/1.0 device functions which works with UPnP handler. (You have been implemented (SSDP) ? description only (Description) device search now.) It is a module zero configuration for - DHCP / APIPA. mbed C + + class library - C of mbed for + + is the CPI. It is simple than that of the C language.
  • DHCP/APIPA - It support zero-cpnfigulation.
  • mbed C++ class library. Almost APIs for Web applications are available.
  • HTTP/1.1 Client

Supported target

  • mbed(mbed LPC1768)
  • LPCXpresso1769

Application

Import programMiMicRemoteMCU-for-Mbed

MiMic RemoteMCU for mbed. This program provides MCU control API over REST API. It can control MCU from Javascript,PHP or any HTTP rest client directly. And, The application has self development environment.

Import programMbedFileServer

The program publishes files at local directory and SD filesystem. It is a full-fledged webServer somewhat.

Sample

Import programMiMicSimpleHttpd

This is a simplest HTTP server made ​​of libMiMic. It will echo back a request path.

Import programUPnPBasicDevice

Simplest UPnP basic device example. This program to run UPnP basic device on the mbed.

Import programWebSocketSample

MiMicSDK Websocket module sample program.

Import programHttpClientSamlpe

A http client sample program.

Import programTcpSocketClientSamlpe

MiMicSDK Tcp client socket sample program.

Import programUdpSocketSamlpe

Udp socket sample program. This program will send back the received packet.

Tutorial

core/driver/ethernet/lpc4088/EthDev_LPC4088.c

Committer:
nyatla
Date:
2014-05-29
Revision:
69:8c5f220441f5
Child:
92:4f77028cce64

File content as of revision 69:8c5f220441f5:

#include "NyLPC_config.h"
#if NyLPC_MCU==NyLPC_MCU_LPC4088
#include "NyLPC_os.h"
#include "copy_of_ethernet_api.h"
#include "NyLPC_IEthernetDevice.h"
#include "NyLPC_cEthernetMM.h"



#define emacSHORT_DELAY_MS                 10
#ifndef configEMAC_INTERRUPT_PRIORITY
    #define configEMAC_INTERRUPT_PRIORITY       5
#endif
////////////////////////////////////////////////////////////////////////////////
// Ethernet Memory
////////////////////////////////////////////////////////////////////////////////

#define AHB_SRAM_BANK1_BASE  0x20004000UL
#define RX_DESC_BASE        (AHB_SRAM_BANK1_BASE         )
#define RX_STAT_BASE        (RX_DESC_BASE + NUM_RX_FRAG*(2*4))     /* 2 * uint32_t, see RX_DESC_TypeDef */
#define TX_DESC_BASE        (RX_STAT_BASE + NUM_RX_FRAG*(2*4))     /* 2 * uint32_t, see RX_STAT_TypeDef */
#define TX_STAT_BASE        (TX_DESC_BASE + NUM_TX_FRAG*(2*4))     /* 2 * uint32_t, see TX_DESC_TypeDef */
#define ETH_BUF_BASE		(TX_STAT_BASE + NUM_TX_FRAG*(1*4))     /* 1 * uint32_t, see TX_STAT_TypeDef */

/**
 * 消費メモリ量は、
 * descriptor = NUM_RX_FRAG*16+NUM_TX_FRAG*12.
 * EthnetBuf=ETH_FRAG_SIZE*NUM_RX_FRAG
 */

/* RX and TX descriptor and status definitions. */
#define RX_DESC_PACKET(i)   (*(unsigned int *)(RX_DESC_BASE   + 8*i))
#define RX_DESC_CTRL(i)     (*(unsigned int *)(RX_DESC_BASE+4 + 8*i))
#define RX_STAT_INFO(i)     (*(unsigned int *)(RX_STAT_BASE   + 8*i))
#define RX_STAT_HASHCRC(i)  (*(unsigned int *)(RX_STAT_BASE+4 + 8*i))
#define TX_DESC_PACKET(i)   (*(unsigned int *)(TX_DESC_BASE   + 8*i))
#define TX_DESC_CTRL(i)     (*(unsigned int *)(TX_DESC_BASE+4 + 8*i))
#define TX_STAT_INFO(i)     (*(unsigned int *)(TX_STAT_BASE   + 4*i))
#define ETH_BUF(i)          ( ETH_BUF_BASE + ETH_FRAG_SIZE*i )
#define ETH_TX_BUF_BASE ((void*)(ETH_BUF_BASE+ETH_FRAG_SIZE*NUM_RX_FRAG))


