mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/cmsis/TARGET_RENESAS/TARGET_RZ_A1H/TOOLCHAIN_ARM_STD/startup_MBRZA1H.S

Committer:
mbed_official
Date:
2015-07-01
Revision:
577:15494b56c2f3
Parent:
targets/cmsis/TARGET_RENESAS/TARGET_RZ_A1H/TOOLCHAIN_ARM_STD/startup_MBRZA1H.s@ 390:35c2c1cf29cd

File content as of revision 577:15494b56c2f3:

;/*****************************************************************************
; * @file:    startup_MBRZA1H.s
; * @purpose: CMSIS Cortex-A9 Core Device Startup File 
; *           for the NXP MBRZA1H Device Series 
; * @version: V1.02, modified for mbed
; * @date:    27. July 2009, modified 3rd Aug 2009
; *------- <<< Use Configuration Wizard in Context Menu >>> ------------------
; *
; * Copyright (C) 2009 ARM Limited. All rights reserved.
; * ARM Limited (ARM) is supplying this software for use with Cortex-M3 
; * processor based microcontrollers.  This file can be freely distributed 
; * within development tools that are supporting such ARM based processors. 
; *
; * THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED
; * OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
; * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
; * ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
; * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
; *
; *****************************************************************************/

GICI_BASE       EQU     0xe8202000
ICCIAR_OFFSET   EQU     0x0000000C
ICCEOIR_OFFSET  EQU     0x00000010
ICCHPIR_OFFSET  EQU     0x00000018

GICD_BASE       EQU     0xe8201000
ICDISER0_OFFSET EQU     0x00000100
ICDICER0_OFFSET EQU     0x00000180
ICDISPR0_OFFSET EQU     0x00000200
ICDABR0_OFFSET  EQU     0x00000300
ICDIPR0_OFFSET  EQU     0x00000400

Mode_USR        EQU     0x10
Mode_FIQ        EQU     0x11
Mode_IRQ        EQU     0x12
Mode_SVC        EQU     0x13
Mode_ABT        EQU     0x17
Mode_UND        EQU     0x1B
Mode_SYS        EQU     0x1F

I_Bit           EQU     0x80            ; when I bit is set, IRQ is disabled
F_Bit           EQU     0x40            ; when F bit is set, FIQ is disabled
T_Bit           EQU     0x20            ; when T bit is set, core is in Thumb state

GIC_ERRATA_CHECK_1     EQU     0x000003FE
GIC_ERRATA_CHECK_2     EQU     0x000003FF


Sect_Normal     EQU     0x00005c06 ;outer & inner wb/wa, non-shareable, executable, rw, domain 0, base addr 0
Sect_Normal_Cod EQU     0x0000dc06 ;outer & inner wb/wa, non-shareable, executable, ro, domain 0, base addr 0
Sect_Normal_RO  EQU     0x0000dc16 ;as Sect_Normal_Cod, but not executable
Sect_Normal_RW  EQU     0x00005c16 ;as Sect_Normal_Cod, but writeable and not executable
Sect_SO         EQU     0x00000c12 ;strongly-ordered (therefore shareable), not executable, rw, domain 0, base addr 0
Sect_Device_RO  EQU     0x00008c12 ;device, non-shareable, non-executable, ro, domain 0, base addr 0
Sect_Device_RW  EQU     0x00000c12 ;as Sect_Device_RO, but writeable
Sect_Fault      EQU     0x00000000 ;this translation will fault (the bottom 2 bits are important, the rest are ignored)

RAM_BASE        EQU     0x80000000
VRAM_BASE       EQU     0x18000000
SRAM_BASE       EQU     0x2e000000
ETHERNET        EQU     0x1a000000
CS3_PERIPHERAL_BASE EQU 0x1c000000

; <h> Stack Configuration
;   <o> Stack Size (in Bytes, per mode) <0x0-0xFFFFFFFF:8>
; </h>

UND_Stack_Size  EQU     0x00000100
SVC_Stack_Size  EQU     0x00008000
ABT_Stack_Size  EQU     0x00000100
FIQ_Stack_Size  EQU     0x00000100
IRQ_Stack_Size  EQU     0x00008000
USR_Stack_Size  EQU     0x00004000

