mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Revision:
610:813dcc80987e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/cmsis/TARGET_STM/TARGET_STM32L4/stm32l4xx_hal_firewall.h	Fri Aug 14 13:15:17 2015 +0100
@@ -0,0 +1,372 @@
+/**
+  ******************************************************************************
+  * @file    stm32l4xx_hal_firewall.h
+  * @author  MCD Application Team
+  * @version V1.0.0
+  * @date    26-June-2015
+  * @brief   Header file of FIREWALL HAL module.
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
+  *
+  * Redistribution and use in source and binary forms, with or without modification,
+  * are permitted provided that the following conditions are met:
+  *   1. Redistributions of source code must retain the above copyright notice,
+  *      this list of conditions and the following disclaimer.
+  *   2. Redistributions in binary form must reproduce the above copyright notice,
+  *      this list of conditions and the following disclaimer in the documentation
+  *      and/or other materials provided with the distribution.
+  *   3. Neither the name of STMicroelectronics nor the names of its contributors
+  *      may be used to endorse or promote products derived from this software
+  *      without specific prior written permission.
+  *
+  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+  *
+  ******************************************************************************  
+  */
+
+/* Define to prevent recursive inclusion -------------------------------------*/
+#ifndef __STM32L4xx_HAL_FIREWALL_H
+#define __STM32L4xx_HAL_FIREWALL_H
+
+#ifdef __cplusplus
+ extern "C" {
+#endif
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32l4xx_hal_def.h"
+
+/** @addtogroup STM32L4xx_HAL_Driver
+  * @{
+  */
+
+/** @addtogroup FIREWALL  FIREWALL
+  * @{
+  */ 
+
+/* Exported types ------------------------------------------------------------*/ 
+/** @defgroup FIREWALL_Exported_Types FIREWALL Exported Types
+  * @{
+  */ 
+
+/** 
+  * @brief FIREWALL Initialization Structure definition  
+  */ 
+typedef struct
+{
+  uint32_t CodeSegmentStartAddress;        /*!< Protected code segment start address. This value is 24-bit long, the 8 LSB bits are
+                                                reserved and forced to 0 in order to allow a 256-byte granularity. */
+
+  uint32_t CodeSegmentLength;              /*!< Protected code segment length in bytes. This value is 22-bit long, the 8 LSB bits are 
+                                                reserved and forced to 0 for the length to be a multiple of 256 bytes. */
+
+  uint32_t NonVDataSegmentStartAddress;    /*!< Protected non-volatile data segment start address. This value is 24-bit long, the 8 LSB
+                                                bits are reserved and forced to 0 in order to allow a 256-byte granularity. */
+
+  uint32_t NonVDataSegmentLength;          /*!< Protected non-volatile data segment length in bytes. This value is 22-bit long, the 8 LSB
+                                                bits are reserved and forced to 0 for the length to be a multiple of 256 bytes. */
+ 
+  uint32_t VDataSegmentStartAddress;       /*!< Protected volatile data segment start address. This value is 17-bit long, the 6 LSB bits
+                                                are reserved and forced to 0 in order to allow a 64-byte granularity. */
+
+  uint32_t VDataSegmentLength;             /*!< Protected volatile data segment length in bytes. This value is 17-bit long, the 6 LSB
+                                                bits are reserved and forced to 0 for the length to be a multiple of 64 bytes. */
+  
+  uint32_t VolatileDataExecution;          /*!< Set VDE bit specifying whether or not the volatile data segment can be executed.
+                                                 When VDS = 1 (set by parameter VolatileDataShared), VDE bit has no meaning.
+                                                This parameter can be a value of @ref FIREWALL_VolatileData_Executable */  
+                                           
+  uint32_t VolatileDataShared;             /*!< Set VDS bit in specifying whether or not the volatile data segment can be shared with a 
+                                                non-protected application code.
