mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

Committer:
emilmont
Date:
Fri Jun 14 17:49:17 2013 +0100
Revision:
10:3bc89ef62ce7
Child:
11:f9e72c209510
Unify mbed library sources

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 10:3bc89ef62ce7 1 /* mbed Microcontroller Library
emilmont 10:3bc89ef62ce7 2 * Copyright (c) 2006-2013 ARM Limited
emilmont 10:3bc89ef62ce7 3 *
emilmont 10:3bc89ef62ce7 4 * Licensed under the Apache License, Version 2.0 (the "License");
emilmont 10:3bc89ef62ce7 5 * you may not use this file except in compliance with the License.
emilmont 10:3bc89ef62ce7 6 * You may obtain a copy of the License at
emilmont 10:3bc89ef62ce7 7 *
emilmont 10:3bc89ef62ce7 8 * http://www.apache.org/licenses/LICENSE-2.0
emilmont 10:3bc89ef62ce7 9 *
emilmont 10:3bc89ef62ce7 10 * Unless required by applicable law or agreed to in writing, software
emilmont 10:3bc89ef62ce7 11 * distributed under the License is distributed on an "AS IS" BASIS,
emilmont 10:3bc89ef62ce7 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
emilmont 10:3bc89ef62ce7 13 * See the License for the specific language governing permissions and
emilmont 10:3bc89ef62ce7 14 * limitations under the License.
emilmont 10:3bc89ef62ce7 15 */
emilmont 10:3bc89ef62ce7 16 #include "i2c_api.h"
emilmont 10:3bc89ef62ce7 17 #include "cmsis.h"
emilmont 10:3bc89ef62ce7 18 #include "pinmap.h"
emilmont 10:3bc89ef62ce7 19 #include "error.h"
emilmont 10:3bc89ef62ce7 20
emilmont 10:3bc89ef62ce7 21 static const PinMap PinMap_I2C_SDA[] = {
emilmont 10:3bc89ef62ce7 22 {P0_5, I2C_0, 1},
emilmont 10:3bc89ef62ce7 23 {NC , NC , 0}
emilmont 10:3bc89ef62ce7 24 };
emilmont 10:3bc89ef62ce7 25
emilmont 10:3bc89ef62ce7 26 static const PinMap PinMap_I2C_SCL[] = {
emilmont 10:3bc89ef62ce7 27 {P0_4, I2C_0, 1},
emilmont 10:3bc89ef62ce7 28 {NC , NC, 0}
emilmont 10:3bc89ef62ce7 29 };
emilmont 10:3bc89ef62ce7 30
emilmont 10:3bc89ef62ce7 31 #define I2C_CONSET(x) (x->i2c->CONSET)
emilmont 10:3bc89ef62ce7 32 #define I2C_CONCLR(x) (x->i2c->CONCLR)
emilmont 10:3bc89ef62ce7 33 #define I2C_STAT(x) (x->i2c->STAT)
emilmont 10:3bc89ef62ce7 34 #define I2C_DAT(x) (x->i2c->DAT)
emilmont 10:3bc89ef62ce7 35 #define I2C_SCLL(x, val) (x->i2c->SCLL = val)
emilmont 10:3bc89ef62ce7 36 #define I2C_SCLH(x, val) (x->i2c->SCLH = val)
emilmont 10:3bc89ef62ce7 37
emilmont 10:3bc89ef62ce7 38 static const uint32_t I2C_addr_offset[2][4] = {
emilmont 10:3bc89ef62ce7 39 {0x0C, 0x20, 0x24, 0x28},
emilmont 10:3bc89ef62ce7 40 {0x30, 0x34, 0x38, 0x3C}
emilmont 10:3bc89ef62ce7 41 };
emilmont 10:3bc89ef62ce7 42
emilmont 10:3bc89ef62ce7 43 static inline void i2c_conclr(i2c_t *obj, int start, int stop, int interrupt, int acknowledge) {
emilmont 10:3bc89ef62ce7 44 I2C_CONCLR(obj) = (start << 5)
emilmont 10:3bc89ef62ce7 45 | (stop << 4)