#define emacWAIT_FOR_LINK_TO_ESTABLISH_MS 500

////////////////////////////////////////////////////////////////////////////////
// Ethernet interdface functions
////////////////////////////////////////////////////////////////////////////////
static NyLPC_TBool start(const struct NyLPC_TEthAddr* i_eth_addr,NyLPC_TiEthernetDevice_onEvent i_handler,void* i_param);
static void stop(void);
static void* getRxEthFrame(unsigned short* o_len_of_data);
static void nextRxEthFrame(void);
static struct NyLPC_TTxBufferHeader* allocTxBuf(NyLPC_TUInt16 i_hint,NyLPC_TUInt16* o_size);
static void releaseTxBuf(struct NyLPC_TTxBufferHeader* i_buf);
static void sendTxEthFrame(struct NyLPC_TTxBufferHeader* i_buf,unsigned short i_size);
static void processTx(void);

////////////////////////////////////////////////////////////////////////////////
// Private
////////////////////////////////////////////////////////////////////////////////
static void emacIsrHandler(unsigned long i_status);
static unsigned int clockselect(void);
static int ethernet_link(void);
static int phy_write(unsigned int PhyReg, unsigned short Data);
static int phy_read(unsigned int PhyReg);
static void prevTxDescriptor(void);
static void prevRxDescriptor(void);
static NyLPC_TUInt32 waitForTxEthFrameEmpty(void);

/*-----------------------------------------------------------*/


const static struct TiEthernetDevice _interface_LAN8720=
{
	"LAN8720",
	start,
	stop,
	getRxEthFrame,
	nextRxEthFrame,
	allocTxBuf,
	releaseTxBuf,
	sendTxEthFrame,
	processTx
};
const static struct TiEthernetDevice _interface_DP83848C=
{
	"DP83848C",
	start,
	stop,
	getRxEthFrame,
	nextRxEthFrame,
	allocTxBuf,
	releaseTxBuf,
	sendTxEthFrame,
	processTx
};

static void* _event_param;
static NyLPC_TiEthernetDevice_onEvent _event_handler;
static unsigned int phy_id;

/*
 * EthernetDeviceのファクトリー関数。インターフェイスを生成できればtrue
 *
 */
NyLPC_TBool EthDev_LPC4088_getInterface(
	const struct TiEthernetDevice** o_dev)
{
	int regv, tout;
	unsigned int clock = clockselect();
	
	LPC_SC->PCONP |= 0x40000000; /* Power Up the EMAC controller. */
	LPC_IOCON->P1_0 &= ~0x07; /* ENET I/O config */
	LPC_IOCON->P1_0 |= 0x01; /* ENET_TXD0 */
	LPC_IOCON->P1_1 &= ~0x07;
	LPC_IOCON->P1_1 |= 0x01; /* ENET_TXD1 */
	LPC_IOCON->P1_4 &= ~0x07;
	LPC_IOCON->P1_4 |= 0x01; /* ENET_TXEN */
	LPC_IOCON->P1_8 &= ~0x07;
	LPC_IOCON->P1_8 |= 0x01; /* ENET_CRS */
	LPC_IOCON->P1_9 &= ~0x07;
	LPC_IOCON->P1_9 |= 0x01; /* ENET_RXD0 */
	LPC_IOCON->P1_10 &= ~0x07;
	LPC_IOCON->P1_10 |= 0x01; /* ENET_RXD1 */
	LPC_IOCON->P1_14 &= ~0x07;
	LPC_IOCON->P1_14 |= 0x01; /* ENET_RX_ER */
	LPC_IOCON->P1_15 &= ~0x07;
	LPC_IOCON->P1_15 |= 0x01; /* ENET_REF_CLK */
	LPC_IOCON->P1_16 &= ~0x07; /* ENET/PHY I/O config */
	LPC_IOCON->P1_16 |= 0x01; /* ENET_MDC */
	LPC_IOCON->P1_17 &= ~0x07;
	LPC_IOCON->P1_17 |= 0x01; /* ENET_MDIO */
  
	/* Reset all EMAC internal modules. */
	LPC_EMAC->MAC1 = MAC1_RES_TX | MAC1_RES_MCS_TX | MAC1_RES_RX | MAC1_RES_MCS_RX | MAC1_SIM_RES | MAC1_SOFT_RES;
	LPC_EMAC->Command = CR_REG_RES | CR_TX_RES | CR_RX_RES | CR_PASS_RUNT_FRM;		
for (tout = 100; tout; tout--) { __NOP(); } /* A short delay */
	