+                                                This parameter can be a value of @ref FIREWALL_VolatileData_Shared */  
+                                                                                                                                     
+}FIREWALL_InitTypeDef;
+
+
+/**
+  * @}
+  */
+
+  
+/* Exported constants --------------------------------------------------------*/
+/** @defgroup FIREWALL_Exported_Constants FIREWALL Exported Constants
+  * @{
+  */
+
+/** @defgroup FIREWALL_VolatileData_Executable   FIREWALL volatile data segment execution status
+  * @{
+  */
+#define FIREWALL_VOLATILEDATA_NOT_EXECUTABLE                 ((uint32_t)0x0000)
+#define FIREWALL_VOLATILEDATA_EXECUTABLE                     ((uint32_t)FW_CR_VDE)
+/**
+  * @}
+  */ 
+
+/** @defgroup FIREWALL_VolatileData_Shared  FIREWALL volatile data segment share status
+  * @{
+  */ 
+#define FIREWALL_VOLATILEDATA_NOT_SHARED                ((uint32_t)0x0000)
+#define FIREWALL_VOLATILEDATA_SHARED                    ((uint32_t)FW_CR_VDS) 
+/**
+  * @}
+  */ 
+
+/** @defgroup FIREWALL_Pre_Arm FIREWALL pre arm status
+  * @{
+  */ 
+#define FIREWALL_PRE_ARM_RESET                 ((uint32_t)0x0000)
+#define FIREWALL_PRE_ARM_SET                   ((uint32_t)FW_CR_FPA)
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+  
+/* Private macros --------------------------------------------------------*/
+/** @defgroup FIREWALL_Private_Macros   FIREWALL Private Macros
+  * @{
+  */
+#define IS_FIREWALL_CODE_SEGMENT_ADDRESS(ADDRESS)        (((ADDRESS) >= FLASH_BASE) && ((ADDRESS) < (FLASH_BASE + FLASH_SIZE)))                                                   
+#define IS_FIREWALL_CODE_SEGMENT_LENGTH(ADDRESS, LENGTH) (((ADDRESS) + (LENGTH)) <= (FLASH_BASE + FLASH_SIZE))
+
+#define IS_FIREWALL_NONVOLATILEDATA_SEGMENT_ADDRESS(ADDRESS)        (((ADDRESS) >= FLASH_BASE) && ((ADDRESS) < (FLASH_BASE + FLASH_SIZE)))                                                   
+#define IS_FIREWALL_NONVOLATILEDATA_SEGMENT_LENGTH(ADDRESS, LENGTH) (((ADDRESS) + (LENGTH)) <= (FLASH_BASE + FLASH_SIZE)) 
+
+#define IS_FIREWALL_VOLATILEDATA_SEGMENT_ADDRESS(ADDRESS)        (((ADDRESS) >= SRAM1_BASE) && ((ADDRESS) < (SRAM1_BASE + SRAM1_SIZE_MAX)))
+#define IS_FIREWALL_VOLATILEDATA_SEGMENT_LENGTH(ADDRESS, LENGTH) (((ADDRESS) + (LENGTH)) <= (SRAM1_BASE + SRAM1_SIZE_MAX))                                                        
+    
+  
+#define IS_FIREWALL_VOLATILEDATA_SHARE(SHARE) (((SHARE) == FIREWALL_VOLATILEDATA_NOT_SHARED) || \
+                                               ((SHARE) == FIREWALL_VOLATILEDATA_SHARED))
+                                               
+#define IS_FIREWALL_VOLATILEDATA_EXECUTE(EXECUTE) (((EXECUTE) == FIREWALL_VOLATILEDATA_NOT_EXECUTABLE) || \
+                                                   ((EXECUTE) == FIREWALL_VOLATILEDATA_EXECUTABLE))                                                                                    
+/**
+  * @}
+  */  
+
+
+/* Exported macros -----------------------------------------------------------*/
+/** @defgroup FIREWALL_Exported_Macros FIREWALL Exported Macros
+  * @{
+  */
+
+/** @brief  Check whether the FIREWALL is enabled or not.
+  * @retval FIREWALL enabling status (TRUE or FALSE).
+  */            
+#define  __HAL_FIREWALL_IS_ENABLED()  HAL_IS_BIT_CLR(SYSCFG->CFGR1, SYSCFG_CFGR1_FWDIS)  
+
+
+/** @brief Enable FIREWALL pre arm. 
+  * @note When FPA bit is set, any code executed outside the protected segment 
+  *       closes the Firewall, otherwise it generates a system reset.
+  * @note This macro provides the same service as HAL_FIREWALL_EnablePreArmFlag() API
+  *       but can be executed inside a code area protected by the Firewall. 
+  * @note This macro can be executed whatever the Firewall state (opened or closed) when
+  *       NVDSL register is equal to 0. Otherwise (when NVDSL register is different from
+  *       0, that is, when the non volatile data segment is defined), the macro can be
+  *       executed only when the Firewall is opened.    
+  */ 
+#define __HAL_FIREWALL_PREARM_ENABLE()                                         \
+             do {                                                              \
+                  __IO uint32_t tmpreg;                                        \
+                  SET_BIT(FIREWALL->CR, FW_CR_FPA) ;                           \
+                  /* Read bit back to ensure it is taken into account by IP */ \
+                  /* (introduce proper delay inside macro execution) */        \
+                  tmpreg = READ_BIT(FIREWALL->CR, FW_CR_FPA) ;                 \
+                  UNUSED(tmpreg);                                              \
+                } while(0)
+
+
+                    
+/** @brief Disable FIREWALL pre arm. 