ISR_Stack_Size  EQU     (UND_Stack_Size + SVC_Stack_Size + ABT_Stack_Size + \
                         FIQ_Stack_Size + IRQ_Stack_Size)

                AREA    STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem       SPACE   USR_Stack_Size
__initial_sp    SPACE   ISR_Stack_Size

Stack_Top


; <h> Heap Configuration
;   <o>  Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>

Heap_Size       EQU     0x00080000

                AREA    HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem        SPACE   Heap_Size
__heap_limit


                PRESERVE8
                ARM


; Vector Table Mapped to Address 0 at Reset

                AREA    RESET, CODE, READONLY
                EXPORT  __Vectors
                EXPORT  __Vectors_End
                EXPORT  __Vectors_Size

__Vectors       LDR     PC, Reset_Addr            ; Address of Reset Handler
                LDR     PC, Undef_Addr            ; Address of Undef Handler
                LDR     PC, SVC_Addr              ; Address of SVC Handler
                LDR     PC, PAbt_Addr             ; Address of Prefetch Abort Handler
                LDR     PC, DAbt_Addr             ; Address of Data Abort Handler
                NOP                               ; Reserved Vector
                LDR     PC, IRQ_Addr              ; Address of IRQ Handler
                LDR     PC, FIQ_Addr              ; Address of FIQ Handler
__Vectors_End

__Vectors_Size  EQU     __Vectors_End - __Vectors

Reset_Addr      DCD     Reset_Handler
Undef_Addr      DCD     Undef_Handler
SVC_Addr        DCD     SVC_Handler
PAbt_Addr       DCD     PAbt_Handler
DAbt_Addr       DCD     DAbt_Handler
IRQ_Addr        DCD     IRQ_Handler
FIQ_Addr        DCD     FIQ_Handler

                AREA    |.text|, CODE, READONLY

Reset_Handler   PROC
                EXPORT  Reset_Handler             [WEAK]
                IMPORT  SystemInit
                IMPORT  InitMemorySubsystem
                IMPORT  __main
                IMPORT  RZ_A1_SetSramWriteEnable

                ; Put any cores other than 0 to sleep
                MRC     p15, 0, R0, c0, c0, 5     ; Read MPIDR
                ANDS    R0, R0, #3
goToSleep
                WFINE
                BNE     goToSleep

; Enable access to NEON/VFP by enabling access to Coprocessors 10 and 11.
; Enables Full Access i.e. in both privileged and non privileged modes
                MRC     p15, 0, r0, c1, c0, 2       ; Read Coprocessor Access Control Register (CPACR)
                ORR     r0, r0, #(0xF << 20)        ; Enable access to CP 10 & 11
                MCR     p15, 0, r0, c1, c0, 2       ; Write Coprocessor Access Control Register (CPACR)
                ISB

; Switch on the VFP and NEON hardware
                MOV     r0, #0x40000000
                VMSR    FPEXC, r0                   ; Write FPEXC register, EN bit set

                MRC     p15, 0, R0, c1, c0, 0       ; Read CP15 System Control register
                BIC     R0, R0, #(0x1 << 12)        ; Clear I bit 12 to disable I Cache
                BIC     R0, R0, #(0x1 <<  2)        ; Clear C bit  2 to disable D Cache
                BIC     R0, R0, #0x1                ; Clear M bit  0 to disable MMU
                BIC     R0, R0, #(0x1 << 11)        ; Clear Z bit 11 to disable branch prediction
                BIC     R0, R0, #(0x1 << 13)        ; Clear V bit 13 to disable hivecs
                MCR     p15, 0, R0, c1, c0, 0       ; Write value back to CP15 System Control register
                ISB

; Set Vector Base Address Register (VBAR) to point to this application's vector table
                LDR     R0, =__Vectors
                MCR     p15, 0, R0, c12, c0, 0

