mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Committer:
humlet
Date:
Sun Jun 30 16:34:50 2013 +0000
Revision:
11:f9e72c209510
Parent:
10:3bc89ef62ce7
fix for mbed lib issue 1 (i2c problem) see also https://mbed.org/users/mbed_official/code/mbed/issues/1

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 10:3bc89ef62ce7 1 /* mbed Microcontroller Library
emilmont 10:3bc89ef62ce7 2 * Copyright (c) 2006-2013 ARM Limited
emilmont 10:3bc89ef62ce7 3 *
emilmont 10:3bc89ef62ce7 4 * Licensed under the Apache License, Version 2.0 (the "License");
emilmont 10:3bc89ef62ce7 5 * you may not use this file except in compliance with the License.
emilmont 10:3bc89ef62ce7 6 * You may obtain a copy of the License at
emilmont 10:3bc89ef62ce7 7 *
emilmont 10:3bc89ef62ce7 8 * http://www.apache.org/licenses/LICENSE-2.0
emilmont 10:3bc89ef62ce7 9 *
emilmont 10:3bc89ef62ce7 10 * Unless required by applicable law or agreed to in writing, software
emilmont 10:3bc89ef62ce7 11 * distributed under the License is distributed on an "AS IS" BASIS,
emilmont 10:3bc89ef62ce7 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
emilmont 10:3bc89ef62ce7 13 * See the License for the specific language governing permissions and
emilmont 10:3bc89ef62ce7 14 * limitations under the License.
emilmont 10:3bc89ef62ce7 15 */
emilmont 10:3bc89ef62ce7 16 #include "i2c_api.h"
emilmont 10:3bc89ef62ce7 17 #include "cmsis.h"
emilmont 10:3bc89ef62ce7 18 #include "pinmap.h"
emilmont 10:3bc89ef62ce7 19 #include "error.h"
emilmont 10:3bc89ef62ce7 20
emilmont 10:3bc89ef62ce7 21 static const PinMap PinMap_I2C_SDA[] = {
emilmont 10:3bc89ef62ce7 22 {P0_0 , I2C_1, 3},
emilmont 10:3bc89ef62ce7 23 {P0_10, I2C_2, 2},
emilmont 10:3bc89ef62ce7 24 {P0_19, I2C_1, 3},
emilmont 10:3bc89ef62ce7 25 {P0_27, I2C_0, 1},
emilmont 10:3bc89ef62ce7 26 {NC , NC , 0}
emilmont 10:3bc89ef62ce7 27 };
emilmont 10:3bc89ef62ce7 28
emilmont 10:3bc89ef62ce7 29 static const PinMap PinMap_I2C_SCL[] = {
emilmont 10:3bc89ef62ce7 30 {P0_1 , I2C_1, 3},
emilmont 10:3bc89ef62ce7 31 {P0_11, I2C_2, 2},
emilmont 10:3bc89ef62ce7 32 {P0_20, I2C_1, 3},
emilmont 10:3bc89ef62ce7 33 {P0_28, I2C_0, 1},
emilmont 10:3bc89ef62ce7 34 {NC , NC, 0}
emilmont 10:3bc89ef62ce7 35 };
emilmont 10:3bc89ef62ce7 36
emilmont 10:3bc89ef62ce7 37 #define I2C_CONSET(x) (x->i2c->I2CONSET)
emilmont 10:3bc89ef62ce7 38 #define I2C_CONCLR(x) (x->i2c->I2CONCLR)
emilmont 10:3bc89ef62ce7 39 #define I2C_STAT(x) (x->i2c->I2STAT)
emilmont 10:3bc89ef62ce7 40 #define I2C_DAT(x) (x->i2c->I2DAT)
emilmont 10:3bc89ef62ce7 41 #define I2C_SCLL(x, val) (x->i2c->I2SCLL = val)
emilmont 10:3bc89ef62ce7 42 #define I2C_SCLH(x, val) (x->i2c->I2SCLH = val)
emilmont 10:3bc89ef62ce7 43
emilmont 10:3bc89ef62ce7 44 static const uint32_t I2C_addr_offset[2][4] = {
emilmont 10:3bc89ef62ce7 45 {0x0C, 0x20, 0x24, 0x28},
emilmont 10:3bc89ef62ce7 46 {0x30, 0x34, 0x38, 0x3C}
emilmont 10:3bc89ef62ce7 47 };
emilmont 10:3bc89ef62ce7 48