	/* Initialize MAC control registers. */
	LPC_EMAC->MAC1 = MAC1_PASS_ALL; 
	LPC_EMAC->MAC2 = MAC2_CRC_EN | MAC2_PAD_EN;
	LPC_EMAC->MAXF = ETH_MAX_FLEN;
	LPC_EMAC->CLRT = CLRT_DEF;
	LPC_EMAC->IPGR = IPGR_DEF;
	
	/* Enable Reduced MII interface. */
	LPC_EMAC->MCFG = (clock << 0x2) & MCFG_CLK_SEL; /* Set clock */
	LPC_EMAC->MCFG |= MCFG_RES_MII; /* and reset */
	LPC_EMAC->Command = CR_RMII | CR_PASS_RUNT_FRM |CR_PASS_RX_FILT; /* Enable Reduced MII interface. */
	
for (tout = 100; tout; tout--) { __NOP(); } /* A short delay */

	LPC_EMAC->MCFG = (clock << 0x2) & MCFG_CLK_SEL;
	LPC_EMAC->MCMD = 0;
	LPC_EMAC->SUPP = SUPP_RES_RMII; /* Reset Reduced MII Logic. */
for (tout = 100; tout; tout--) { __NOP(); } /* A short delay */
	LPC_EMAC->SUPP = SUPP_SPEED;
	
	phy_write(PHY_REG_BMCR, PHY_BMCR_RESET); /* perform PHY reset */
	for(tout = 0x20000; ; tout--) { /* Wait for hardware reset to end. */
		regv = phy_read(PHY_REG_BMCR);
		if(regv < 0 || tout == 0) {
    		return NyLPC_TBool_FALSE; /* Error */
    	}
		if(!(regv & PHY_BMCR_RESET)) {
    		break; /* Reset complete. */
    	}
  	}

	phy_id = (phy_read(PHY_REG_IDR1) << 16);
	phy_id |= (phy_read(PHY_REG_IDR2) & 0XFFF0);

	switch(phy_id){
	case DP83848C_ID:
		*o_dev=&_interface_DP83848C;
		break;
	case LAN8720_ID:
		*o_dev=&_interface_LAN8720;
		break;
	default:
		return NyLPC_TBool_FALSE; /* Error */
  	}
	LPC_EMAC->TxProduceIndex = 0;
	LPC_EMAC->RxConsumeIndex = 0;  	
	return NyLPC_TBool_TRUE;
}



static NyLPC_TBool start(const struct NyLPC_TEthAddr* i_eth_addr,NyLPC_TiEthernetDevice_onEvent i_handler,void* i_param)
{
	int i;
	//ISRw割り込み設定
	NyLPC_cIsr_setEnetISR(emacIsrHandler);
	_event_handler=i_handler;
	_event_param=i_param;
	/* Set the Ethernet MAC Address registers */
	LPC_EMAC->SA0 = (((uint32_t)(i_eth_addr->addr[0])) << 8 ) | i_eth_addr->addr[1];
	LPC_EMAC->SA1 = (((uint32_t)(i_eth_addr->addr[2])) << 8 ) | i_eth_addr->addr[3];
	LPC_EMAC->SA2 = (((uint32_t)(i_eth_addr->addr[4])) << 8 ) | i_eth_addr->addr[5];

	//TXメモリマネージャの準備
	NyLPC_cEthernetMM_initialize(ETH_TX_BUF_BASE);
	/* Initialize Tx and Rx DMA Descriptors */
	prevRxDescriptor();
	prevTxDescriptor();
	//wait for link up 
	for(i=0;i<5;i++){
		if(ethernet_link()!=0){
			break;
		}
		NyLPC_cThread_sleep(emacWAIT_FOR_LINK_TO_ESTABLISH_MS);
	}

	//setup Link
	ethernet_set_link(-1, 0);

	LPC_EMAC->RxFilterCtrl = RFC_UCAST_EN | RFC_MCAST_EN | RFC_BCAST_EN | RFC_PERFECT_EN;
	/* Receive Broadcast, Perfect Match Packets */

	//Ethernetの割込み開始設定
	NyLPC_cIsr_enterCritical();
	{
		LPC_EMAC->IntEnable = INT_RX_DONE | INT_TX_DONE; /* Enable EMAC interrupts. */
		LPC_EMAC->IntClear = 0xFFFF; /* Reset all interrupts */
	  
