mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_STM/TARGET_STM32F0/us_ticker.c

Committer:
mbed_official
Date:
2015-07-06
Revision:
583:967d0d8b7aed
Parent:
469:fc4922e0c183
Child:
630:825f75ca301e

File content as of revision 583:967d0d8b7aed:

/* mbed Microcontroller Library
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include <stddef.h>
#include "us_ticker_api.h"
#include "PeripheralNames.h"


#if defined(TARGET_STM32F030R8) || defined(TARGET_STM32F070RB)

// Timer selection
#define TIM_MST TIM1

static TIM_HandleTypeDef TimMasterHandle;
static int us_ticker_inited = 0;

volatile uint32_t SlaveCounter = 0;
volatile uint32_t oc_int_part = 0;
volatile uint16_t oc_rem_part = 0;

void set_compare(uint16_t count)
{
    TimMasterHandle.Instance = TIM_MST;
    // Set new output compare value
    __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_1, count);
    // Enable IT
    __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}

void us_ticker_init(void)
{
    if (us_ticker_inited) return;
    us_ticker_inited = 1;

    HAL_InitTick(0); // The passed value is not used
}

uint32_t us_ticker_read()
{
    uint32_t counter, counter2;
    if (!us_ticker_inited) us_ticker_init();
    // A situation might appear when Master overflows right after Slave is read and before the
    // new (overflowed) value of Master is read. Which would make the code below consider the
    // previous (incorrect) value of Slave and the new value of Master, which would return a
    // value in the past. Avoid this by computing consecutive values of the timer until they
    // are properly ordered.
    counter = (uint32_t)(SlaveCounter << 16);
    counter += TIM_MST->CNT;
    while (1) {
        counter2 = (uint32_t)(SlaveCounter << 16);
        counter2 += TIM_MST->CNT;
        if (counter2 > counter) {
            break;
        }
        counter = counter2;
    }
    return counter2;
}

void us_ticker_set_interrupt(timestamp_t timestamp)
{
    int delta = (int)((uint32_t)timestamp - us_ticker_read());
    uint16_t cval = TIM_MST->CNT;

    if (delta <= 0) { // This event was in the past
        us_ticker_irq_handler();
    } else {
        oc_int_part = (uint32_t)(delta >> 16);
        oc_rem_part = (uint16_t)(delta & 0xFFFF);
        if (oc_rem_part <= (0xFFFF - cval)) {
            set_compare(cval + oc_rem_part);
            oc_rem_part = 0;
        } else {
            set_compare(0xFFFF);
            oc_rem_part = oc_rem_part - (0xFFFF - cval);
        }
    }
}

void us_ticker_disable_interrupt(void)
{
    TimMasterHandle.Instance = TIM_MST;
    __HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}

void us_ticker_clear_interrupt(void)
{
    TimMasterHandle.Instance = TIM_MST;
    if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) {
        __HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1);
    }
}

#elif defined (TARGET_STM32F051R8)

// Timer selection:
#define TIM_MST      TIM1
#define TIM_MST_UP_IRQ     TIM1_BRK_UP_TRG_COM_IRQn
#define TIM_MST_OC_IRQ     TIM1_CC_IRQn
#define TIM_MST_RCC  __TIM1_CLK_ENABLE()

static TIM_HandleTypeDef TimMasterHandle;


static int us_ticker_inited = 0;
static volatile uint32_t SlaveCounter = 0;
static volatile uint32_t oc_int_part = 0;
static volatile uint16_t oc_rem_part = 0;

void set_compare(uint16_t count)
{
    TimMasterHandle.Instance = TIM_MST;

    // Set new output compare value
    __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_1, count);
    // Enable IT
    __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}

// Used to increment the slave counter
static void tim_update_irq_handler(void)
{
    TimMasterHandle.Instance = TIM_MST;

    // Clear Update interrupt flag
    if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_UPDATE) == SET) {
        __HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_UPDATE);
        SlaveCounter++;
    }
}

// Used by interrupt system
static void tim_oc_irq_handler(void)
{
    uint16_t cval = TIM_MST->CNT;
    TimMasterHandle.Instance = TIM_MST;

    // Clear CC1 interrupt flag
    if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) {
        __HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1);
    }
    if (oc_rem_part > 0) {
        set_compare(oc_rem_part); // Finish the remaining time left
        oc_rem_part = 0;
    } else {
        if (oc_int_part > 0) {
            set_compare(0xFFFF);
            oc_rem_part = cval; // To finish the counter loop the next time
            oc_int_part--;
        } else {
            us_ticker_irq_handler();
        }
    }