emilmont 10:3bc89ef62ce7 49 static inline void i2c_conclr(i2c_t *obj, int start, int stop, int interrupt, int acknowledge) {
emilmont 10:3bc89ef62ce7 50 I2C_CONCLR(obj) = (start << 5)
emilmont 10:3bc89ef62ce7 51 | (stop << 4)
emilmont 10:3bc89ef62ce7 52 | (interrupt << 3)
emilmont 10:3bc89ef62ce7 53 | (acknowledge << 2);
emilmont 10:3bc89ef62ce7 54 }
emilmont 10:3bc89ef62ce7 55
emilmont 10:3bc89ef62ce7 56 static inline void i2c_conset(i2c_t *obj, int start, int stop, int interrupt, int acknowledge) {
emilmont 10:3bc89ef62ce7 57 I2C_CONSET(obj) = (start << 5)
emilmont 10:3bc89ef62ce7 58 | (stop << 4)
emilmont 10:3bc89ef62ce7 59 | (interrupt << 3)
emilmont 10:3bc89ef62ce7 60 | (acknowledge << 2);
emilmont 10:3bc89ef62ce7 61 }
emilmont 10:3bc89ef62ce7 62
emilmont 10:3bc89ef62ce7 63 // Clear the Serial Interrupt (SI)
emilmont 10:3bc89ef62ce7 64 static inline void i2c_clear_SI(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 65 i2c_conclr(obj, 0, 0, 1, 0);
emilmont 10:3bc89ef62ce7 66 }
emilmont 10:3bc89ef62ce7 67
emilmont 10:3bc89ef62ce7 68 static inline int i2c_status(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 69 return I2C_STAT(obj);
emilmont 10:3bc89ef62ce7 70 }
emilmont 10:3bc89ef62ce7 71
emilmont 10:3bc89ef62ce7 72 // Wait until the Serial Interrupt (SI) is set
emilmont 10:3bc89ef62ce7 73 static int i2c_wait_SI(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 74 int timeout = 0;
emilmont 10:3bc89ef62ce7 75 while (!(I2C_CONSET(obj) & (1 << 3))) {
emilmont 10:3bc89ef62ce7 76 timeout++;
emilmont 10:3bc89ef62ce7 77 if (timeout > 100000) return -1;
emilmont 10:3bc89ef62ce7 78 }
emilmont 10:3bc89ef62ce7 79 return 0;
emilmont 10:3bc89ef62ce7 80 }
emilmont 10:3bc89ef62ce7 81
emilmont 10:3bc89ef62ce7 82 static inline void i2c_interface_enable(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 83 I2C_CONSET(obj) = 0x40;
emilmont 10:3bc89ef62ce7 84 }
emilmont 10:3bc89ef62ce7 85
emilmont 10:3bc89ef62ce7 86 static inline void i2c_power_enable(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 87 switch ((int)obj->i2c) {
emilmont 10:3bc89ef62ce7 88 case I2C_0: LPC_SC->PCONP |= 1 << 7; break;
emilmont 10:3bc89ef62ce7 89 case I2C_1: LPC_SC->PCONP |= 1 << 19; break;
emilmont 10:3bc89ef62ce7 90 case I2C_2: LPC_SC->PCONP |= 1 << 26; break;
emilmont 10:3bc89ef62ce7 91 }
emilmont 10:3bc89ef62ce7 92 }
emilmont 10:3bc89ef62ce7 93
emilmont 10:3bc89ef62ce7 94 void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
emilmont 10:3bc89ef62ce7 95 // determine the SPI to use
emilmont 10:3bc89ef62ce7 96 I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
emilmont 10:3bc89ef62ce7 97 I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
emilmont 10:3bc89ef62ce7 98 obj->i2c = (LPC_I2C_TypeDef *)pinmap_merge(i2c_sda, i2c_scl);
emilmont 10:3bc89ef62ce7 99
emilmont 10:3bc89ef62ce7 100 if ((int)obj->i2c == NC) {
emilmont 10:3bc89ef62ce7 101 error("I2C pin mapping failed");
emilmont 10:3bc89ef62ce7 102 }
