mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/cmsis/TARGET_STM/TARGET_NUCLEO_F103RB/system_stm32f10x.c

Committer:
mbed_official
Date:
2014-03-27
Revision:
139:e3413eddde57
Parent:
84:f54042cbc282
Child:
167:d5744491c362

File content as of revision 139:e3413eddde57:

/**
  ******************************************************************************
  * @file    system_stm32f10x.c
  * @author  MCD Application Team
  * @version V3.6.1
  * @date    05-March-2012
  * @brief   CMSIS Cortex-M3 Device Peripheral Access Layer System Source File.
  * 
  * 1.  This file provides two functions and one global variable to be called from 
  *     user application:
  *      - SystemInit(): Setups the system clock (System clock source, PLL Multiplier
  *                      factors, AHB/APBx prescalers and Flash settings). 
  *                      This function is called at startup just after reset and 
  *                      before branch to main program. This call is made inside
  *                      the "startup_stm32f10x_xx.s" file.
  *
  *      - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
  *                                  by the user application to setup the SysTick 
  *                                  timer or configure other parameters.
  *                                     
  *      - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
  *                                 be called whenever the core clock is changed
  *                                 during program execution.
  *
  * 2. After each device reset the HSI (8 MHz) is used as system clock source.
  *    Then SystemInit() function is called, in "startup_stm32f10x_xx.s" file, to
  *    configure the system clock before to branch to main program.
  *
  * 3. If the system clock source selected by user fails to startup, the SystemInit()
  *    function will do nothing and HSI still used as system clock source. User can 
  *    add some code to deal with this issue inside the SetSysClock() function.
  *
  * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depedning on
  *    the product used), refer to "HSE_VALUE" define in "stm32f10x.h" file. 
  *    When HSE is used as system clock source, directly or through PLL, and you
  *    are using different crystal you have to adapt the HSE value to your own
  *    configuration.
  * 5. This file configures the system clock as follows:
  *-----------------------------------------------------------------------------
  * System clock source                | 1- PLL_HSE_EXTC        | 3- PLL_HSI
  *                                    | (external 8 MHz clock) | (internal 8 MHz)
  *                                    | 2- PLL_HSE_XTAL        |
  *                                    | (external 8 MHz xtal)  |
  *-----------------------------------------------------------------------------
  * SYSCLK(MHz)                        | 72                     | 64
  *-----------------------------------------------------------------------------
  * AHBCLK (MHz)                       | 72                     | 64
  *-----------------------------------------------------------------------------
  * APB1CLK (MHz)                      | 36                     | 32
  *-----------------------------------------------------------------------------
  * APB2CLK (MHz)                      | 72                     | 64
  *-----------------------------------------------------------------------------
  * USB capable (48 MHz precise clock) | YES                    | NO
  *-----------------------------------------------------------------------------  
 *******************************************************************************
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************
 */

/** @addtogroup CMSIS
  * @{
  */

/** @addtogroup stm32f10x_system
  * @{
  */  
  
/** @addtogroup STM32F10x_System_Private_Includes
  * @{
  */

#include "stm32f10x.h"

/**
  * @}
  */

/** @addtogroup STM32F10x_System_Private_TypesDefinitions
  * @{
  */

/**
  * @}
  */

/** @addtogroup STM32F10x_System_Private_Defines
  * @{
  */

/*!< Uncomment the following line if you need to relocate your vector Table in
     Internal SRAM. */ 
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET  0x0 /*!< Vector Table base offset field. 
                                  This value must be a multiple of 0x200. */
/**
  * @}
  */

/** @addtogroup STM32F10x_System_Private_Macros
  * @{
  */

/* Select the clock sources (other than HSI) to start with (0=OFF, 1=ON) */
#define USE_PLL_HSE_EXTC (1) /* Use external clock */
#define USE_PLL_HSE_XTAL (1) /* Use external xtal */

/**
  * @}
  */

/** @addtogroup STM32F10x_System_Private_Variables
  * @{
  */

uint32_t SystemCoreClock = 64000000; /* Default with HSI. Will be updated if HSE is used */

__I uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
/**
  * @}
  */

/** @addtogroup STM32F10x_System_Private_FunctionPrototypes
  * @{
  */

void SetSysClock(void);

#if (USE_PLL_HSE_XTAL != 0) || (USE_PLL_HSE_EXTC != 0)
uint8_t SetSysClock_PLL_HSE(uint8_t bypass);
#endif

uint8_t SetSysClock_PLL_HSI(void);

