mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

vendor/NXP/LPC1768/hal/serial_api.c

Committer:
humlet
Date:
2013-06-30
Revision:
11:f9e72c209510
Parent:
10:3bc89ef62ce7

File content as of revision 11:f9e72c209510:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// math.h required for floating point operations for baud rate calculation
#include <math.h>
#include <string.h>

#include "serial_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"

/******************************************************************************
 * INITIALIZATION
 ******************************************************************************/
#define UART_NUM    4

static const PinMap PinMap_UART_TX[] = {
    {P0_0,  UART_3, 2},
    {P0_2,  UART_0, 1},
    {P0_10, UART_2, 1},
    {P0_15, UART_1, 1},
    {P0_25, UART_3, 3},
    {P2_0 , UART_1, 2},
    {P2_8 , UART_2, 2},
    {P4_28, UART_3, 3},
    {NC   , NC    , 0}
};

static const PinMap PinMap_UART_RX[] = {
    {P0_1 , UART_3, 2},
    {P0_3 , UART_0, 1},
    {P0_11, UART_2, 1},
    {P0_16, UART_1, 1},
    {P0_26, UART_3, 3},
    {P2_1 , UART_1, 2},
    {P2_9 , UART_2, 2},
    {P4_29, UART_3, 3},
    {NC   , NC    , 0}
};

static uint32_t serial_irq_ids[UART_NUM] = {0};
static uart_irq_handler irq_handler;

int stdio_uart_inited = 0;
serial_t stdio_uart;

void serial_init(serial_t *obj, PinName tx, PinName rx) {
    int is_stdio_uart = 0;
    
    // determine the UART to use
    UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
    UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
    UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
    if ((int)uart == NC) {
        error("Serial pinout mapping failed");
    }
    
    obj->uart = (LPC_UART_TypeDef *)uart;
    // enable power
    switch (uart) {
        case UART_0: LPC_SC->PCONP |= 1 <<  3; break;
        case UART_1: LPC_SC->PCONP |= 1 <<  4; break;
        case UART_2: LPC_SC->PCONP |= 1 << 24; break;
        case UART_3: LPC_SC->PCONP |= 1 << 25; break;
    }
    
    // enable fifos and default rx trigger level
    obj->uart->FCR = 1 << 0  // FIFO Enable - 0 = Disables, 1 = Enabled
                   | 0 << 1  // Rx Fifo Reset
                   | 0 << 2  // Tx Fifo Reset
                   | 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars

    // disable irqs
    obj->uart->IER = 0 << 0  // Rx Data available irq enable
                   | 0 << 1  // Tx Fifo empty irq enable
                   | 0 << 2; // Rx Line Status irq enable
    
    // set default baud rate and format
    serial_baud  (obj, 9600);
    serial_format(obj, 8, ParityNone, 1);
    
    // pinout the chosen uart
    pinmap_pinout(tx, PinMap_UART_TX);
    pinmap_pinout(rx, PinMap_UART_RX);
    
    // set rx/tx pins in PullUp mode
    pin_mode(tx, PullUp);
    pin_mode(rx, PullUp);
    
    switch (uart) {
        case UART_0: obj->index = 0; break;
        case UART_1: obj->index = 1; break;
        case UART_2: obj->index = 2; break;
        case UART_3: obj->index = 3; break;
    }
    
    is_stdio_uart = (uart == STDIO_UART) ? (1) : (0);
    
    if (is_stdio_uart) {
        stdio_uart_inited = 1;
        memcpy(&stdio_uart, obj, sizeof(serial_t));
    }
}

void serial_free(serial_t *obj) {
    serial_irq_ids[obj->index] = 0;
}

// serial_baud
// set the baud rate, taking in to account the current SystemFrequency
void serial_baud(serial_t *obj, int baudrate) {
    // The LPC2300 and LPC1700 have a divider and a fractional divider to control the
    // baud rate. The formula is:
    //
    // Baudrate = (1 / PCLK) * 16 * DL * (1 + DivAddVal / MulVal)
    //   where:
    //     1 < MulVal <= 15
    //     0 <= DivAddVal < 14
    //     DivAddVal < MulVal
    //
    // set pclk to /1
    switch ((int)obj->uart) {
        case UART_0: LPC_SC->PCLKSEL0 &= ~(0x3 <<  6); LPC_SC->PCLKSEL0 |= (0x1 <<  6); break;
        case UART_1: LPC_SC->PCLKSEL0 &= ~(0x3 <<  8); LPC_SC->PCLKSEL0 |= (0x1 <<  8); break;
        case UART_2: LPC_SC->PCLKSEL1 &= ~(0x3 << 16); LPC_SC->PCLKSEL1 |= (0x1 << 16); break;
        case UART_3: LPC_SC->PCLKSEL1 &= ~(0x3 << 18); LPC_SC->PCLKSEL1 |= (0x1 << 18); break;
        default: error("serial_baud"); break;
    }
    
    uint32_t PCLK = SystemCoreClock;
    