emilmont 10:3bc89ef62ce7 46 | (interrupt << 3)
emilmont 10:3bc89ef62ce7 47 | (acknowledge << 2);
emilmont 10:3bc89ef62ce7 48 }
emilmont 10:3bc89ef62ce7 49
emilmont 10:3bc89ef62ce7 50 static inline void i2c_conset(i2c_t *obj, int start, int stop, int interrupt, int acknowledge) {
emilmont 10:3bc89ef62ce7 51 I2C_CONSET(obj) = (start << 5)
emilmont 10:3bc89ef62ce7 52 | (stop << 4)
emilmont 10:3bc89ef62ce7 53 | (interrupt << 3)
emilmont 10:3bc89ef62ce7 54 | (acknowledge << 2);
emilmont 10:3bc89ef62ce7 55 }
emilmont 10:3bc89ef62ce7 56
emilmont 10:3bc89ef62ce7 57 // Clear the Serial Interrupt (SI)
emilmont 10:3bc89ef62ce7 58 static inline void i2c_clear_SI(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 59 i2c_conclr(obj, 0, 0, 1, 0);
emilmont 10:3bc89ef62ce7 60 }
emilmont 10:3bc89ef62ce7 61
emilmont 10:3bc89ef62ce7 62 static inline int i2c_status(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 63 return I2C_STAT(obj);
emilmont 10:3bc89ef62ce7 64 }
emilmont 10:3bc89ef62ce7 65
emilmont 10:3bc89ef62ce7 66 // Wait until the Serial Interrupt (SI) is set
emilmont 10:3bc89ef62ce7 67 static int i2c_wait_SI(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 68 int timeout = 0;
emilmont 10:3bc89ef62ce7 69 while (!(I2C_CONSET(obj) & (1 << 3))) {
emilmont 10:3bc89ef62ce7 70 timeout++;
emilmont 10:3bc89ef62ce7 71 if (timeout > 100000) return -1;
emilmont 10:3bc89ef62ce7 72 }
emilmont 10:3bc89ef62ce7 73 return 0;
emilmont 10:3bc89ef62ce7 74 }
emilmont 10:3bc89ef62ce7 75
emilmont 10:3bc89ef62ce7 76 static inline void i2c_interface_enable(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 77 I2C_CONSET(obj) = 0x40;
emilmont 10:3bc89ef62ce7 78 }
emilmont 10:3bc89ef62ce7 79
emilmont 10:3bc89ef62ce7 80 static inline void i2c_power_enable(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 81 LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 5);
emilmont 10:3bc89ef62ce7 82 LPC_SYSCON->PRESETCTRL |= 1 << 1;
emilmont 10:3bc89ef62ce7 83 }
emilmont 10:3bc89ef62ce7 84
emilmont 10:3bc89ef62ce7 85 void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
emilmont 10:3bc89ef62ce7 86 // determine the SPI to use
emilmont 10:3bc89ef62ce7 87 I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
emilmont 10:3bc89ef62ce7 88 I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
emilmont 10:3bc89ef62ce7 89 obj->i2c = (LPC_I2C_Type *)pinmap_merge(i2c_sda, i2c_scl);
emilmont 10:3bc89ef62ce7 90
emilmont 10:3bc89ef62ce7 91 if ((int)obj->i2c == NC) {
emilmont 10:3bc89ef62ce7 92 error("I2C pin mapping failed");
emilmont 10:3bc89ef62ce7 93 }
emilmont 10:3bc89ef62ce7 94
emilmont 10:3bc89ef62ce7 95 // enable power
emilmont 10:3bc89ef62ce7 96 i2c_power_enable(obj);
emilmont 10:3bc89ef62ce7 97
emilmont 10:3bc89ef62ce7 98 // set default frequency at 100k
emilmont 10:3bc89ef62ce7 99 i2c_frequency(obj, 100000);