emilmont 10:3bc89ef62ce7 103
emilmont 10:3bc89ef62ce7 104 // enable power
emilmont 10:3bc89ef62ce7 105 i2c_power_enable(obj);
emilmont 10:3bc89ef62ce7 106
emilmont 10:3bc89ef62ce7 107 // set default frequency at 100k
emilmont 10:3bc89ef62ce7 108 i2c_frequency(obj, 100000);
emilmont 10:3bc89ef62ce7 109 i2c_conclr(obj, 1, 1, 1, 1);
emilmont 10:3bc89ef62ce7 110 i2c_interface_enable(obj);
emilmont 10:3bc89ef62ce7 111
emilmont 10:3bc89ef62ce7 112 pinmap_pinout(sda, PinMap_I2C_SDA);
emilmont 10:3bc89ef62ce7 113 pinmap_pinout(scl, PinMap_I2C_SCL);
emilmont 10:3bc89ef62ce7 114 }
emilmont 10:3bc89ef62ce7 115
emilmont 10:3bc89ef62ce7 116 inline int i2c_start(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 117 int status = 0;
emilmont 10:3bc89ef62ce7 118 // 8.1 Before master mode can be entered, I2CON must be initialised to:
emilmont 10:3bc89ef62ce7 119 // - I2EN STA STO SI AA - -
emilmont 10:3bc89ef62ce7 120 // - 1 0 0 0 x - -
emilmont 10:3bc89ef62ce7 121 // if AA = 0, it can't enter slave mode
emilmont 10:3bc89ef62ce7 122 i2c_conclr(obj, 1, 1, 1, 1);
emilmont 10:3bc89ef62ce7 123
emilmont 10:3bc89ef62ce7 124 // The master mode may now be entered by setting the STA bit
emilmont 10:3bc89ef62ce7 125 // this will generate a start condition when the bus becomes free
emilmont 10:3bc89ef62ce7 126 i2c_conset(obj, 1, 0, 0, 1);
emilmont 10:3bc89ef62ce7 127
emilmont 10:3bc89ef62ce7 128 i2c_wait_SI(obj);
emilmont 10:3bc89ef62ce7 129 status = i2c_status(obj);
emilmont 10:3bc89ef62ce7 130
emilmont 10:3bc89ef62ce7 131 // Clear start bit now transmitted, and interrupt bit
emilmont 10:3bc89ef62ce7 132 i2c_conclr(obj, 1, 0, 0, 0);
emilmont 10:3bc89ef62ce7 133 return status;
emilmont 10:3bc89ef62ce7 134 }
emilmont 10:3bc89ef62ce7 135
emilmont 10:3bc89ef62ce7 136 inline void i2c_stop(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 137 // write the stop bit
emilmont 10:3bc89ef62ce7 138 i2c_conset(obj, 0, 1, 0, 0);
emilmont 10:3bc89ef62ce7 139 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 140
emilmont 10:3bc89ef62ce7 141 // wait for STO bit to reset
emilmont 10:3bc89ef62ce7 142 while (I2C_CONSET(obj) & (1 << 4));
emilmont 10:3bc89ef62ce7 143 }
emilmont 10:3bc89ef62ce7 144
emilmont 10:3bc89ef62ce7 145 static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) {
emilmont 10:3bc89ef62ce7 146 // write the data
emilmont 10:3bc89ef62ce7 147 I2C_DAT(obj) = value;
emilmont 10:3bc89ef62ce7 148
emilmont 10:3bc89ef62ce7 149 // clear SI to init a send
emilmont 10:3bc89ef62ce7 150 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 151
emilmont 10:3bc89ef62ce7 152 // wait and return status
emilmont 10:3bc89ef62ce7 153 i2c_wait_SI(obj);
emilmont 10:3bc89ef62ce7 154 return i2c_status(obj);
emilmont 10:3bc89ef62ce7 155 }
emilmont 10:3bc89ef62ce7 156
emilmont 10:3bc89ef62ce7 157 static inline int i2c_do_read(i2c_t *obj, int last) {
emilmont 10:3bc89ef62ce7 158 // we are in state 0x40 (SLA+R tx'd) or 0x50 (data rx'd and ack)