		LPC_EMAC->Command |= (CR_RX_EN | CR_TX_EN); /* Enable receive and transmit mode of MAC Ethernet core */
		LPC_EMAC->MAC1 |= MAC1_REC_EN;

        NVIC_SetPriority( ENET_IRQn, configEMAC_INTERRUPT_PRIORITY );
        NVIC_EnableIRQ( ENET_IRQn );
	}
	NyLPC_cIsr_exitCritical();

	return NyLPC_TBool_TRUE;
}


static void stop(void)
{
	NyLPC_cIsr_enterCritical();
	{
	    LPC_EMAC->IntEnable &= ~(INT_RX_DONE | INT_TX_DONE);
	    LPC_EMAC->IntClear = 0xFFFF;
	    
        NVIC_DisableIRQ( ENET_IRQn );
	}
	NyLPC_cIsr_exitCritical();
	LPC_EMAC->Command &= ~( CR_RX_EN | CR_TX_EN );
	LPC_EMAC->MAC1 &= ~MAC1_REC_EN;
	//ISR割り込み解除
	NyLPC_cIsr_setEnetISR(NULL);
	//TXメモリマネージャの終了
	NyLPC_cEthernetMM_finalize();
}

static struct NyLPC_TTxBufferHeader* allocTxBuf(NyLPC_TUInt16 i_hint,NyLPC_TUInt16* o_size)
{
	return NyLPC_cEthernetMM_alloc(i_hint,o_size);
}
static void releaseTxBuf(struct NyLPC_TTxBufferHeader* i_buf)
{
	NyLPC_cEthernetMM_release(i_buf);
}


/**
*/
static void processTx(void)
{
	waitForTxEthFrameEmpty();
}



/**
 * Ethernetパケットを送信します。
 * allocTxBufで得たバッファか、NyLPC_TTxBufferHeaderのペイロード部分を指定すること。
 * <p>関数仕様</p>
 * この関数は、i_bufが
 * </div>
 */
static void sendTxEthFrame(struct NyLPC_TTxBufferHeader* i_buf,unsigned short i_size)
{
	NyLPC_TUInt32	IndexNext,Index;

	//サイズ0なら送信の必要なし
	if(i_size == 0)
	{
		return;
	}
	//送信デスクリプタの反映
	IndexNext =waitForTxEthFrameEmpty();

	//送信対象のメモリブロックを送信中に設定。
//	b=(i_buf+1);
	//送信中のメモリブロックなら無視
	if(i_buf->is_lock){
		return;
	}
	//送信中にセット
	i_buf->is_lock=NyLPC_TUInt8_TRUE;

	//送信データのセット
	Index = LPC_EMAC->TxProduceIndex;
	if (i_size > ETH_FRAG_SIZE){
		i_size = ETH_FRAG_SIZE;
	}
	//送信処理
	TX_DESC_PACKET( Index ) = ( unsigned long )(i_buf+1);
	//See UM10360.pdf Table 181. Transmit descriptor control word
	TX_DESC_CTRL( Index ) = ((i_size-1) | TCTRL_LAST | TCTRL_INT );
	LPC_EMAC->TxProduceIndex = IndexNext;
	return;
}
/**
 * 送信デスクリプタを準備します。
 */
static void prevTxDescriptor(void)
{
	long x;
	//デスクリプタの設定
	for( x = 0; x < NUM_TX_FRAG; x++ )
	{
		TX_DESC_PACKET( x ) = ( unsigned long ) NULL;
		TX_DESC_CTRL( x ) = 0;
		TX_STAT_INFO( x ) = 0;
	}
	/* Set LPC_EMAC Transmit Descriptor Registers. */
	LPC_EMAC->TxDescriptor =TX_DESC_BASE;
	LPC_EMAC->TxStatus = TX_STAT_BASE;
	LPC_EMAC->TxDescriptorNumber = NUM_TX_FRAG - 1;
}
static void prevRxDescriptor(void)
{
	int x;
	//デスクリプタの設定
	for( x = 0; x < NUM_RX_FRAG; x++ )
	{
		/* Allocate the next Ethernet buffer to this descriptor. */
		RX_DESC_PACKET(x) = ETH_BUF(x);
		RX_DESC_CTRL(x) = RCTRL_INT | ( ETH_FRAG_SIZE - 1 );
		RX_STAT_INFO(x) = 0;
		RX_STAT_HASHCRC(x) = 0;
	}