emilmont 10:3bc89ef62ce7 100 i2c_conclr(obj, 1, 1, 1, 1);
emilmont 10:3bc89ef62ce7 101 i2c_interface_enable(obj);
emilmont 10:3bc89ef62ce7 102
emilmont 10:3bc89ef62ce7 103 pinmap_pinout(sda, PinMap_I2C_SDA);
emilmont 10:3bc89ef62ce7 104 pinmap_pinout(scl, PinMap_I2C_SCL);
emilmont 10:3bc89ef62ce7 105 }
emilmont 10:3bc89ef62ce7 106
emilmont 10:3bc89ef62ce7 107 inline int i2c_start(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 108 int status = 0;
emilmont 10:3bc89ef62ce7 109 // 8.1 Before master mode can be entered, I2CON must be initialised to:
emilmont 10:3bc89ef62ce7 110 // - I2EN STA STO SI AA - -
emilmont 10:3bc89ef62ce7 111 // - 1 0 0 0 x - -
emilmont 10:3bc89ef62ce7 112 // if AA = 0, it can't enter slave mode
emilmont 10:3bc89ef62ce7 113 i2c_conclr(obj, 1, 1, 1, 1);
emilmont 10:3bc89ef62ce7 114
emilmont 10:3bc89ef62ce7 115 // The master mode may now be entered by setting the STA bit
emilmont 10:3bc89ef62ce7 116 // this will generate a start condition when the bus becomes free
emilmont 10:3bc89ef62ce7 117 i2c_conset(obj, 1, 0, 0, 1);
emilmont 10:3bc89ef62ce7 118
emilmont 10:3bc89ef62ce7 119 i2c_wait_SI(obj);
emilmont 10:3bc89ef62ce7 120 status = i2c_status(obj);
emilmont 10:3bc89ef62ce7 121
emilmont 10:3bc89ef62ce7 122 // Clear start bit now transmitted, and interrupt bit
emilmont 10:3bc89ef62ce7 123 i2c_conclr(obj, 1, 0, 0, 0);
emilmont 10:3bc89ef62ce7 124 return status;
emilmont 10:3bc89ef62ce7 125 }
emilmont 10:3bc89ef62ce7 126
emilmont 10:3bc89ef62ce7 127 inline void i2c_stop(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 128 // write the stop bit
emilmont 10:3bc89ef62ce7 129 i2c_conset(obj, 0, 1, 0, 0);
emilmont 10:3bc89ef62ce7 130 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 131
emilmont 10:3bc89ef62ce7 132 // wait for STO bit to reset
emilmont 10:3bc89ef62ce7 133 while(I2C_CONSET(obj) & (1 << 4));
emilmont 10:3bc89ef62ce7 134 }
emilmont 10:3bc89ef62ce7 135
emilmont 10:3bc89ef62ce7 136
emilmont 10:3bc89ef62ce7 137 static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) {
emilmont 10:3bc89ef62ce7 138 // write the data
emilmont 10:3bc89ef62ce7 139 I2C_DAT(obj) = value;
emilmont 10:3bc89ef62ce7 140
emilmont 10:3bc89ef62ce7 141 // clear SI to init a send
emilmont 10:3bc89ef62ce7 142 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 143
emilmont 10:3bc89ef62ce7 144 // wait and return status
emilmont 10:3bc89ef62ce7 145 i2c_wait_SI(obj);
emilmont 10:3bc89ef62ce7 146 return i2c_status(obj);
emilmont 10:3bc89ef62ce7 147 }
emilmont 10:3bc89ef62ce7 148
emilmont 10:3bc89ef62ce7 149 static inline int i2c_do_read(i2c_t *obj, int last) {
emilmont 10:3bc89ef62ce7 150 // we are in state 0x40 (SLA+R tx'd) or 0x50 (data rx'd and ack)
emilmont 10:3bc89ef62ce7 151 if (last) {