emilmont 10:3bc89ef62ce7 159 if (last) {
emilmont 10:3bc89ef62ce7 160 i2c_conclr(obj, 0, 0, 0, 1); // send a NOT ACK
emilmont 10:3bc89ef62ce7 161 } else {
emilmont 10:3bc89ef62ce7 162 i2c_conset(obj, 0, 0, 0, 1); // send a ACK
emilmont 10:3bc89ef62ce7 163 }
emilmont 10:3bc89ef62ce7 164
emilmont 10:3bc89ef62ce7 165 // accept byte
emilmont 10:3bc89ef62ce7 166 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 167
emilmont 10:3bc89ef62ce7 168 // wait for it to arrive
emilmont 10:3bc89ef62ce7 169 i2c_wait_SI(obj);
emilmont 10:3bc89ef62ce7 170
emilmont 10:3bc89ef62ce7 171 // return the data
emilmont 10:3bc89ef62ce7 172 return (I2C_DAT(obj) & 0xFF);
emilmont 10:3bc89ef62ce7 173 }
emilmont 10:3bc89ef62ce7 174
emilmont 10:3bc89ef62ce7 175 void i2c_frequency(i2c_t *obj, int hz) {
emilmont 10:3bc89ef62ce7 176 // [TODO] set pclk to /4
emilmont 10:3bc89ef62ce7 177 uint32_t PCLK = SystemCoreClock / 4;
emilmont 10:3bc89ef62ce7 178
emilmont 10:3bc89ef62ce7 179 uint32_t pulse = PCLK / (hz * 2);
emilmont 10:3bc89ef62ce7 180
emilmont 10:3bc89ef62ce7 181 // I2C Rate
emilmont 10:3bc89ef62ce7 182 I2C_SCLL(obj, pulse);
emilmont 10:3bc89ef62ce7 183 I2C_SCLH(obj, pulse);
emilmont 10:3bc89ef62ce7 184 }
emilmont 10:3bc89ef62ce7 185
emilmont 10:3bc89ef62ce7 186 // The I2C does a read or a write as a whole operation
emilmont 10:3bc89ef62ce7 187 // There are two types of error conditions it can encounter
emilmont 10:3bc89ef62ce7 188 // 1) it can not obtain the bus
emilmont 10:3bc89ef62ce7 189 // 2) it gets error responses at part of the transmission
emilmont 10:3bc89ef62ce7 190 //
emilmont 10:3bc89ef62ce7 191 // We tackle them as follows:
emilmont 10:3bc89ef62ce7 192 // 1) we retry until we get the bus. we could have a "timeout" if we can not get it
emilmont 10:3bc89ef62ce7 193 // which basically turns it in to a 2)
emilmont 10:3bc89ef62ce7 194 // 2) on error, we use the standard error mechanisms to report/debug
emilmont 10:3bc89ef62ce7 195 //
emilmont 10:3bc89ef62ce7 196 // Therefore an I2C transaction should always complete. If it doesn't it is usually
emilmont 10:3bc89ef62ce7 197 // because something is setup wrong (e.g. wiring), and we don't need to programatically
emilmont 10:3bc89ef62ce7 198 // check for that
emilmont 10:3bc89ef62ce7 199 int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
emilmont 10:3bc89ef62ce7 200 int count, status;
emilmont 10:3bc89ef62ce7 201
emilmont 10:3bc89ef62ce7 202 status = i2c_start(obj);
emilmont 10:3bc89ef62ce7 203
emilmont 10:3bc89ef62ce7 204 if ((status != 0x10) && (status != 0x08)) {
emilmont 10:3bc89ef62ce7 205 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 206 return status;
emilmont 10:3bc89ef62ce7 207 }
emilmont 10:3bc89ef62ce7 208
emilmont 10:3bc89ef62ce7 209 status = i2c_do_write(obj, (address | 0x01), 1);
emilmont 10:3bc89ef62ce7 210 if (status != 0x40) {
emilmont 10:3bc89ef62ce7 211 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 212 return status;