	/* Set LPC_EMAC Receive Descriptor Registers. */
	LPC_EMAC->RxDescriptor = RX_DESC_BASE;
	LPC_EMAC->RxStatus = RX_STAT_BASE;
	LPC_EMAC->RxDescriptorNumber = NUM_RX_FRAG - 1;

}


/**
 * 受信キューの先頭にあるRXフレームのポインタを返します。
 * 関数は、受信キューのポインタを操作しません。続けて読み出したとしても、同じポインターを返します。
 * 制限として、返却したポインタの内容は、一時的に書き換え可としてください。(この制限は将来削除します。)
 * @return
 * 成功した場合、受信データを格納したバッファポインターです。
 * 次回nextRxEthFrameを呼び出すまで有効です。
 */
static void* getRxEthFrame(unsigned short* o_len_of_data)
{
	if( LPC_EMAC->RxProduceIndex != LPC_EMAC->RxConsumeIndex )
	{
		//受信データを返却する。
		*o_len_of_data = (unsigned short)(( RX_STAT_INFO( LPC_EMAC->RxConsumeIndex ) & RINFO_SIZE ) - 3);
		return ( unsigned char * ) RX_DESC_PACKET( LPC_EMAC->RxConsumeIndex );
	}
	return NULL;
}


/**
 * 受信キューを進行します。
 */
static void nextRxEthFrame(void)
{
	long lIndex;
	if( LPC_EMAC->RxProduceIndex != LPC_EMAC->RxConsumeIndex )
	{
		//キューすすめる。
		lIndex = LPC_EMAC->RxConsumeIndex;
		lIndex++;
		if( lIndex >= NUM_RX_FRAG )
		{
			lIndex = 0;
		}
		LPC_EMAC->RxConsumeIndex = lIndex;
	}
}
/********************************************************************************
 * Private functions
 *******************************************************************************/



/**
 * 送信中のイーサフレームを処理する機会を与えて、送信キューが空くまで待ちます。
 * LPC1769の場合は、非同期に更新したディスクリプタの内容から、送信メモリのフラグを更新します。
 * @return
 * 次に書き込むことが出来る送信キュー。
 */
static NyLPC_TUInt32 waitForTxEthFrameEmpty(void)
{
	NyLPC_TUInt32	IndexNext;
	struct NyLPC_TTxBufferHeader *b;
	void* p;
	NyLPC_TUInt32 i;

	//送信キューの決定
	IndexNext = (LPC_EMAC->TxProduceIndex + 1)%NUM_TX_FRAG;

	//送信キューフルが解除されるまで待ち
	while(IndexNext == LPC_EMAC->TxConsumeIndex)
	{
		//
		NyLPC_cThread_sleep(emacSHORT_DELAY_MS);
	}

	//(TxProduceIndex+1)→TxConsumeIndexにあるデータのsentフラグを消去
	for(i=IndexNext;i!=LPC_EMAC->TxConsumeIndex;i=(i+1)%NUM_TX_FRAG)
	{
		p=(void*)TX_DESC_PACKET(i);
		if(p!=NULL){
			b=((struct NyLPC_TTxBufferHeader*)p)-1;
			b->is_lock=NyLPC_TUInt8_FALSE;
			TX_DESC_PACKET(i)=0;
		}
	}
	p=(void*)TX_DESC_PACKET(i);
	if(p!=NULL){
		b=((struct NyLPC_TTxBufferHeader*)p)-1;
		b->is_lock=NyLPC_TUInt8_FALSE;
		TX_DESC_PACKET(i)=0;
	}
	return IndexNext;
}

//--------------------------------------------------------------------------------
// ISR
//--------------------------------------------------------------------------------

static void ethernet_set_link(int speed, int duplex) {
    unsigned short phy_data;
    int tout;
    
    if((speed < 0) || (speed > 1)) {
        phy_data = PHY_AUTO_NEG;
    } else {
        phy_data = (((unsigned short) speed << 13) |
                    ((unsigned short) duplex << 8));
    }
    
    phy_write(PHY_REG_BMCR, phy_data);
    
    for (tout = 100; tout; tout--) { __NOP(); } /* A short delay */
    
    switch(phy_id) {
        case DP83848C_ID:
            phy_data = phy_read(PHY_REG_STS);
            