#ifdef DATA_IN_ExtSRAM
  static void SystemInit_ExtMemCtl(void); 
#endif /* DATA_IN_ExtSRAM */

/**
  * @}
  */

/** @addtogroup STM32F10x_System_Private_Functions
  * @{
  */

/**
  * @brief  Setup the microcontroller system
  *         Initialize the Embedded Flash Interface, the PLL and update the 
  *         SystemCoreClock variable.
  * @note   This function should be used only after reset.
  * @param  None
  * @retval None
  */
void SystemInit (void)
{
  /* Reset the RCC clock configuration to the default reset state(for debug purpose) */
  /* Set HSION bit */
  RCC->CR |= (uint32_t)0x00000001;

  /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */
#ifndef STM32F10X_CL
  RCC->CFGR &= (uint32_t)0xF8FF0000;
#else
  RCC->CFGR &= (uint32_t)0xF0FF0000;
#endif /* STM32F10X_CL */   
  
  /* Reset HSEON, CSSON and PLLON bits */
  RCC->CR &= (uint32_t)0xFEF6FFFF;

  /* Reset HSEBYP bit */
  RCC->CR &= (uint32_t)0xFFFBFFFF;

  /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */
  RCC->CFGR &= (uint32_t)0xFF80FFFF;

#ifdef STM32F10X_CL
  /* Reset PLL2ON and PLL3ON bits */
  RCC->CR &= (uint32_t)0xEBFFFFFF;

  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x00FF0000;

  /* Reset CFGR2 register */
  RCC->CFGR2 = 0x00000000;
#elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x009F0000;

  /* Reset CFGR2 register */
  RCC->CFGR2 = 0x00000000;      
#else
  /* Disable all interrupts and clear pending bits  */
  RCC->CIR = 0x009F0000;
#endif /* STM32F10X_CL */
    
#if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)
  #ifdef DATA_IN_ExtSRAM
    SystemInit_ExtMemCtl(); 
  #endif /* DATA_IN_ExtSRAM */
#endif 

  /* Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers */
  /* Configure the Flash Latency cycles and enable prefetch buffer */
  SetSysClock();

#ifdef VECT_TAB_SRAM
  SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#else
  SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */
#endif 
}

/**
  * @brief  Update SystemCoreClock variable according to Clock Register Values.
  *         The SystemCoreClock variable contains the core clock (HCLK), it can
  *         be used by the user application to setup the SysTick timer or configure
  *         other parameters.
  *           
  * @note   Each time the core clock (HCLK) changes, this function must be called
  *         to update SystemCoreClock variable value. Otherwise, any configuration
  *         based on this variable will be incorrect.         
  *     
  * @note   - The system frequency computed by this function is not the real 
  *           frequency in the chip. It is calculated based on the predefined 
  *           constant and the selected clock source:
  *             
  *           - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
  *                                              
  *           - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
  *                          
  *           - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) 
  *             or HSI_VALUE(*) multiplied by the PLL factors.
  *         
  *         (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value
  *             8 MHz) but the real value may vary depending on the variations
  *             in voltage and temperature.   
  *    
  *         (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value
  *              8 MHz or 25 MHz, depedning on the product used), user has to ensure
  *              that HSE_VALUE is same as the real frequency of the crystal used.
  *              Otherwise, this function may have wrong result.
  *                
  *         - The result of this function could be not correct when using fractional
  *           value for HSE crystal.
  * @param  None
  * @retval None
  */
void SystemCoreClockUpdate (void)
{
  uint32_t tmp = 0, pllmull = 0, pllsource = 0;

#ifdef  STM32F10X_CL
  uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0;
#endif /* STM32F10X_CL */

#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
  uint32_t prediv1factor = 0;
#endif /* STM32F10X_LD_VL or STM32F10X_MD_VL or STM32F10X_HD_VL */
    
  /* Get SYSCLK source -------------------------------------------------------*/
  tmp = RCC->CFGR & RCC_CFGR_SWS;
  
  switch (tmp)
  {
    case 0x00:  /* HSI used as system clock */
      SystemCoreClock = HSI_VALUE;
      break;
    case 0x04:  /* HSE used as system clock */
      SystemCoreClock = HSE_VALUE;
      break;
    case 0x08:  /* PLL used as system clock */

      /* Get PLL clock source and multiplication factor ----------------------*/
      pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
      pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
      