;  Setup Stack for each exceptional mode
                LDR     R0, =Stack_Top

;  Enter Undefined Instruction Mode and set its Stack Pointer
                MSR     CPSR_C, #Mode_UND:OR:I_Bit:OR:F_Bit
                MOV     SP, R0
                SUB     R0, R0, #UND_Stack_Size

;  Enter Abort Mode and set its Stack Pointer
                MSR     CPSR_C, #Mode_ABT:OR:I_Bit:OR:F_Bit
                MOV     SP, R0
                SUB     R0, R0, #ABT_Stack_Size

;  Enter FIQ Mode and set its Stack Pointer
                MSR     CPSR_C, #Mode_FIQ:OR:I_Bit:OR:F_Bit
                MOV     SP, R0
                SUB     R0, R0, #FIQ_Stack_Size

;  Enter IRQ Mode and set its Stack Pointer
                MSR     CPSR_C, #Mode_IRQ:OR:I_Bit:OR:F_Bit
                MOV     SP, R0
                SUB     R0, R0, #IRQ_Stack_Size

;  Enter Supervisor Mode and set its Stack Pointer
                MSR     CPSR_C, #Mode_SVC:OR:I_Bit:OR:F_Bit
                MOV     SP, R0

;  Enter System Mode to complete initialization and enter kernel
                MSR     CPSR_C, #Mode_SYS:OR:I_Bit:OR:F_Bit
                MOV     SP, R0

                ISB

                LDR     R0, =RZ_A1_SetSramWriteEnable
                BLX     R0

                IMPORT  create_translation_table
                BL      create_translation_table

;  USR/SYS stack pointer will be set during kernel init

                LDR     R0, =SystemInit
                BLX     R0
                LDR     R0, =InitMemorySubsystem
                BLX     R0
                LDR     R0, =__main
                BLX     R0

                ENDP

Undef_Handler\
                PROC
                EXPORT  Undef_Handler             [WEAK]
                IMPORT  CUndefHandler
                SRSFD   SP!, #Mode_UND
                PUSH    {R0-R4, R12}              ; Save APCS corruptible registers to UND mode stack

                MRS     R0, SPSR
                TST     R0, #T_Bit                ; Check mode
                MOVEQ   R1, #4                    ; R1 = 4 ARM mode
                MOVNE   R1, #2                    ; R1 = 2 Thumb mode
                SUB     R0, LR, R1
                LDREQ   R0, [R0]                  ; ARM mode - R0 points to offending instruction
                BEQ     undef_cont

                ;Thumb instruction
                ;Determine if it is a 32-bit Thumb instruction
                LDRH    R0, [R0]
                MOV     R2, #0x1c
                CMP     R2, R0, LSR #11
                BHS     undef_cont                ;16-bit Thumb instruction

                ;32-bit Thumb instruction. Unaligned - we need to reconstruct the offending instruction.
                LDRH    R2, [LR]
                ORR     R0, R2, R0, LSL #16
undef_cont
                MOV     R2, LR                    ; Set LR to third argument
                
;               AND     R12, SP, #4               ; Ensure stack is 8-byte aligned
                MOV     R3, SP                    ; Ensure stack is 8-byte aligned
                AND     R12, R3, #4
                SUB     SP, SP, R12               ; Adjust stack
                PUSH    {R12, LR}                 ; Store stack adjustment and dummy LR

                ;R0 Offending instruction
                ;R1 =2 (Thumb) or =4 (ARM)
                BL      CUndefHandler

                POP     {R12, LR}                 ; Get stack adjustment & discard dummy LR
                ADD     SP, SP, R12               ; Unadjust stack

                LDR     LR, [SP, #24]             ; Restore stacked LR and possibly adjust for retry
                SUB     LR, LR, R0
                LDR     R0, [SP, #28]             ; Restore stacked SPSR
                MSR     SPSR_CXSF, R0
                POP     {R0-R4, R12}              ; Restore stacked APCS registers
                ADD     SP, SP, #8                ; Adjust SP for already-restored banked registers
                MOVS    PC, LR
                ENDP