+  * @note When FPA bit is set, any code executed outside the protected segment 
+  *       closes the Firewall, otherwise, it generates a system reset.
+  * @note This macro provides the same service as HAL_FIREWALL_DisablePreArmFlag() API
+  *       but can be executed inside a code area protected by the Firewall.
+  * @note This macro can be executed whatever the Firewall state (opened or closed) when
+  *       NVDSL register is equal to 0. Otherwise (when NVDSL register is different from
+  *       0, that is, when the non volatile data segment is defined), the macro can be
+  *       executed only when the Firewall is opened.      
+  */ 
+#define __HAL_FIREWALL_PREARM_DISABLE()                                        \
+             do {                                                              \
+                  __IO uint32_t tmpreg;                                        \
+                  CLEAR_BIT(FIREWALL->CR, FW_CR_FPA) ;                         \
+                  /* Read bit back to ensure it is taken into account by IP */ \
+                  /* (introduce proper delay inside macro execution) */        \
+                  tmpreg = READ_BIT(FIREWALL->CR, FW_CR_FPA) ;                 \
+                  UNUSED(tmpreg);                                              \
+                } while(0)
+
+/** @brief Enable volatile data sharing in setting VDS bit. 
+  * @note When VDS bit is set, the volatile data segment is shared with non-protected
+  *       application code. It can be accessed whatever the Firewall state (opened or closed). 
+  * @note This macro can be executed inside a code area protected by the Firewall.
+  * @note This macro can be executed whatever the Firewall state (opened or closed) when
+  *       NVDSL register is equal to 0. Otherwise (when NVDSL register is different from
+  *       0, that is, when the non volatile data segment is defined), the macro can be
+  *       executed only when the Firewall is opened.      
+  */ 
+#define __HAL_FIREWALL_VOLATILEDATA_SHARED_ENABLE()                            \
+             do {                                                              \
+                  __IO uint32_t tmpreg;                                        \
+                  SET_BIT(FIREWALL->CR, FW_CR_VDS) ;                           \
+                  /* Read bit back to ensure it is taken into account by IP */ \
+                  /* (introduce proper delay inside macro execution) */        \
+                  tmpreg = READ_BIT(FIREWALL->CR, FW_CR_VDS) ;                 \
+                  UNUSED(tmpreg);                                              \
+                } while(0)
+
+/** @brief Disable volatile data sharing in resetting VDS bit. 
+  * @note When VDS bit is reset, the volatile data segment is not shared and cannot be 
+  *       hit by a non protected executable code when the Firewall is closed. If it is 
+  *       accessed in such a condition, a system reset is generated by the Firewall.
+  * @note This macro can be executed inside a code area protected by the Firewall. 
+  * @note This macro can be executed whatever the Firewall state (opened or closed) when
+  *       NVDSL register is equal to 0. Otherwise (when NVDSL register is different from
+  *       0, that is, when the non volatile data segment is defined), the macro can be
+  *       executed only when the Firewall is opened.     
+  */ 
+#define __HAL_FIREWALL_VOLATILEDATA_SHARED_DISABLE()                           \
+             do {                                                              \
+                  __IO uint32_t tmpreg;                                        \
+                  CLEAR_BIT(FIREWALL->CR, FW_CR_VDS) ;                         \
+                  /* Read bit back to ensure it is taken into account by IP */ \
+                  /* (introduce proper delay inside macro execution) */        \
+                  tmpreg = READ_BIT(FIREWALL->CR, FW_CR_VDS) ;                 \
+                  UNUSED(tmpreg);                                              \
+                } while(0)
+
+/** @brief Enable volatile data execution in setting VDE bit.
+  * @note VDE bit is ignored when VDS is set. IF VDS = 1, the Volatile data segment can be 
+  *       executed whatever the VDE bit value.  
+  * @note When VDE bit is set (with VDS = 0), the volatile data segment is executable. When
+  *       the Firewall call is closed, a "call gate" entry procedure is required to open 
+  *       first the Firewall.
+  * @note This macro can be executed inside a code area protected by the Firewall.
+  * @note This macro can be executed whatever the Firewall state (opened or closed) when
+  *       NVDSL register is equal to 0. Otherwise (when NVDSL register is different from
+  *       0, that is, when the non volatile data segment is defined), the macro can be
+  *       executed only when the Firewall is opened.         