#ifndef STM32F10X_CL      
      pllmull = ( pllmull >> 18) + 2;
      
      if (pllsource == 0x00)
      {
        /* HSI oscillator clock divided by 2 selected as PLL clock entry */
        SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
      }
      else
      {
 #if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
       prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
       /* HSE oscillator clock selected as PREDIV1 clock entry */
       SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; 
 #else
        /* HSE selected as PLL clock entry */
        if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET)
        {/* HSE oscillator clock divided by 2 */
          SystemCoreClock = (HSE_VALUE >> 1) * pllmull;
        }
        else
        {
          SystemCoreClock = HSE_VALUE * pllmull;
        }
 #endif
      }
#else
      pllmull = pllmull >> 18;
      
      if (pllmull != 0x0D)
      {
         pllmull += 2;
      }
      else
      { /* PLL multiplication factor = PLL input clock * 6.5 */
        pllmull = 13 / 2; 
      }
            
      if (pllsource == 0x00)
      {
        /* HSI oscillator clock divided by 2 selected as PLL clock entry */
        SystemCoreClock = (HSI_VALUE >> 1) * pllmull;
      }
      else
      {/* PREDIV1 selected as PLL clock entry */
        
        /* Get PREDIV1 clock source and division factor */
        prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC;
        prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
        
        if (prediv1source == 0)
        { 
          /* HSE oscillator clock selected as PREDIV1 clock entry */
          SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;          
        }
        else
        {/* PLL2 clock selected as PREDIV1 clock entry */
          
          /* Get PREDIV2 division factor and PLL2 multiplication factor */
          prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1;
          pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; 
          SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull;                         
        }
      }
#endif /* STM32F10X_CL */ 
      break;

    default:
      SystemCoreClock = HSI_VALUE;
      break;
  }
  
  /* Compute HCLK clock frequency ----------------*/
  /* Get HCLK prescaler */
  tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)];
  /* HCLK clock frequency */
  SystemCoreClock >>= tmp;  
}

/**
  * @brief  Configures the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers.
  * @param  None
  * @retval None
  */
void SetSysClock(void)
{
  /* 1- Try to start with HSE and external clock */
#if USE_PLL_HSE_EXTC != 0
  if (SetSysClock_PLL_HSE(1) == 0)
#endif
  {
    /* 2- If fail try to start with HSE and external xtal */
    #if USE_PLL_HSE_XTAL != 0
    if (SetSysClock_PLL_HSE(0) == 0)
    #endif
    {
      /* 3- If fail start with HSI clock */
      if (SetSysClock_PLL_HSI() == 0)
      {
        while(1)
        {
          // [TODO] Put something here to tell the user that a problem occured...
        }
      }
    }
  }
  
  /* Output SYSCLK on MCO pin(PA8) for debugging purpose */
  /*
  // Enable GPIOA clock
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
  GPIO_InitTypeDef GPIO_InitStructure;
  GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_8;
  GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(GPIOA, &GPIO_InitStructure);
  // Select the clock to output
  RCC_MCOConfig(RCC_MCO_SYSCLK);
  */
}

/**
  * @brief  Setup the external memory controller. Called in startup_stm32f10x.s 
  *          before jump to __main
  * @param  None
  * @retval None
  */ 
#ifdef DATA_IN_ExtSRAM
/**
  * @brief  Setup the external memory controller. 
  *         Called in startup_stm32f10x_xx.s/.c before jump to main.
  * 	      This function configures the external SRAM mounted on STM3210E-EVAL
  *         board (STM32 High density devices). This SRAM will be used as program
  *         data memory (including heap and stack).
  * @param  None
  * @retval None
  */ 
void SystemInit_ExtMemCtl(void) 
{
/*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is 
  required, then adjust the Register Addresses */

  /* Enable FSMC clock */
  RCC->AHBENR = 0x00000114;
  
  /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */  
  RCC->APB2ENR = 0x000001E0;
  
/* ---------------  SRAM Data lines, NOE and NWE configuration ---------------*/
/*----------------  SRAM Address lines configuration -------------------------*/
/*----------------  NOE and NWE configuration --------------------------------*/  
/*----------------  NE3 configuration ----------------------------------------*/
/*----------------  NBL0, NBL1 configuration ---------------------------------*/
  
  GPIOD->CRL = 0x44BB44BB;  
  GPIOD->CRH = 0xBBBBBBBB;