PAbt_Handler\
                PROC
                EXPORT  PAbt_Handler              [WEAK]
                IMPORT  CPAbtHandler
                SUB     LR, LR, #4                ; Pre-adjust LR
                SRSFD   SP!, #Mode_ABT            ; Save LR and SPRS to ABT mode stack
                PUSH    {R0-R4, R12}              ; Save APCS corruptible registers to ABT mode stack
                MRC     p15, 0, R0, c5, c0, 1     ; IFSR
                MRC     p15, 0, R1, c6, c0, 2     ; IFAR

                MOV     R2, LR                    ; Set LR to third argument

;               AND     R12, SP, #4               ; Ensure stack is 8-byte aligned
                MOV     R3, SP                    ; Ensure stack is 8-byte aligned
                AND     R12, R3, #4
                SUB     SP, SP, R12               ; Adjust stack
                PUSH    {R12, LR}                 ; Store stack adjustment and dummy LR

                BL      CPAbtHandler

                POP     {R12, LR}                 ; Get stack adjustment & discard dummy LR
                ADD     SP, SP, R12               ; Unadjust stack

                POP     {R0-R4, R12}              ; Restore stack APCS registers
                RFEFD   SP!                       ; Return from exception
                ENDP


DAbt_Handler\
                PROC
                EXPORT  DAbt_Handler              [WEAK]
                IMPORT  CDAbtHandler
                SUB     LR, LR, #8                ; Pre-adjust LR
                SRSFD   SP!, #Mode_ABT            ; Save LR and SPRS to ABT mode stack
                PUSH    {R0-R4, R12}              ; Save APCS corruptible registers to ABT mode stack
                CLREX                             ; State of exclusive monitors unknown after taken data abort
                MRC     p15, 0, R0, c5, c0, 0     ; DFSR
                MRC     p15, 0, R1, c6, c0, 0     ; DFAR

                MOV     R2, LR                    ; Set LR to third argument

;               AND     R12, SP, #4               ; Ensure stack is 8-byte aligned
                MOV     R3, SP                    ; Ensure stack is 8-byte aligned
                AND     R12, R3, #4
                SUB     SP, SP, R12               ; Adjust stack
                PUSH    {R12, LR}                 ; Store stack adjustment and dummy LR

                BL      CDAbtHandler

                POP     {R12, LR}                 ; Get stack adjustment & discard dummy LR
                ADD     SP, SP, R12               ; Unadjust stack

                POP     {R0-R4, R12}              ; Restore stacked APCS registers
                RFEFD   SP!                       ; Return from exception
                ENDP

FIQ_Handler\
                PROC
                EXPORT  FIQ_Handler               [WEAK]
                ;; An FIQ might occur between the dummy read and the real read of the GIC in IRQ_Handler,
                ;; so if a real FIQ Handler is implemented, this will be needed before returning:
                ;; LDR     R1, =GICI_BASE
                ;; LDR     R0, [R1, #ICCHPIR_OFFSET]   ; Dummy Read ICCHPIR (GIC CPU Interface register) to avoid GIC 390 errata 801120
                B       .
                ENDP

SVC_Handler\
                PROC
                EXPORT  SVC_Handler               [WEAK]
                B       .
                ENDP

IRQ_Handler\
                PROC
                EXPORT  IRQ_Handler                [WEAK]
                IMPORT  IRQCount
                IMPORT  IRQTable
                IMPORT  IRQNestLevel

                ;prologue
                SUB     LR, LR, #4                  ; Pre-adjust LR
                SRSFD   SP!, #Mode_SVC              ; Save LR_IRQ and SPRS_IRQ to SVC mode stack
                CPS     #Mode_SVC                   ; Switch to SVC mode, to avoid a nested interrupt corrupting LR on a BL
                PUSH    {R0-R3, R12}                ; Save remaining APCS corruptible registers to SVC stack

;               AND     R1, SP, #4                  ; Ensure stack is 8-byte aligned
                MOV     R3, SP                    ; Ensure stack is 8-byte aligned
                AND     R1, R3, #4
                SUB     SP, SP, R1                  ; Adjust stack
                PUSH    {R1, LR}                    ; Store stack adjustment and LR_SVC to SVC stack