+  */ 
+#define __HAL_FIREWALL_VOLATILEDATA_EXECUTION_ENABLE()                         \
+             do {                                                              \
+                  __IO uint32_t tmpreg;                                        \
+                  SET_BIT(FIREWALL->CR, FW_CR_VDE) ;                           \
+                  /* Read bit back to ensure it is taken into account by IP */ \
+                  /* (introduce proper delay inside macro execution) */        \
+                  tmpreg = READ_BIT(FIREWALL->CR, FW_CR_VDE) ;                 \
+                  UNUSED(tmpreg);                                              \
+                } while(0)
+
+/** @brief Disable volatile data execution in resetting VDE bit.
+  * @note VDE bit is ignored when VDS is set. IF VDS = 1, the Volatile data segment can be 
+  *       executed whatever the VDE bit value.  
+  * @note When VDE bit is reset (with VDS = 0), the volatile data segment cannot  be executed.
+  * @note This macro can be executed inside a code area protected by the Firewall. 
+  * @note This macro can be executed whatever the Firewall state (opened or closed) when
+  *       NVDSL register is equal to 0. Otherwise (when NVDSL register is different from
+  *       0, that is, when the non volatile data segment is defined), the macro can be
+  *       executed only when the Firewall is opened.        
+  */
+#define __HAL_FIREWALL_VOLATILEDATA_EXECUTION_DISABLE()                           \
+             do {                                                              \
+                  __IO uint32_t tmpreg;                                        \
+                  CLEAR_BIT(FIREWALL->CR, FW_CR_VDE) ;                         \
+                  /* Read bit back to ensure it is taken into account by IP */ \
+                  /* (introduce proper delay inside macro execution) */        \
+                  tmpreg = READ_BIT(FIREWALL->CR, FW_CR_VDE) ;                 \
+                  UNUSED(tmpreg);                                              \
+                } while(0)   
+
+
+/** @brief Check whether or not the volatile data segment is shared.
+  * @note This macro can be executed inside a code area protected by the Firewall.
+  * @note This macro can be executed whatever the Firewall state (opened or closed) when
+  *       NVDSL register is equal to 0. Otherwise (when NVDSL register is different from
+  *       0, that is, when the non volatile data segment is defined), the macro can be
+  *       executed only when the Firewall is opened.      
+  * @retval VDS bit setting status (TRUE or FALSE).
+  */
+#define __HAL_FIREWALL_GET_VOLATILEDATA_SHARED() ((FIREWALL->CR & FW_CR_VDS) == FW_CR_VDS)
+
+/** @brief Check whether or not the volatile data segment is declared executable.
+  * @note This macro can be executed inside a code area protected by the Firewall.
+  * @note This macro can be executed whatever the Firewall state (opened or closed) when
+  *       NVDSL register is equal to 0. Otherwise (when NVDSL register is different from
+  *       0, that is, when the non volatile data segment is defined), the macro can be
+  *       executed only when the Firewall is opened.      
+  * @retval VDE bit setting status (TRUE or FALSE).
+  */
+#define __HAL_FIREWALL_GET_VOLATILEDATA_EXECUTION() ((FIREWALL->CR & FW_CR_VDE) == FW_CR_VDE)
+
+/** @brief Check whether or not the Firewall pre arm bit is set.
+  * @note This macro can be executed inside a code area protected by the Firewall.
+  * @note This macro can be executed whatever the Firewall state (opened or closed) when
+  *       NVDSL register is equal to 0. Otherwise (when NVDSL register is different from
+  *       0, that is, when the non volatile data segment is defined), the macro can be
+  *       executed only when the Firewall is opened.      
+  * @retval FPA bit setting status (TRUE or FALSE).
+  */
+#define __HAL_FIREWALL_GET_PREARM() ((FIREWALL->CR & FW_CR_FPA) == FW_CR_FPA)
+
+
+/**
+  * @}
+  */
+
+/* Exported functions --------------------------------------------------------*/
+
+/** @addtogroup FIREWALL_Exported_Functions FIREWALL Exported Functions
+  * @{
+  */
+  
+/** @addtogroup FIREWALL_Exported_Functions_Group1 Initialization Functions
+  * @brief    Initialization and Configuration Functions  
+  * @{
+  */  
+  
+/* Initialization functions  ********************************/
+HAL_StatusTypeDef HAL_FIREWALL_Config(FIREWALL_InitTypeDef * fw_init);
+void HAL_FIREWALL_GetConfig(FIREWALL_InitTypeDef * fw_config);
+void HAL_FIREWALL_EnableFirewall(void);
+void HAL_FIREWALL_EnablePreArmFlag(void);
+void HAL_FIREWALL_DisablePreArmFlag(void);
+
+/**
+  * @}
+  */
+  
+/**
+  * @}
+  */   
+
+/**
+  * @}
+  */ 
+
+/**
+  * @}
+  */ 
+  
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* __STM32L4xx_HAL_FIREWALL_H */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/