  GPIOE->CRL = 0xB44444BB;  
  GPIOE->CRH = 0xBBBBBBBB;

  GPIOF->CRL = 0x44BBBBBB;  
  GPIOF->CRH = 0xBBBB4444;

  GPIOG->CRL = 0x44BBBBBB;  
  GPIOG->CRH = 0x44444B44;
   
/*----------------  FSMC Configuration ---------------------------------------*/  
/*----------------  Enable FSMC Bank1_SRAM Bank ------------------------------*/
  
  FSMC_Bank1->BTCR[4] = 0x00001011;
  FSMC_Bank1->BTCR[5] = 0x00000200;
}
#endif /* DATA_IN_ExtSRAM */

#if (USE_PLL_HSE_XTAL != 0) || (USE_PLL_HSE_EXTC != 0)
/******************************************************************************/
/*            PLL (clocked by HSE) used as System clock source                */
/******************************************************************************/
uint8_t SetSysClock_PLL_HSE(uint8_t bypass)
{
  __IO uint32_t StartUpCounter = 0;
  __IO uint32_t HSEStatus = 0;

  /* Bypass HSE: can be done only if HSE is OFF */
  RCC->CR &= ((uint32_t)~RCC_CR_HSEON); /* To be sure HSE is OFF */  
  if (bypass != 0)
  {
    RCC->CR |= ((uint32_t)RCC_CR_HSEBYP);
  }
  else
  {
    RCC->CR &= ((uint32_t)~RCC_CR_HSEBYP);
  }
  
  /* Enable HSE */
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);
  
  /* Wait till HSE is ready */
  do
  {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

  /* Check if HSE has started correctly */
  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
  {
    /* Enable Prefetch Buffer */
    FLASH->ACR |= FLASH_ACR_PRFTBE;

    /* Flash wait states
       0WS for 0  < SYSCLK <= 24 MHz
       1WS for 24 < SYSCLK <= 48 MHz
       2WS for 48 < SYSCLK <= 72 MHz */
    FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
    FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2; 

    /* PLL configuration */
    /* SYSCLK = 72 MHz (8 MHz * 9) */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9
                          | RCC_CFGR_HPRE_DIV1    /* HCLK   = 72 MHz */
                          | RCC_CFGR_PPRE2_DIV1   /* PCLK2  = 72 MHz */
                          | RCC_CFGR_PPRE1_DIV2); /* PCLK1  = 36 MHz */
                                                  /* USBCLK = 48 MHz (72 MHz / 1.5) --> USB OK */

    /* Enable PLL */
    RCC->CR |= RCC_CR_PLLON;

    /* Wait till PLL is ready */
    while((RCC->CR & RCC_CR_PLLRDY) == 0)
    {
    }
    
    /* Select PLL as system clock source */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
    RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;

    /* Wait till PLL is used as system clock source */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
    {
    }

    return 1; // OK
  }
  else
  {
    return 0; // FAIL
  }
}
#endif

/******************************************************************************/
/*            PLL (clocked by HSI) used as System clock source                */
/******************************************************************************/
uint8_t SetSysClock_PLL_HSI(void)
{
  __IO uint32_t StartUpCounter = 0;
  
  /* Enable Prefetch Buffer */
  FLASH->ACR |= FLASH_ACR_PRFTBE;

  /* Flash wait states
     0WS for 0  < SYSCLK <= 24 MHz
     1WS for 24 < SYSCLK <= 48 MHz
     2WS for 48 < SYSCLK <= 72 MHz */
  FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
  FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;    

  /* PLL configuration
     PLLCLK = 64 MHz (HSI/2 * 16) */
  RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));
  RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSI_Div2 | RCC_CFGR_PLLMULL16
                        | RCC_CFGR_HPRE_DIV1    /* HCLK   = 64 MHz */
                        | RCC_CFGR_PPRE2_DIV1   /* PCLK2  = 64 MHz */
                        | RCC_CFGR_PPRE1_DIV2); /* PCLK1  = 32 MHz */    
                                                /* USBCLK = 42.667 MHz (64 MHz / 1.5) --> USB NOT POSSIBLE */

  /* Enable PLL */
  RCC->CR |= RCC_CR_PLLON;

  /* Wait till PLL is ready */
  while((RCC->CR & RCC_CR_PLLRDY) == 0)
  {
  }

  /* Select PLL as system clock source */
  RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
  RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;

  /* Wait till PLL is used as system clock source */
  while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
  {
  }

  return 1; // OK
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/