emilmont 10:3bc89ef62ce7 152 i2c_conclr(obj, 0, 0, 0, 1); // send a NOT ACK
emilmont 10:3bc89ef62ce7 153 } else {
emilmont 10:3bc89ef62ce7 154 i2c_conset(obj, 0, 0, 0, 1); // send a ACK
emilmont 10:3bc89ef62ce7 155 }
emilmont 10:3bc89ef62ce7 156
emilmont 10:3bc89ef62ce7 157 // accept byte
emilmont 10:3bc89ef62ce7 158 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 159
emilmont 10:3bc89ef62ce7 160 // wait for it to arrive
emilmont 10:3bc89ef62ce7 161 i2c_wait_SI(obj);
emilmont 10:3bc89ef62ce7 162
emilmont 10:3bc89ef62ce7 163 // return the data
emilmont 10:3bc89ef62ce7 164 return (I2C_DAT(obj) & 0xFF);
emilmont 10:3bc89ef62ce7 165 }
emilmont 10:3bc89ef62ce7 166
emilmont 10:3bc89ef62ce7 167 void i2c_frequency(i2c_t *obj, int hz) {
emilmont 10:3bc89ef62ce7 168 // No peripheral clock divider on the M0
emilmont 10:3bc89ef62ce7 169 uint32_t PCLK = SystemCoreClock;
emilmont 10:3bc89ef62ce7 170
emilmont 10:3bc89ef62ce7 171 uint32_t pulse = PCLK / (hz * 2);
emilmont 10:3bc89ef62ce7 172
emilmont 10:3bc89ef62ce7 173 // I2C Rate
emilmont 10:3bc89ef62ce7 174 I2C_SCLL(obj, pulse);
emilmont 10:3bc89ef62ce7 175 I2C_SCLH(obj, pulse);
emilmont 10:3bc89ef62ce7 176 }
emilmont 10:3bc89ef62ce7 177
emilmont 10:3bc89ef62ce7 178 // The I2C does a read or a write as a whole operation
emilmont 10:3bc89ef62ce7 179 // There are two types of error conditions it can encounter
emilmont 10:3bc89ef62ce7 180 // 1) it can not obtain the bus
emilmont 10:3bc89ef62ce7 181 // 2) it gets error responses at part of the transmission
emilmont 10:3bc89ef62ce7 182 //
emilmont 10:3bc89ef62ce7 183 // We tackle them as follows:
emilmont 10:3bc89ef62ce7 184 // 1) we retry until we get the bus. we could have a "timeout" if we can not get it
emilmont 10:3bc89ef62ce7 185 // which basically turns it in to a 2)
emilmont 10:3bc89ef62ce7 186 // 2) on error, we use the standard error mechanisms to report/debug
emilmont 10:3bc89ef62ce7 187 //
emilmont 10:3bc89ef62ce7 188 // Therefore an I2C transaction should always complete. If it doesn't it is usually
emilmont 10:3bc89ef62ce7 189 // because something is setup wrong (e.g. wiring), and we don't need to programatically
emilmont 10:3bc89ef62ce7 190 // check for that
emilmont 10:3bc89ef62ce7 191
emilmont 10:3bc89ef62ce7 192 int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
emilmont 10:3bc89ef62ce7 193 int count, status;
emilmont 10:3bc89ef62ce7 194
emilmont 10:3bc89ef62ce7 195 status = i2c_start(obj);
emilmont 10:3bc89ef62ce7 196
emilmont 10:3bc89ef62ce7 197 if ((status != 0x10) && (status != 0x08)) {
emilmont 10:3bc89ef62ce7 198 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 199 return status;
emilmont 10:3bc89ef62ce7 200 }
emilmont 10:3bc89ef62ce7 201
emilmont 10:3bc89ef62ce7 202 status = i2c_do_write(obj, (address | 0x01), 1);
emilmont 10:3bc89ef62ce7 203 if (status != 0x40) {