emilmont 10:3bc89ef62ce7 213 }
emilmont 10:3bc89ef62ce7 214
emilmont 10:3bc89ef62ce7 215 // Read in all except last byte
emilmont 10:3bc89ef62ce7 216 for (count = 0; count < (length - 1); count++) {
emilmont 10:3bc89ef62ce7 217 int value = i2c_do_read(obj, 0);
emilmont 10:3bc89ef62ce7 218 status = i2c_status(obj);
emilmont 10:3bc89ef62ce7 219 if (status != 0x50) {
emilmont 10:3bc89ef62ce7 220 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 221 return status;
emilmont 10:3bc89ef62ce7 222 }
emilmont 10:3bc89ef62ce7 223 data[count] = (char) value;
emilmont 10:3bc89ef62ce7 224 }
emilmont 10:3bc89ef62ce7 225
emilmont 10:3bc89ef62ce7 226 // read in last byte
emilmont 10:3bc89ef62ce7 227 int value = i2c_do_read(obj, 1);
emilmont 10:3bc89ef62ce7 228 status = i2c_status(obj);
emilmont 10:3bc89ef62ce7 229 if (status != 0x58) {
emilmont 10:3bc89ef62ce7 230 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 231 return status;
emilmont 10:3bc89ef62ce7 232 }
emilmont 10:3bc89ef62ce7 233
emilmont 10:3bc89ef62ce7 234 data[count] = (char) value;
emilmont 10:3bc89ef62ce7 235
emilmont 10:3bc89ef62ce7 236 // If not repeated start, send stop.
emilmont 10:3bc89ef62ce7 237 if (stop) {
emilmont 10:3bc89ef62ce7 238 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 239 }
emilmont 10:3bc89ef62ce7 240
emilmont 10:3bc89ef62ce7 241 return 0;
emilmont 10:3bc89ef62ce7 242 }
emilmont 10:3bc89ef62ce7 243
emilmont 10:3bc89ef62ce7 244 int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
emilmont 10:3bc89ef62ce7 245 int i, status;
emilmont 10:3bc89ef62ce7 246
emilmont 10:3bc89ef62ce7 247 status = i2c_start(obj);
emilmont 10:3bc89ef62ce7 248
emilmont 10:3bc89ef62ce7 249 if ((status != 0x10) && (status != 0x08)) {
emilmont 10:3bc89ef62ce7 250 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 251 return status;
emilmont 10:3bc89ef62ce7 252 }
emilmont 10:3bc89ef62ce7 253
emilmont 10:3bc89ef62ce7 254 status = i2c_do_write(obj, (address & 0xFE), 1);
emilmont 10:3bc89ef62ce7 255 if (status != 0x18) {
emilmont 10:3bc89ef62ce7 256 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 257 return status;
emilmont 10:3bc89ef62ce7 258 }
emilmont 10:3bc89ef62ce7 259
emilmont 10:3bc89ef62ce7 260 for (i=0; i<length; i++) {
emilmont 10:3bc89ef62ce7 261 status = i2c_do_write(obj, data[i], 0);
emilmont 10:3bc89ef62ce7 262 if (status != 0x28) {
emilmont 10:3bc89ef62ce7 263 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 264 return status;
emilmont 10:3bc89ef62ce7 265 }
emilmont 10:3bc89ef62ce7 266 }
emilmont 10:3bc89ef62ce7 267
humlet 11:f9e72c209510 268 // clearing the serial interrupt here might cause an unintended rewrite of the last byte
humlet 11:f9e72c209510 269 // see also issue report https://mbed.org/users/mbed_official/code/mbed/issues/1
humlet 11:f9e72c209510 270 // i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 271
emilmont 10:3bc89ef62ce7 272 // If not repeated start, send stop.