}

void us_ticker_init(void)
{

    if (us_ticker_inited) return;
    us_ticker_inited = 1;

    // Enable timer clock
    TIM_MST_RCC;

    // Configure time base
    TimMasterHandle.Instance = TIM_MST;
    TimMasterHandle.Init.Period        = 0xFFFF;
    TimMasterHandle.Init.Prescaler         = (uint32_t)(SystemCoreClock / 1000000) - 1; // 1 �s tick
    TimMasterHandle.Init.ClockDivision     = 0;
    TimMasterHandle.Init.CounterMode       = TIM_COUNTERMODE_UP;
    HAL_TIM_Base_Init(&TimMasterHandle);

    // Configure interrupts
    __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_UPDATE);

    // Update interrupt used for 32-bit counter
    NVIC_SetVector(TIM_MST_UP_IRQ, (uint32_t)tim_update_irq_handler);
    NVIC_EnableIRQ(TIM_MST_UP_IRQ);

    // Output compare interrupt used for timeout feature
    NVIC_SetVector(TIM_MST_OC_IRQ, (uint32_t)tim_oc_irq_handler);
    NVIC_EnableIRQ(TIM_MST_OC_IRQ);

    // Enable timer
    HAL_TIM_Base_Start(&TimMasterHandle);
}

uint32_t us_ticker_read()
{
    uint32_t counter, counter2;
    if (!us_ticker_inited) us_ticker_init();
    // A situation might appear when Master overflows right after Slave is read and before the
    // new (overflowed) value of Master is read. Which would make the code below consider the
    // previous (incorrect) value of Slave and the new value of Master, which would return a
    // value in the past. Avoid this by computing consecutive values of the timer until they
    // are properly ordered.
    counter = (uint32_t)(SlaveCounter << 16);
    counter += TIM_MST->CNT;
    while (1) {
        counter2 = (uint32_t)(SlaveCounter << 16);
        counter2 += TIM_MST->CNT;
        if (counter2 > counter) {
            break;
        }
        counter = counter2;
    }
    return counter2;
}

void us_ticker_set_interrupt(timestamp_t timestamp)
{
    int delta = (int)((uint32_t)timestamp - us_ticker_read());
    uint16_t cval = TIM_MST->CNT;

    if (delta <= 0) { // This event was in the past
        us_ticker_irq_handler();
    } else {
        oc_int_part = (uint32_t)(delta >> 16);
        oc_rem_part = (uint16_t)(delta & 0xFFFF);
        if (oc_rem_part <= (0xFFFF - cval)) {
            set_compare(cval + oc_rem_part);
            oc_rem_part = 0;
        } else {
            set_compare(0xFFFF);
            oc_rem_part = oc_rem_part - (0xFFFF - cval);
        }
    }
}

void us_ticker_disable_interrupt(void)
{
    TimMasterHandle.Instance = TIM_MST;
    __HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}

void us_ticker_clear_interrupt(void)
{
    TimMasterHandle.Instance = TIM_MST;
    if (__HAL_TIM_GET_FLAG(&TimMasterHandle, TIM_FLAG_CC1) == SET) {
        __HAL_TIM_CLEAR_FLAG(&TimMasterHandle, TIM_FLAG_CC1);
    }
}

#else

// 32-bit timer selection
#define TIM_MST TIM2

static TIM_HandleTypeDef TimMasterHandle;
static int us_ticker_inited = 0;

void us_ticker_init(void)
{
    if (us_ticker_inited) return;
    us_ticker_inited = 1;

    TimMasterHandle.Instance = TIM_MST;

    HAL_InitTick(0); // The passed value is not used
}

uint32_t us_ticker_read()
{
    if (!us_ticker_inited) us_ticker_init();
    return TIM_MST->CNT;
}

void us_ticker_set_interrupt(timestamp_t timestamp)
{
    // Set new output compare value
    __HAL_TIM_SetCompare(&TimMasterHandle, TIM_CHANNEL_1, (uint32_t)timestamp);
    // Enable IT
    __HAL_TIM_ENABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}

void us_ticker_disable_interrupt(void)
{
    __HAL_TIM_DISABLE_IT(&TimMasterHandle, TIM_IT_CC1);
}

void us_ticker_clear_interrupt(void)
{
    __HAL_TIM_CLEAR_IT(&TimMasterHandle, TIM_IT_CC1);
}
#endif