emilmont 10:3bc89ef62ce7 204 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 205 return status;
emilmont 10:3bc89ef62ce7 206 }
emilmont 10:3bc89ef62ce7 207
emilmont 10:3bc89ef62ce7 208 // Read in all except last byte
emilmont 10:3bc89ef62ce7 209 for (count = 0; count < (length - 1); count++) {
emilmont 10:3bc89ef62ce7 210 int value = i2c_do_read(obj, 0);
emilmont 10:3bc89ef62ce7 211 status = i2c_status(obj);
emilmont 10:3bc89ef62ce7 212 if (status != 0x50) {
emilmont 10:3bc89ef62ce7 213 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 214 return status;
emilmont 10:3bc89ef62ce7 215 }
emilmont 10:3bc89ef62ce7 216 data[count] = (char) value;
emilmont 10:3bc89ef62ce7 217 }
emilmont 10:3bc89ef62ce7 218
emilmont 10:3bc89ef62ce7 219 // read in last byte
emilmont 10:3bc89ef62ce7 220 int value = i2c_do_read(obj, 1);
emilmont 10:3bc89ef62ce7 221 status = i2c_status(obj);
emilmont 10:3bc89ef62ce7 222 if (status != 0x58) {
emilmont 10:3bc89ef62ce7 223 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 224 return status;
emilmont 10:3bc89ef62ce7 225 }
emilmont 10:3bc89ef62ce7 226
emilmont 10:3bc89ef62ce7 227 data[count] = (char) value;
emilmont 10:3bc89ef62ce7 228
emilmont 10:3bc89ef62ce7 229 // If not repeated start, send stop.
emilmont 10:3bc89ef62ce7 230 if (stop) {
emilmont 10:3bc89ef62ce7 231 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 232 }
emilmont 10:3bc89ef62ce7 233
emilmont 10:3bc89ef62ce7 234 return 0;
emilmont 10:3bc89ef62ce7 235 }
emilmont 10:3bc89ef62ce7 236
emilmont 10:3bc89ef62ce7 237 int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
emilmont 10:3bc89ef62ce7 238 int i, status;
emilmont 10:3bc89ef62ce7 239
emilmont 10:3bc89ef62ce7 240 status = i2c_start(obj);
emilmont 10:3bc89ef62ce7 241
emilmont 10:3bc89ef62ce7 242 if ((status != 0x10) && (status != 0x08)) {
emilmont 10:3bc89ef62ce7 243 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 244 return status;
emilmont 10:3bc89ef62ce7 245 }
emilmont 10:3bc89ef62ce7 246
emilmont 10:3bc89ef62ce7 247 status = i2c_do_write(obj, (address & 0xFE), 1);
emilmont 10:3bc89ef62ce7 248 if (status != 0x18) {
emilmont 10:3bc89ef62ce7 249 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 250 return status;
emilmont 10:3bc89ef62ce7 251 }
emilmont 10:3bc89ef62ce7 252
emilmont 10:3bc89ef62ce7 253 for (i=0; i<length; i++) {
emilmont 10:3bc89ef62ce7 254 status = i2c_do_write(obj, data[i], 0);
emilmont 10:3bc89ef62ce7 255 if(status != 0x28) {
emilmont 10:3bc89ef62ce7 256 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 257 return status;
emilmont 10:3bc89ef62ce7 258 }
emilmont 10:3bc89ef62ce7 259 }
emilmont 10:3bc89ef62ce7 260
emilmont 10:3bc89ef62ce7 261 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 262
emilmont 10:3bc89ef62ce7 263 // If not repeated start, send stop.