    // First we check to see if the basic divide with no DivAddVal/MulVal
    // ratio gives us an integer result. If it does, we set DivAddVal = 0,
    // MulVal = 1. Otherwise, we search the valid ratio value range to find
    // the closest match. This could be more elegant, using search methods
    // and/or lookup tables, but the brute force method is not that much
    // slower, and is more maintainable.
    uint16_t DL = PCLK / (16 * baudrate);

    uint8_t DivAddVal = 0;
    uint8_t MulVal = 1;
    int hit = 0;
    uint16_t dlv;
    uint8_t mv, dav;
    if ((PCLK % (16 * baudrate)) != 0) {     // Checking for zero remainder
        float err_best = (float) baudrate;
        uint16_t dlmax = DL;
        for ( dlv = (dlmax/2); (dlv <= dlmax) && !hit; dlv++) {
            for ( mv = 1; mv <= 15; mv++) {
                for ( dav = 1; dav < mv; dav++) {
                    float ratio = 1.0f + ((float) dav / (float) mv);
                    float calcbaud = (float)PCLK / (16.0f * (float) dlv * ratio);
                    float err = fabs(((float) baudrate - calcbaud) / (float) baudrate);
                    if (err < err_best) {
                        DL = dlv;
                        DivAddVal = dav;
                        MulVal = mv;
                        err_best = err;
                        if (err < 0.001f) {
                            hit = 1;
                        }
                    }
                }
            }
        }
    }
    
    // set LCR[DLAB] to enable writing to divider registers
    obj->uart->LCR |= (1 << 7);
    
    // set divider values
    obj->uart->DLM = (DL >> 8) & 0xFF;
    obj->uart->DLL = (DL >> 0) & 0xFF;
    obj->uart->FDR = (uint32_t) DivAddVal << 0
                   | (uint32_t) MulVal    << 4;
    
    // clear LCR[DLAB]
    obj->uart->LCR &= ~(1 << 7);
}

void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
    // 0: 1 stop bits, 1: 2 stop bits
    if (stop_bits != 1 && stop_bits != 2) {
        error("Invalid stop bits specified");
    }
    stop_bits -= 1;
    
    // 0: 5 data bits ... 3: 8 data bits
    if (data_bits < 5 || data_bits > 8) {
        error("Invalid number of bits (%d) in serial format, should be 5..8", data_bits);
    }
    data_bits -= 5;

    int parity_enable, parity_select;
    switch (parity) {
        case ParityNone: parity_enable = 0; parity_select = 0; break;
        case ParityOdd : parity_enable = 1; parity_select = 0; break;
        case ParityEven: parity_enable = 1; parity_select = 1; break;
        case ParityForced1: parity_enable = 1; parity_select = 2; break;
        case ParityForced0: parity_enable = 1; parity_select = 3; break;
        default:
            error("Invalid serial parity setting");
            return;
    }
    
    obj->uart->LCR = data_bits            << 0
                   | stop_bits            << 2
                   | parity_enable        << 3
                   | parity_select        << 4;
}

/******************************************************************************
 * INTERRUPTS HANDLING
 ******************************************************************************/
static inline void uart_irq(uint32_t iir, uint32_t index) {
    // [Chapter 14] LPC17xx UART0/2/3: UARTn Interrupt Handling
    SerialIrq irq_type;
    switch (iir) {
        case 1: irq_type = TxIrq; break;
        case 2: irq_type = RxIrq; break;
        default: return;
    }
    
    if (serial_irq_ids[index] != 0)
        irq_handler(serial_irq_ids[index], irq_type);
}

void uart0_irq() {uart_irq((LPC_UART0->IIR >> 1) & 0x7, 0);}
void uart1_irq() {uart_irq((LPC_UART1->IIR >> 1) & 0x7, 1);}
void uart2_irq() {uart_irq((LPC_UART2->IIR >> 1) & 0x7, 2);}
void uart3_irq() {uart_irq((LPC_UART3->IIR >> 1) & 0x7, 3);}

void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
    irq_handler = handler;
    serial_irq_ids[obj->index] = id;
}

void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
    IRQn_Type irq_n = (IRQn_Type)0;
    uint32_t vector = 0;
    switch ((int)obj->uart) {
        case UART_0: irq_n=UART0_IRQn; vector = (uint32_t)&uart0_irq; break;
        case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break;
        case UART_2: irq_n=UART2_IRQn; vector = (uint32_t)&uart2_irq; break;
        case UART_3: irq_n=UART3_IRQn; vector = (uint32_t)&uart3_irq; break;
    }
    
    if (enable) {
        obj->uart->IER |= 1 << irq;
        NVIC_SetVector(irq_n, vector);
        NVIC_EnableIRQ(irq_n);
    } else { // disable
        int all_disabled = 0;
        SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
        obj->uart->IER &= ~(1 << irq);
        all_disabled = (obj->uart->IER & (1 << other_irq)) == 0;
        if (all_disabled)
            NVIC_DisableIRQ(irq_n);
    }
}

/******************************************************************************
 * READ/WRITE
 ******************************************************************************/
int serial_getc(serial_t *obj) {
    while (!serial_readable(obj));
    return obj->uart->RBR;
}

void serial_putc(serial_t *obj, int c) {
    while (!serial_writable(obj));
    obj->uart->THR = c;
    
    uint32_t lsr = obj->uart->LSR;
    lsr = lsr;
    uint32_t thr = obj->uart->THR;
    thr = thr;
}

int serial_readable(serial_t *obj) {
    return obj->uart->LSR & 0x01;
}

int serial_writable(serial_t *obj) {
    return obj->uart->LSR & 0x20;
}

void serial_clear(serial_t *obj) {
    obj->uart->FCR = 1 << 1  // rx FIFO reset
                   | 1 << 2  // tx FIFO reset
                   | 0 << 6; // interrupt depth
}

void serial_pinout_tx(PinName tx) {
    pinmap_pinout(tx, PinMap_UART_TX);
}