            if(phy_data & PHY_STS_DUPLEX) {
                LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
                LPC_EMAC->Command |= CR_FULL_DUP;
                LPC_EMAC->IPGT = IPGT_FULL_DUP;
            } else {
            LPC_EMAC->MAC2 &= ~MAC2_FULL_DUP;
                LPC_EMAC->Command &= ~CR_FULL_DUP;
                LPC_EMAC->IPGT = IPGT_HALF_DUP;
            }
            
            if(phy_data & PHY_STS_SPEED) {
                LPC_EMAC->SUPP &= ~SUPP_SPEED;
            } else {
                LPC_EMAC->SUPP |= SUPP_SPEED;
            }
            break;
        
        case LAN8720_ID:
            phy_data = phy_read(PHY_REG_SCSR);
            
            if (phy_data & PHY_SCSR_DUPLEX) {
                LPC_EMAC->MAC2 |= MAC2_FULL_DUP;
                LPC_EMAC->Command |= CR_FULL_DUP;
                LPC_EMAC->IPGT = IPGT_FULL_DUP;
            } else {
                LPC_EMAC->Command &= ~CR_FULL_DUP;
                LPC_EMAC->IPGT = IPGT_HALF_DUP;
            }
            
            if(phy_data & PHY_SCSR_100MBIT) {
                LPC_EMAC->SUPP |= SUPP_SPEED;
            } else {
                LPC_EMAC->SUPP &= ~SUPP_SPEED;
            }
            
            break;
    }
}

static int phy_write(unsigned int PhyReg, unsigned short Data) {
    unsigned int timeOut;

    LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
    LPC_EMAC->MWTD = Data;

    for(timeOut = 0; timeOut < MII_WR_TOUT; timeOut++) { /* Wait until operation completed */
        if((LPC_EMAC->MIND & MIND_BUSY) == 0) {
            return 0;
        }
    }

    return -1;
}


static int phy_read(unsigned int PhyReg) {
    unsigned int timeOut;

    LPC_EMAC->MADR = DP83848C_DEF_ADR | PhyReg;
    LPC_EMAC->MCMD = MCMD_READ;

    for(timeOut = 0; timeOut < MII_RD_TOUT; timeOut++) { /* Wait until operation completed */
        if((LPC_EMAC->MIND & MIND_BUSY) == 0) {
            LPC_EMAC->MCMD = 0;
            return LPC_EMAC->MRDD; /* Return a 16-bit value. */
        }
    }

    return -1;
}


//extern unsigned int SystemFrequency;
static unsigned int clockselect(void)
{
  if(SystemCoreClock < 10000000) {
    return 1;
  } else if(SystemCoreClock < 15000000) {
    return 2;
  } else if(SystemCoreClock < 20000000) {
    return 3;
  } else if(SystemCoreClock < 25000000) {
    return 4;
  } else if(SystemCoreClock < 35000000) {
    return 5;
  } else if(SystemCoreClock < 50000000) {
    return 6;
  } else if(SystemCoreClock < 70000000) {
    return 7;
  } else if(SystemCoreClock < 80000000) {
    return 8;
  } else if(SystemCoreClock < 90000000) {
    return 9;
  } else if(SystemCoreClock < 100000000) {
    return 10;
  } else if(SystemCoreClock < 120000000) {
    return 11;
  } else if(SystemCoreClock < 130000000) {
    return 12;
  } else if(SystemCoreClock < 140000000) {
    return 13;
  } else if(SystemCoreClock < 150000000) {
    return 15;
  } else if(SystemCoreClock < 160000000) {
    return 16;
  } else {
    return 0;
  }
}

static int ethernet_link(void)
{

    if (phy_id == DP83848C_ID) {
      return (phy_read(PHY_REG_STS) & PHY_STS_LINK);
    }
    else { // LAN8720_ID
      return (phy_read(PHY_REG_BMSR) & PHY_BMSR_LINK);
    }
}
//--------------------------------------------------------------------------------
// ISR
//--------------------------------------------------------------------------------


/**
 * EMACからのハンドラ
 */
static void emacIsrHandler(unsigned long i_status)
{
	if( i_status & INT_RX_DONE )
	{
		_event_handler(_event_param,NyLPC_TiEthernetDevice_EVENT_ON_RX);
	}
	if( i_status & INT_TX_DONE )
	{
		_event_handler(_event_param,NyLPC_TiEthernetDevice_EVENT_ON_TX);
	}
}

#endif