emilmont 10:3bc89ef62ce7 264 if (stop) {
emilmont 10:3bc89ef62ce7 265 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 266 }
emilmont 10:3bc89ef62ce7 267
emilmont 10:3bc89ef62ce7 268 return 0;
emilmont 10:3bc89ef62ce7 269 }
emilmont 10:3bc89ef62ce7 270
emilmont 10:3bc89ef62ce7 271 void i2c_reset(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 272 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 273 }
emilmont 10:3bc89ef62ce7 274
emilmont 10:3bc89ef62ce7 275 int i2c_byte_read(i2c_t *obj, int last) {
emilmont 10:3bc89ef62ce7 276 return (i2c_do_read(obj, last) & 0xFF);
emilmont 10:3bc89ef62ce7 277 }
emilmont 10:3bc89ef62ce7 278
emilmont 10:3bc89ef62ce7 279 int i2c_byte_write(i2c_t *obj, int data) {
emilmont 10:3bc89ef62ce7 280 int ack;
emilmont 10:3bc89ef62ce7 281 int status = i2c_do_write(obj, (data & 0xFF), 0);
emilmont 10:3bc89ef62ce7 282
emilmont 10:3bc89ef62ce7 283 switch(status) {
emilmont 10:3bc89ef62ce7 284 case 0x18: case 0x28: // Master transmit ACKs
emilmont 10:3bc89ef62ce7 285 ack = 1;
emilmont 10:3bc89ef62ce7 286 break;
emilmont 10:3bc89ef62ce7 287 case 0x40: // Master receive address transmitted ACK
emilmont 10:3bc89ef62ce7 288 ack = 1;
emilmont 10:3bc89ef62ce7 289 break;
emilmont 10:3bc89ef62ce7 290 case 0xB8: // Slave transmit ACK
emilmont 10:3bc89ef62ce7 291 ack = 1;
emilmont 10:3bc89ef62ce7 292 break;
emilmont 10:3bc89ef62ce7 293 default:
emilmont 10:3bc89ef62ce7 294 ack = 0;
emilmont 10:3bc89ef62ce7 295 break;
emilmont 10:3bc89ef62ce7 296 }
emilmont 10:3bc89ef62ce7 297
emilmont 10:3bc89ef62ce7 298 return ack;
emilmont 10:3bc89ef62ce7 299 }
emilmont 10:3bc89ef62ce7 300
emilmont 10:3bc89ef62ce7 301 void i2c_slave_mode(i2c_t *obj, int enable_slave) {
emilmont 10:3bc89ef62ce7 302 if (enable_slave != 0) {
emilmont 10:3bc89ef62ce7 303 i2c_conclr(obj, 1, 1, 1, 0);
emilmont 10:3bc89ef62ce7 304 i2c_conset(obj, 0, 0, 0, 1);
emilmont 10:3bc89ef62ce7 305 } else {
emilmont 10:3bc89ef62ce7 306 i2c_conclr(obj, 1, 1, 1, 1);
emilmont 10:3bc89ef62ce7 307 }
emilmont 10:3bc89ef62ce7 308 }
emilmont 10:3bc89ef62ce7 309
emilmont 10:3bc89ef62ce7 310 int i2c_slave_receive(i2c_t *obj) {
emilmont 10:3bc89ef62ce7 311 int status;
emilmont 10:3bc89ef62ce7 312 int retval;
emilmont 10:3bc89ef62ce7 313
emilmont 10:3bc89ef62ce7 314 status = i2c_status(obj);
emilmont 10:3bc89ef62ce7 315 switch(status) {
emilmont 10:3bc89ef62ce7 316 case 0x60: retval = 3; break;
emilmont 10:3bc89ef62ce7 317 case 0x70: retval = 2; break;
emilmont 10:3bc89ef62ce7 318 case 0xA8: retval = 1; break;
emilmont 10:3bc89ef62ce7 319 default : retval = 0; break;
emilmont 10:3bc89ef62ce7 320 }
emilmont 10:3bc89ef62ce7 321
