The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Dependents:   hello SerialTestv11 SerialTestv12 Sierpinski ... more

mbed 2

This is the mbed 2 library. If you'd like to learn about Mbed OS please see the mbed-os docs.

Revision:
46:890817bdcffb
Parent:
40:976df7c37ad5
--- a/LPC11U24/core_cmInstr.h	Thu Nov 22 16:04:31 2012 +0000
+++ b/LPC11U24/core_cmInstr.h	Mon Nov 26 10:13:56 2012 +0000
@@ -1,16 +1,16 @@
 /**************************************************************************//**
  * @file     core_cmInstr.h
  * @brief    CMSIS Cortex-M Core Instruction Access Header File
- * @version  V3.00
- * @date     09. December 2011
+ * @version  V3.03
+ * @date     29. August 2012
  *
  * @note
- * Copyright (C) 2009-2011 ARM Limited. All rights reserved.
+ * Copyright (C) 2009-2012 ARM Limited. All rights reserved.
  *
  * @par
- * ARM Limited (ARM) is supplying this software for use with Cortex-M 
- * processor based microcontrollers.  This file can be freely distributed 
- * within development tools that are supporting such ARM based processors. 
+ * ARM Limited (ARM) is supplying this software for use with Cortex-M
+ * processor based microcontrollers.  This file can be freely distributed
+ * within development tools that are supporting such ARM based processors.
  *
  * @par
  * THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED
@@ -71,8 +71,8 @@
 
 /** \brief  Instruction Synchronization Barrier
 
-    Instruction Synchronization Barrier flushes the pipeline in the processor, 
-    so that all instructions following the ISB are fetched from cache or 
+    Instruction Synchronization Barrier flushes the pipeline in the processor,
+    so that all instructions following the ISB are fetched from cache or
     memory, after the instruction has been completed.
  */
 #define __ISB()                           __isb(0xF)
@@ -80,7 +80,7 @@
 
 /** \brief  Data Synchronization Barrier
 
-    This function acts as a special kind of Data Memory Barrier. 
+    This function acts as a special kind of Data Memory Barrier.
     It completes when all explicit memory accesses before this instruction complete.
  */
 #define __DSB()                           __dsb(0xF)
@@ -88,7 +88,7 @@
 
 /** \brief  Data Memory Barrier
 
-    This function ensures the apparent order of the explicit memory operations before 
+    This function ensures the apparent order of the explicit memory operations before
     and after the instruction, without ensuring their completion.
  */
 #define __DMB()                           __dmb(0xF)
@@ -111,12 +111,13 @@
     \param [in]    value  Value to reverse
     \return               Reversed value
  */
-static __attribute__((section(".rev16_text"))) __INLINE __ASM uint32_t __REV16(uint32_t value)
+#ifndef __NO_EMBEDDED_ASM
+__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
 {
   rev16 r0, r0
   bx lr
 }
-
+#endif
 
 /** \brief  Reverse byte order in signed short value
 
@@ -125,11 +126,35 @@
     \param [in]    value  Value to reverse
     \return               Reversed value
  */
-static __attribute__((section(".revsh_text"))) __INLINE __ASM int32_t __REVSH(int32_t value)
+#ifndef __NO_EMBEDDED_ASM
+__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
 {
   revsh r0, r0
   bx lr
 }
+#endif
+
+
+/** \brief  Rotate Right in unsigned value (32 bit)
+
+    This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
+
+    \param [in]    value  Value to rotate
+    \param [in]    value  Number of Bits to rotate
+    \return               Rotated value
+ */
+#define __ROR                             __ror
+
+
+/** \brief  Breakpoint
+
+    This function causes the processor to enter Debug state.
+    Debug tools can use this to investigate system state when the instruction at a particular address is reached.
+
+    \param [in]    value  is ignored by the processor.
+                   If required, a debugger can use it to store additional information about the breakpoint.
+ */
+#define __BKPT(value)                       __breakpoint(value)
 
 
 #if       (__CORTEX_M >= 0x03)
@@ -247,7 +272,7 @@
     \param [in]  value  Value to count the leading zeros
     \return             number of leading zeros in value
  */
-#define __CLZ                             __clz 
+#define __CLZ                             __clz
 
 #endif /* (__CORTEX_M >= 0x03) */
 
@@ -259,6 +284,12 @@
 #include <cmsis_iar.h>
 
 
+#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
+/* TI CCS specific functions */
+
+#include <cmsis_ccs.h>
+
+
 #elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
 /* GNU gcc specific functions */
 
@@ -266,7 +297,7 @@
 
     No Operation does nothing. This instruction can be used for code alignment purposes.
  */
-__attribute__( ( always_inline ) ) static __INLINE void __NOP(void)
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void)
 {
   __ASM volatile ("nop");
 }
@@ -277,7 +308,7 @@
     Wait For Interrupt is a hint instruction that suspends execution
     until one of a number of events occurs.
  */
-__attribute__( ( always_inline ) ) static __INLINE void __WFI(void)
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void)
 {
   __ASM volatile ("wfi");
 }
@@ -288,7 +319,7 @@
     Wait For Event is a hint instruction that permits the processor to enter
     a low-power state until one of a number of events occurs.
  */
-__attribute__( ( always_inline ) ) static __INLINE void __WFE(void)
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void)
 {
   __ASM volatile ("wfe");
 }
@@ -298,7 +329,7 @@
 
     Send Event is a hint instruction. It causes an event to be signaled to the CPU.
  */
-__attribute__( ( always_inline ) ) static __INLINE void __SEV(void)
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void)
 {
   __ASM volatile ("sev");
 }
@@ -306,11 +337,11 @@
 
