mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_STM/TARGET_NUCLEO_F103RB/pwmout_api.c

Committer:
mbed_official
Date:
2013-12-13
Revision:
58:3b55b7a41411
Parent:
56:99eb381a3269
Child:
70:c1fbde68b492

File content as of revision 58:3b55b7a41411:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "pwmout_api.h"

#include "cmsis.h"
#include "pinmap.h"
#include "error.h"

// Only TIM2 and TIM3 can be used (TIM1 and TIM4 are used by the us_ticker)
static const PinMap PinMap_PWM[] = {
    // TIM2 default
    //{PA_2,  PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM2_CH3 - ARDUINO D1
    //{PA_3,  PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM2_CH4 - ARDUINO D0
    // TIM2 full remap
    {PB_3,  PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 5)}, // TIM2fr_CH2 - ARDUINO D3
    //{PB_10, PWM_2, STM_PIN_DATA(GPIO_Mode_AF_PP, 5)}, // TIM2fr_CH3 - ARDUINO D6
    // TIM3 default
    //{PA_6,  PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH1 - ARDUINO D12
    //{PA_7,  PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 0)}, // TIM3_CH2 - ARDUINO D11
    // TIM3 full remap
    //{PC_7,  PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 6)}, // TIM3fr_CH2 - ARDUINO D9
    // TIM3 partial remap
    {PB_4,  PWM_3, STM_PIN_DATA(GPIO_Mode_AF_PP, 7)}, // TIM3pr_CH1 - ARDUINO D5
    {NC,    NC,    0}
};

void pwmout_init(pwmout_t* obj, PinName pin) {  
    // Get the peripheral name from the pin and assign it to the object
    obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
  
    if (obj->pwm == (PWMName)NC) {
        error("PWM pinout mapping failed");
    }
    
    // Enable TIM clock
    if (obj->pwm == PWM_2) RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
    if (obj->pwm == PWM_3) RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
 
    // Configure GPIO
    pinmap_pinout(pin, PinMap_PWM);
    
    obj->pin = pin;
    obj->period = 0;
    obj->pulse = 0;
    
    pwmout_period_us(obj, 20000); // 20 ms per default
}

void pwmout_free(pwmout_t* obj) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_DeInit(tim);
}

void pwmout_write(pwmout_t* obj, float value) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_OCInitTypeDef TIM_OCInitStructure;
  
    if (value < 0.0) {
        value = 0.0;
    } else if (value > 1.0) {
        value = 1.0;
    }

    //while(TIM_GetFlagStatus(tim, TIM_FLAG_Update) == RESET);
    //TIM_ClearFlag(tim, TIM_FLAG_Update);
    
    obj->pulse = (uint32_t)((float)obj->period * value);
    
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStructure.TIM_Pulse = obj->pulse;
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

    // Configure channel 1
    if (obj->pin == PB_4) {
        TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
        TIM_OC1Init(tim, &TIM_OCInitStructure);
    }

    // Configure channel 2
    if (obj->pin == PB_3) {
        TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable);
        TIM_OC2Init(tim, &TIM_OCInitStructure);
    }

    // Configure channel 3
    //if (obj->pin == PB_10) {
    //    TIM_OC3PreloadConfig(tim, TIM_OCPreload_Enable);
    //    TIM_OC3Init(tim, &TIM_OCInitStructure);
    //}

    // Configure channel 4
    //if (obj->pin == PA_3) {
    //    TIM_OC4PreloadConfig(tim, TIM_OCPreload_Enable);
    //    TIM_OC4Init(tim, &TIM_OCInitStructure);
    //}
}

float pwmout_read(pwmout_t* obj) {
    float value = 0;
    if (obj->period > 0) {
        value = (float)(obj->pulse) / (float)(obj->period);
    }
    return ((value > 1.0) ? (1.0) : (value));
}

void pwmout_period(pwmout_t* obj, float seconds) {
    pwmout_period_us(obj, seconds * 1000000.0f);
}

void pwmout_period_ms(pwmout_t* obj, int ms) {
    pwmout_period_us(obj, ms * 1000);
}

void pwmout_period_us(pwmout_t* obj, int us) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
    float dc = pwmout_read(obj);

    TIM_Cmd(tim, DISABLE);  
    
    obj->period = us;
  
    TIM_TimeBaseStructure.TIM_Period = obj->period - 1;
    TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(SystemCoreClock / 1000000) - 1; // 1 µs tick
    TIM_TimeBaseStructure.TIM_ClockDivision = 0;
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInit(tim, &TIM_TimeBaseStructure);

    // Set duty cycle again
    pwmout_write(obj, dc);
  
    TIM_ARRPreloadConfig(tim, ENABLE);    
    TIM_Cmd(tim, ENABLE);
}

void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
    pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}

void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
    pwmout_pulsewidth_us(obj, ms * 1000);
}

void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
    float value = (float)us / (float)obj->period;
    pwmout_write(obj, value);
}