emilmont 10:3bc89ef62ce7 273 if (stop) {
emilmont 10:3bc89ef62ce7 274 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 275 }
emilmont 10:3bc89ef62ce7 276
emilmont 10:3bc89ef62ce7 277 return 0;
emilmont 10:3bc89ef62ce7 278 }
emilmont 10:3bc89ef62ce7 279
emilmont 10:3bc89ef62ce7 280 void i2c_reset(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 281 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 282 }
emilmont 10:3bc89ef62ce7 283
emilmont 10:3bc89ef62ce7 284 int i2c_byte_read(i2c_t *obj, int last) {
emilmont 10:3bc89ef62ce7 285 return (i2c_do_read(obj, last) & 0xFF);
emilmont 10:3bc89ef62ce7 286 }
emilmont 10:3bc89ef62ce7 287
emilmont 10:3bc89ef62ce7 288 int i2c_byte_write(i2c_t *obj, int data) {
emilmont 10:3bc89ef62ce7 289 int ack;
emilmont 10:3bc89ef62ce7 290 int status = i2c_do_write(obj, (data & 0xFF), 0);
emilmont 10:3bc89ef62ce7 291
emilmont 10:3bc89ef62ce7 292 switch(status) {
emilmont 10:3bc89ef62ce7 293 case 0x18: case 0x28: // Master transmit ACKs
emilmont 10:3bc89ef62ce7 294 ack = 1;
emilmont 10:3bc89ef62ce7 295 break;
emilmont 10:3bc89ef62ce7 296
emilmont 10:3bc89ef62ce7 297 case 0x40: // Master receive address transmitted ACK
emilmont 10:3bc89ef62ce7 298 ack = 1;
emilmont 10:3bc89ef62ce7 299 break;
emilmont 10:3bc89ef62ce7 300
emilmont 10:3bc89ef62ce7 301 case 0xB8: // Slave transmit ACK
emilmont 10:3bc89ef62ce7 302 ack = 1;
emilmont 10:3bc89ef62ce7 303 break;
emilmont 10:3bc89ef62ce7 304
emilmont 10:3bc89ef62ce7 305 default:
emilmont 10:3bc89ef62ce7 306 ack = 0;
emilmont 10:3bc89ef62ce7 307 break;
emilmont 10:3bc89ef62ce7 308 }
emilmont 10:3bc89ef62ce7 309
emilmont 10:3bc89ef62ce7 310 return ack;
emilmont 10:3bc89ef62ce7 311 }
emilmont 10:3bc89ef62ce7 312
emilmont 10:3bc89ef62ce7 313 void i2c_slave_mode(i2c_t *obj, int enable_slave) {
emilmont 10:3bc89ef62ce7 314 if (enable_slave != 0) {
emilmont 10:3bc89ef62ce7 315 i2c_conclr(obj, 1, 1, 1, 0);
emilmont 10:3bc89ef62ce7 316 i2c_conset(obj, 0, 0, 0, 1);
emilmont 10:3bc89ef62ce7 317 } else {
emilmont 10:3bc89ef62ce7 318 i2c_conclr(obj, 1, 1, 1, 1);
emilmont 10:3bc89ef62ce7 319 }
emilmont 10:3bc89ef62ce7 320 }
emilmont 10:3bc89ef62ce7 321
emilmont 10:3bc89ef62ce7 322 int i2c_slave_receive(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 323 int status;
emilmont 10:3bc89ef62ce7 324 int retval;
emilmont 10:3bc89ef62ce7 325
emilmont 10:3bc89ef62ce7 326 status = i2c_status(obj);
emilmont 10:3bc89ef62ce7 327 switch(status) {
emilmont 10:3bc89ef62ce7 328 case 0x60: retval = 3; break;
emilmont 10:3bc89ef62ce7 329 case 0x70: retval = 2; break;
emilmont 10:3bc89ef62ce7 330 case 0xA8: retval = 1; break;
emilmont 10:3bc89ef62ce7 331 default : retval = 0; break;
emilmont 10:3bc89ef62ce7 332 }
