mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_STM/TARGET_NUCLEO_F302R8/pwmout_api.c

Committer:
mbed_official
Date:
2014-03-19
Revision:
125:23cc3068a9e4
Child:
135:067cc8ba23da

File content as of revision 125:23cc3068a9e4:

/* mbed Microcontroller Library
 *******************************************************************************
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************
 */
#include "pwmout_api.h"

#include "cmsis.h"
#include "pinmap.h"
#include "error.h"

// TIM2 cannot be used because already used by the us_ticker
static const PinMap PinMap_PWM[] = {
  //{PA_0,  PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH1
  //{PA_1,  PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH2
    {PA_1,  PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_9)},  // TIM15_CH1N
    {PA_2,  PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_9)},  // TIM15_CH1
    {PA_3,  PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_9)},  // TIM15_CH2
  //{PA_5,  PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH1
    {PA_6,  PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1
    {PA_7,  PWM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM17_CH1
  //{PA_7,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH1N
    {PA_8,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH1
    {PA_9,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH2
  //{PA_9,  PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_10)}, // TIM2_CH3
    {PA_10, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH3
  //{PA_10, PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_10)}, // TIM2_CH4
    {PA_11, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_11)}, // TIM1_CH4
  //{PA_11, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH1N
    {PA_12, PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1
  //{PA_12, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH2N
    {PA_13, PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1N
  //{PA_15, PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH1
    
    {PB_0,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH2N
    {PB_1,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH3N
  //{PB_3,  PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH2
    {PB_4,  PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1
    {PB_5,  PWM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_10)}, // TIM17_CH1
    {PB_6,  PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1N
    {PB_7,  PWM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM17_CH1N
    {PB_8,  PWM_16, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM16_CH1
    {PB_9,  PWM_17, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM17_CH1
  //{PB_10, PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH3
  //{PB_11, PWM_2,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM2_CH4
    {PB_13, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH1N
    {PB_14, PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM15_CH1
  //{PB_14, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH2N
    {PB_15, PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_1)},  // TIM15_CH2
  //{PB_15, PWM_15, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_2)},  // TIM15_CH1N
  //{PB_15, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_4)},  // TIM1_CH3N
    
    {PC_0,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_2)},  // TIM1_CH1
    {PC_1,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_2)},  // TIM1_CH2
    {PC_2,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_2)},  // TIM1_CH3
    {PC_3,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_2)},  // TIM1_CH4
    {PC_13, PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_4)},  // TIM1_CH1N
    
    {PF_0,  PWM_1,  STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_6)},  // TIM1_CH3N
    
    {NC,    NC,     0}
};

void pwmout_init(pwmout_t* obj, PinName pin) {  
    // Get the peripheral name from the pin and assign it to the object
    obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
  
    if (obj->pwm == (PWMName)NC) {
        error("PWM pinout mapping failed");
    }
    
    // Enable TIM clock
    if (obj->pwm == PWM_1) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
    if (obj->pwm == PWM_15) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM15, ENABLE);
    if (obj->pwm == PWM_16) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM16, ENABLE);
    if (obj->pwm == PWM_17) RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM17, ENABLE);
    
    // Configure GPIO
    pinmap_pinout(pin, PinMap_PWM);
    
    obj->pin = pin;
    obj->period = 0;
    obj->pulse = 0;
    
    pwmout_period_us(obj, 20000); // 20 ms per default
}

void pwmout_free(pwmout_t* obj) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_DeInit(tim);
}

void pwmout_write(pwmout_t* obj, float value) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_OCInitTypeDef TIM_OCInitStructure;
  
    if (value < (float)0.0) {
        value = (float)0.0;
    } else if (value > (float)1.0) {
        value = (float)1.0;
    }
   
    obj->pulse = (uint32_t)((float)obj->period * value);

    // Configure channels    
    TIM_OCInitStructure.TIM_OCMode       = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_Pulse        = obj->pulse;
    TIM_OCInitStructure.TIM_OCPolarity   = TIM_OCPolarity_High;
    TIM_OCInitStructure.TIM_OCNPolarity  = TIM_OCPolarity_High;
    TIM_OCInitStructure.TIM_OCIdleState  = TIM_OCIdleState_Reset;
    TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
    
    switch (obj->pin) {
        // Channels 1
        //case PA_0:
        case PA_2:
        //case PA_5:
        case PA_6:
        case PA_7:
        case PA_8:
        case PA_12:
        //case PA_15:
        case PB_4:
        case PB_5:
        case PB_8:
        case PB_9:
        case PB_14:
        case PC_0:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC1Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 1N
        case PA_1:
        //case PA_7:
        //case PA_11:
        case PA_13:
        case PB_6:
        case PB_7:
        case PB_13:
        //case PB_15:
        case PC_13:
            TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
            TIM_OC1PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC1Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 2
        //case PA_1:
        case PA_3:
        case PA_9:
        //case PB_3:
        case PB_15:
        case PC_1:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC2Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 2N
        //case PA_12:
        case PB_0:
        //case PB_14:
            TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
            TIM_OC2PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC2Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 3
        //case PA_9:
        case PA_10:
        //case PB_10:
        case PC_2:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC3PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC3Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 3N
        case PB_1:
        case PF_0:
        //case PB_15:
            TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
            TIM_OC3PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC3Init(tim, &TIM_OCInitStructure);
            break;
        // Channels 4
        //case PA_10:
        case PA_11:
        //case PB_11:
        case PC_3:
            TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
            TIM_OC4PreloadConfig(tim, TIM_OCPreload_Enable);
            TIM_OC4Init(tim, &TIM_OCInitStructure);
            break;
        default:
            return;
    }   
}

float pwmout_read(pwmout_t* obj) {
    float value = 0;
    if (obj->period > 0) {
        value = (float)(obj->pulse) / (float)(obj->period);
    }
    return ((value > (float)1.0) ? ((float)1.0) : (value));
}

void pwmout_period(pwmout_t* obj, float seconds) {
    pwmout_period_us(obj, seconds * 1000000.0f);
}

void pwmout_period_ms(pwmout_t* obj, int ms) {
    pwmout_period_us(obj, ms * 1000);
}

void pwmout_period_us(pwmout_t* obj, int us) {
    TIM_TypeDef *tim = (TIM_TypeDef *)(obj->pwm);
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
    float dc = pwmout_read(obj);

    TIM_Cmd(tim, DISABLE);  
    
    obj->period = us;
  
    TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
    TIM_TimeBaseStructure.TIM_Period = obj->period - 1;
    TIM_TimeBaseStructure.TIM_Prescaler = (uint16_t)(SystemCoreClock / 1000000) - 1; // 1 µs tick
    TIM_TimeBaseStructure.TIM_ClockDivision = 0;
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInit(tim, &TIM_TimeBaseStructure);

    // Set duty cycle again
    pwmout_write(obj, dc);
  
    TIM_ARRPreloadConfig(tim, ENABLE);
  
    // Warning: Main Output must be  enabled on TIM1, TIM8, TIM5, TIM6 and TIM17
    if ((obj->pwm == PWM_1) || (obj->pwm == PWM_15) || (obj->pwm == PWM_16) || (obj->pwm == PWM_17)) {
        TIM_CtrlPWMOutputs(tim, ENABLE);
    }
    
    TIM_Cmd(tim, ENABLE);
}

void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
    pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}

void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
    pwmout_pulsewidth_us(obj, ms * 1000);
}

void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
    float value = (float)us / (float)obj->period;
    pwmout_write(obj, value);
}