                LDR     R0, =IRQNestLevel           ; Get address of nesting counter
                LDR     R1, [R0]
                ADD     R1, R1, #1                  ; Increment nesting counter
                STR     R1, [R0]

                ;identify and acknowledge interrupt
                LDR     R1, =GICI_BASE
                LDR     R0, [R1, #ICCHPIR_OFFSET]   ; Dummy Read ICCHPIR (GIC CPU Interface register) to avoid GIC 390 errata 801120
                LDR     R0, [R1, #ICCIAR_OFFSET]    ; Read ICCIAR (GIC CPU Interface register)
                DSB                                 ; Ensure that interrupt acknowledge completes before re-enabling interrupts

                ; Workaround GIC 390 errata 733075
                ; If the ID is not 0, then service the interrupt as normal.
                ; If the ID is 0 and active, then service interrupt ID 0 as normal.
                ; If the ID is 0 but not active, then the GIC CPU interface may be locked-up, so unlock it
                ;   with a dummy write to ICDIPR0.  This interrupt should be treated as spurious and not serviced.
                ;
                LDR     R2, =GICD_BASE
                LDR     R3, =GIC_ERRATA_CHECK_1
                CMP     R0, R3
                BEQ     unlock_cpu
                LDR     R3, =GIC_ERRATA_CHECK_2
                CMP     R0, R3
                BEQ     unlock_cpu
                CMP     R0, #0
                BNE     int_active					; If the ID is not 0, then service the interrupt
                LDR     R3, [R2, #ICDABR0_OFFSET]   ; Get the interrupt state
                TST     R3, #1
                BNE     int_active                  ; If active, then service the interrupt
unlock_cpu
                LDR     R3, [R2, #ICDIPR0_OFFSET]   ; Not active, so unlock the CPU interface
                STR     R3, [R2, #ICDIPR0_OFFSET]   ;   with a dummy write
                DSB                                 ; Ensure the write completes before continuing
                B       ret_irq                     ; Do not service the spurious interrupt
                ; End workaround

int_active
                LDR     R2, =IRQCount               ; Read number of IRQs
                LDR     R2, [R2]
                CMP     R0, R2                      ; Clean up and return if no handler
                BHS     ret_irq                     ; In a single-processor system, spurious interrupt ID 1023 does not need any special handling
                LDR     R2, =IRQTable               ; Get address of handler
                LDR     R2, [R2, R0, LSL #2]
                CMP     R2, #0                      ; Clean up and return if handler address is 0
                BEQ     ret_irq
                PUSH    {R0,R1}

                CPSIE   i                           ; Now safe to re-enable interrupts
                BLX     R2                          ; Call handler. R0 will be IRQ number
                CPSID   i                           ; Disable interrupts again

                ;write EOIR (GIC CPU Interface register)
                POP     {R0,R1}
                DSB                                 ; Ensure that interrupt source is cleared before we write the EOIR
ret_irq
                ;epilogue
                STR     R0, [R1, #ICCEOIR_OFFSET]

                LDR     R0, =IRQNestLevel           ; Get address of nesting counter
                LDR     R1, [R0]
                SUB     R1, R1, #1                  ; Decrement nesting counter
                STR     R1, [R0]

                POP     {R1, LR}                    ; Get stack adjustment and restore LR_SVC
                ADD     SP, SP, R1                  ; Unadjust stack

                POP     {R0-R3,R12}                 ; Restore stacked APCS registers
                RFEFD   SP!                         ; Return from exception
                ENDP


; User Initial Stack & Heap

                IF      :DEF:__MICROLIB
                
                EXPORT  __initial_sp
                EXPORT  __heap_base
                EXPORT  __heap_limit

                ELSE

                IMPORT  __use_two_region_memory
                EXPORT  __user_initial_stackheap
__user_initial_stackheap

                LDR     R0, =  Heap_Mem
                LDR     R1, =(Stack_Mem + USR_Stack_Size)
                LDR     R2, = (Heap_Mem +  Heap_Size)
                LDR     R3, = Stack_Mem
                BX      LR

                ENDIF


                END