emilmont 10:3bc89ef62ce7 333
emilmont 10:3bc89ef62ce7 334 return(retval);
emilmont 10:3bc89ef62ce7 335 }
emilmont 10:3bc89ef62ce7 336
emilmont 10:3bc89ef62ce7 337 int i2c_slave_read(i2c_t *obj, char *data, int length) {
emilmont 10:3bc89ef62ce7 338 int count = 0;
emilmont 10:3bc89ef62ce7 339 int status;
emilmont 10:3bc89ef62ce7 340
emilmont 10:3bc89ef62ce7 341 do {
emilmont 10:3bc89ef62ce7 342 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 343 i2c_wait_SI(obj);
emilmont 10:3bc89ef62ce7 344 status = i2c_status(obj);
emilmont 10:3bc89ef62ce7 345 if((status == 0x80) || (status == 0x90)) {
emilmont 10:3bc89ef62ce7 346 data[count] = I2C_DAT(obj) & 0xFF;
emilmont 10:3bc89ef62ce7 347 }
emilmont 10:3bc89ef62ce7 348 count++;
emilmont 10:3bc89ef62ce7 349 } while (((status == 0x80) || (status == 0x90) ||
emilmont 10:3bc89ef62ce7 350 (status == 0x060) || (status == 0x70)) && (count < length));
emilmont 10:3bc89ef62ce7 351
emilmont 10:3bc89ef62ce7 352 if(status != 0xA0) {
emilmont 10:3bc89ef62ce7 353 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 354 }
emilmont 10:3bc89ef62ce7 355
emilmont 10:3bc89ef62ce7 356 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 357
emilmont 10:3bc89ef62ce7 358 return (count - 1);
emilmont 10:3bc89ef62ce7 359 }
emilmont 10:3bc89ef62ce7 360
emilmont 10:3bc89ef62ce7 361 int i2c_slave_write(i2c_t *obj, const char *data, int length) {
emilmont 10:3bc89ef62ce7 362 int count = 0;
emilmont 10:3bc89ef62ce7 363 int status;
emilmont 10:3bc89ef62ce7 364
emilmont 10:3bc89ef62ce7 365 if(length <= 0) {
emilmont 10:3bc89ef62ce7 366 return(0);
emilmont 10:3bc89ef62ce7 367 }
emilmont 10:3bc89ef62ce7 368
emilmont 10:3bc89ef62ce7 369 do {
emilmont 10:3bc89ef62ce7 370 status = i2c_do_write(obj, data[count], 0);
emilmont 10:3bc89ef62ce7 371 count++;
emilmont 10:3bc89ef62ce7 372 } while ((count < length) && (status == 0xB8));
emilmont 10:3bc89ef62ce7 373
emilmont 10:3bc89ef62ce7 374 if((status != 0xC0) && (status != 0xC8)) {
emilmont 10:3bc89ef62ce7 375 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 376 }
emilmont 10:3bc89ef62ce7 377
emilmont 10:3bc89ef62ce7 378 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 379
emilmont 10:3bc89ef62ce7 380 return(count);
emilmont 10:3bc89ef62ce7 381 }
emilmont 10:3bc89ef62ce7 382
emilmont 10:3bc89ef62ce7 383 void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
emilmont 10:3bc89ef62ce7 384 uint32_t addr;
emilmont 10:3bc89ef62ce7 385
emilmont 10:3bc89ef62ce7 386 if ((idx >= 0) && (idx <= 3)) {
emilmont 10:3bc89ef62ce7 387 addr = ((uint32_t)obj->i2c) + I2C_addr_offset[0][idx];
emilmont 10:3bc89ef62ce7 388 *((uint32_t *) addr) = address & 0xFF;
emilmont 10:3bc89ef62ce7 389 }
emilmont 10:3bc89ef62ce7 390 }