 /** \brief  Instruction Synchronization Barrier
 
-    Instruction Synchronization Barrier flushes the pipeline in the processor, 
-    so that all instructions following the ISB are fetched from cache or 
+    Instruction Synchronization Barrier flushes the pipeline in the processor,
+    so that all instructions following the ISB are fetched from cache or
     memory, after the instruction has been completed.
  */
-__attribute__( ( always_inline ) ) static __INLINE void __ISB(void)
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void)
 {
   __ASM volatile ("isb");
 }
@@ -318,10 +349,10 @@
 
 /** \brief  Data Synchronization Barrier
 
-    This function acts as a special kind of Data Memory Barrier. 
+    This function acts as a special kind of Data Memory Barrier.
     It completes when all explicit memory accesses before this instruction complete.
  */
-__attribute__( ( always_inline ) ) static __INLINE void __DSB(void)
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void)
 {
   __ASM volatile ("dsb");
 }
@@ -329,10 +360,10 @@
 
 /** \brief  Data Memory Barrier
 
-    This function ensures the apparent order of the explicit memory operations before 
+    This function ensures the apparent order of the explicit memory operations before
     and after the instruction, without ensuring their completion.
  */
-__attribute__( ( always_inline ) ) static __INLINE void __DMB(void)
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void)
 {
   __ASM volatile ("dmb");
 }
@@ -345,10 +376,10 @@
     \param [in]    value  Value to reverse
     \return               Reversed value
  */
-__attribute__( ( always_inline ) ) static __INLINE uint32_t __REV(uint32_t value)
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value)
 {
   uint32_t result;
-  
+
   __ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) );
   return(result);
 }
@@ -361,10 +392,10 @@
     \param [in]    value  Value to reverse
     \return               Reversed value
  */
-__attribute__( ( always_inline ) ) static __INLINE uint32_t __REV16(uint32_t value)
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value)
 {
   uint32_t result;
-  
+
   __ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) );
   return(result);
 }
@@ -377,15 +408,42 @@
     \param [in]    value  Value to reverse
     \return               Reversed value
  */
-__attribute__( ( always_inline ) ) static __INLINE int32_t __REVSH(int32_t value)
+__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value)
 {
   uint32_t result;
-  
+
   __ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) );
   return(result);
 }
 
 
+/** \brief  Rotate Right in unsigned value (32 bit)
+
+    This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
+
+    \param [in]    value  Value to rotate
+    \param [in]    value  Number of Bits to rotate
+    \return               Rotated value
+ */
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
+{
+
+  __ASM volatile ("ror %0, %0, %1" : "+r" (op1) : "r" (op2) );
+  return(op1);
+}
+
+
+/** \brief  Breakpoint
+
+    This function causes the processor to enter Debug state.
+    Debug tools can use this to investigate system state when the instruction at a particular address is reached.
+
+    \param [in]    value  is ignored by the processor.
+                   If required, a debugger can use it to store additional information about the breakpoint.
+ */
+#define __BKPT(value)                       __ASM volatile ("bkpt "#value)
+
+
 #if       (__CORTEX_M >= 0x03)
 
 /** \brief  Reverse bit order of value
@@ -395,10 +453,10 @@
     \param [in]    value  Value to reverse
     \return               Reversed value
  */
-__attribute__( ( always_inline ) ) static __INLINE uint32_t __RBIT(uint32_t value)
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
 {
   uint32_t result;
-  
+
    __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
    return(result);
 }
@@ -411,10 +469,10 @@
     \param [in]    ptr  Pointer to data
     \return             value of type uint8_t at (*ptr)
  */
-__attribute__( ( always_inline ) ) static __INLINE uint8_t __LDREXB(volatile uint8_t *addr)
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
 {
     uint8_t result;
-  
+
    __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) );
    return(result);
 }
@@ -427,10 +485,10 @@
     \param [in]    ptr  Pointer to data
     \return        value of type uint16_t at (*ptr)
  */
-__attribute__( ( always_inline ) ) static __INLINE uint16_t __LDREXH(volatile uint16_t *addr)
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
 {
     uint16_t result;
-  
+
    __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) );
    return(result);
 }
@@ -443,10 +501,10 @@
     \param [in]    ptr  Pointer to data
     \return        value of type uint32_t at (*ptr)
  */
-__attribute__( ( always_inline ) ) static __INLINE uint32_t __LDREXW(volatile uint32_t *addr)
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
 {
     uint32_t result;
-  
+
    __ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) );
    return(result);
 }
@@ -461,10 +519,10 @@
     \return          0  Function succeeded
     \return          1  Function failed
  */
-__attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
 {
    uint32_t result;
-  
+
    __ASM volatile ("strexb %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
    return(result);
 }
@@ -479,10 +537,10 @@
     \return          0  Function succeeded
     \return          1  Function failed
  */
-__attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
 {
    uint32_t result;
-  
+
    __ASM volatile ("strexh %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
    return(result);
 }
@@ -497,10 +555,10 @@
     \return          0  Function succeeded
     \return          1  Function failed
  */
-__attribute__( ( always_inline ) ) static __INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
 {
    uint32_t result;
-  
+
    __ASM volatile ("strex %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
    return(result);
 }
@@ -511,7 +569,7 @@
     This function removes the exclusive lock which is created by LDREX.
 
  */
-__attribute__( ( always_inline ) ) static __INLINE void __CLREX(void)
+__attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void)
 {
   __ASM volatile ("clrex");
 }
@@ -556,10 +614,10 @@
     \param [in]  value  Value to count the leading zeros
     \return             number of leading zeros in value
  */
-__attribute__( ( always_inline ) ) static __INLINE uint8_t __CLZ(uint32_t value)
+__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value)
 {
   uint8_t result;
-  
+
   __ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) );
   return(result);
 }