emilmont 10:3bc89ef62ce7 322 return(retval);
emilmont 10:3bc89ef62ce7 323 }
emilmont 10:3bc89ef62ce7 324
emilmont 10:3bc89ef62ce7 325 int i2c_slave_read(i2c_t *obj, char *data, int length) {
emilmont 10:3bc89ef62ce7 326 int count = 0;
emilmont 10:3bc89ef62ce7 327 int status;
emilmont 10:3bc89ef62ce7 328
emilmont 10:3bc89ef62ce7 329 do {
emilmont 10:3bc89ef62ce7 330 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 331 i2c_wait_SI(obj);
emilmont 10:3bc89ef62ce7 332 status = i2c_status(obj);
emilmont 10:3bc89ef62ce7 333 if((status == 0x80) || (status == 0x90)) {
emilmont 10:3bc89ef62ce7 334 data[count] = I2C_DAT(obj) & 0xFF;
emilmont 10:3bc89ef62ce7 335 }
emilmont 10:3bc89ef62ce7 336 count++;
emilmont 10:3bc89ef62ce7 337 } while (((status == 0x80) || (status == 0x90) ||
emilmont 10:3bc89ef62ce7 338 (status == 0x060) || (status == 0x70)) && (count < length));
emilmont 10:3bc89ef62ce7 339
emilmont 10:3bc89ef62ce7 340 if(status != 0xA0) {
emilmont 10:3bc89ef62ce7 341 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 342 }
emilmont 10:3bc89ef62ce7 343
emilmont 10:3bc89ef62ce7 344 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 345
emilmont 10:3bc89ef62ce7 346 return (count - 1);
emilmont 10:3bc89ef62ce7 347 }
emilmont 10:3bc89ef62ce7 348
emilmont 10:3bc89ef62ce7 349 int i2c_slave_write(i2c_t *obj, const char *data, int length) {
emilmont 10:3bc89ef62ce7 350 int count = 0;
emilmont 10:3bc89ef62ce7 351 int status;
emilmont 10:3bc89ef62ce7 352
emilmont 10:3bc89ef62ce7 353 if(length <= 0) {
emilmont 10:3bc89ef62ce7 354 return(0);
emilmont 10:3bc89ef62ce7 355 }
emilmont 10:3bc89ef62ce7 356
emilmont 10:3bc89ef62ce7 357 do {
emilmont 10:3bc89ef62ce7 358 status = i2c_do_write(obj, data[count], 0);
emilmont 10:3bc89ef62ce7 359 count++;
emilmont 10:3bc89ef62ce7 360 } while ((count < length) && (status == 0xB8));
emilmont 10:3bc89ef62ce7 361
emilmont 10:3bc89ef62ce7 362 if((status != 0xC0) && (status != 0xC8)) {
emilmont 10:3bc89ef62ce7 363 i2c_stop(obj);
emilmont 10:3bc89ef62ce7 364 }
emilmont 10:3bc89ef62ce7 365
emilmont 10:3bc89ef62ce7 366 i2c_clear_SI(obj);
emilmont 10:3bc89ef62ce7 367
emilmont 10:3bc89ef62ce7 368 return(count);
emilmont 10:3bc89ef62ce7 369 }
emilmont 10:3bc89ef62ce7 370
emilmont 10:3bc89ef62ce7 371 void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
emilmont 10:3bc89ef62ce7 372 uint32_t addr;
emilmont 10:3bc89ef62ce7 373
emilmont 10:3bc89ef62ce7 374 if ((idx >= 0) && (idx <= 3)) {
emilmont 10:3bc89ef62ce7 375 addr = ((uint32_t)obj->i2c) + I2C_addr_offset[0][idx];
emilmont 10:3bc89ef62ce7 376 *((uint32_t *) addr) = address & 0xFF;
emilmont 10:3bc89ef62ce7 377 }
emilmont 10:3bc89ef62ce7 378 }