Er is uitleg bijgeschreven en pwm_percentage heeft een andere naam

Dependencies:   Encoder HIDScope MODSERIAL mbed-dsp mbed

Fork of Lampje_EMG_Gr6 by Iris van Leeuwen

main.cpp

Committer:
jessekaiser
Date:
2014-11-03
Revision:
31:608140bf7b13
Parent:
30:7a0a3c272308

File content as of revision 31:608140bf7b13:

#include "mbed.h"
#include "HIDScope.h"
#include "arm_math.h"
#include "MODSERIAL.h"
#include "encoder.h"
#include "PwmOut.h"

// define
#define TSAMP 0.005
#define K_P1 (3.5) //Kp waarde voor motor1, van het batje // 7.0
#define K_I1 (0.01  *TSAMP) //0.1
#define K_P2 (0.7) //Kp waarde voor motor2, de arm //10.0
#define K_I2 (0.01 *TSAMP) //3.0
#define I_LIMIT 1.
#define l_arm 0.5

#define M1_PWM PTC8
#define M1_DIR PTC9
#define M2_PWM PTA5
#define M2_DIR PTA4

//Groene kabel moet op de GROUND en blauw op de 3.3v aansluiting
//Jesse is mooi
// Define objects
Serial pc(USBTX, USBRX);

// LED
DigitalOut myledred(PTB3);
DigitalOut myledgreen(PTB1);
DigitalOut myledblue(PTB2);

//EMG
AnalogIn    emg0(PTB0); //Analog input
AnalogIn    emg1(PTC2); //Analog input
HIDScope scope(4);

//motor1 25D
Encoder motor1(PTD3,PTD5); //wit, geel
PwmOut pwm_motor1(M2_PWM);
DigitalOut motordir1(M2_DIR);

//motor2 37D
Encoder motor2(PTD2, PTD0); //wit, geel
PwmOut pwm_motor2(M1_PWM);
DigitalOut motordir2(M1_DIR);

// Motor variabelen
float pwm_out1 = 0;
float pwm_out2 = 0;
int cur_pos_motor1;
int prev_pos_motor1 = 0;
int cur_pos_motor2;
int prev_pos_motor2 = 0;
float speed1_rad;
float speed2_rad;
float pos_motor1_rad;
float pos_motor2_rad;
int staat1 = 0;
int staat2 = 0;
volatile float arm_hoogte = 0;
volatile float batje_hoek = 0;
int wait_iterator1 = 0;
int wait_iterator2 = 0;


// EMG Filters (settings en variabelen)

// Filters
arm_biquad_casd_df1_inst_f32 lowpass_biceps;
arm_biquad_casd_df1_inst_f32 lowpass_deltoid;
//lowpass filter settings: Fc = 2 Hz, Fs = 500 Hz, Gain = -3 dB
float lowpass_const[] = {0.00015514839749793376, 0.00031029679499586753, 0.00015514839749793376, 1.9644602512795832, -0.9650808448695751};
//state values
float lowpass_biceps_states[4];
float lowpass_deltoid_states[4];
arm_biquad_casd_df1_inst_f32 highnotch_biceps;
arm_biquad_casd_df1_inst_f32 highnotch_deltoid;
//highpass filter settings: Fc = 10 Hz, Fs = 500 Hz, Gain = -3 dB, notch Fc = 50, Fs =500Hz, Gain = -3 dB
float highnotch_const[] = {0.9149684297741606, -1.8299368595483212, 0.9149684297741606, 1.8226935021735358, -0.8371802169231065 ,0.7063988100714527, -1.1429772843080923, 0.7063988100714527, 1.1429772843080923, -0.41279762014290533};
//state values
float highnotch_biceps_states[8];
float highnotch_deltoid_states[8];

//De globale variabele voor het gefilterde EMG signaal
float filtered_biceps;
float filtered_deltoid;
float filtered_average_bi;
float filtered_average_del;

//gemiddelde EMG waarden over 250 sample stappen
void average_biceps(float filtered_biceps,float *average)
{
    static float total=0;
    static float number=0;
    total = total + filtered_biceps;
    number = number + 1;
    if ( number == 250) {
        *average = total/250;
        total = 0;
        number = 0;
    }
}

void average_deltoid(float filtered_input,float *average_output)
{
    static float total=0;
    static float number=0;
    total = total + filtered_input;
    number = number + 1;
    if ( number == 250) {
        *average_output = total/250;
        total = 0;
        number = 0;
    }
}

// EMG looper
void looper()
{
    /*variable to store value in*/
    uint16_t emg_value1;
    uint16_t emg_value2;

    float emg_value1_f32;
    float emg_value2_f32;
    /*put raw emg value both in red and in emg_value*/
    emg_value1 = emg0.read_u16(); // read direct ADC result, converted to 16 bit integer (0..2^16 = 0..65536 = 0..3.3V)
    emg_value1_f32 = emg0.read();

    emg_value2 = emg1.read_u16();
    emg_value2_f32 = emg1.read();

    //process emg biceps
    arm_biquad_cascade_df1_f32(&highnotch_biceps, &emg_value1_f32, &filtered_biceps, 1 );
    filtered_biceps = fabs(filtered_biceps);
    arm_biquad_cascade_df1_f32(&lowpass_biceps, &filtered_biceps, &filtered_biceps, 1 );
    average_biceps(filtered_biceps,&filtered_average_bi);
    //process emg deltoid
    arm_biquad_cascade_df1_f32(&highnotch_deltoid, &emg_value2_f32, &filtered_deltoid, 1 );
    filtered_deltoid = fabs(filtered_deltoid);
    arm_biquad_cascade_df1_f32(&lowpass_deltoid, &filtered_deltoid, &filtered_deltoid, 1 );
    average_deltoid(filtered_deltoid, &filtered_average_del);

    /*send value to PC. */
    //scope.set(0,emg_value1);     //Raw EMG signal biceps
    //scope.set(1,emg_value2);    //Raw EMG signal Deltoid
    scope.set(0,filtered_biceps);  //processed float biceps
    scope.set(1,filtered_average_bi); //processed float deltoid
    scope.set(2,filtered_deltoid);  //processed float biceps
    scope.set(3,filtered_average_del); //processed float deltoid
    scope.send();

}

// LED AANSTURING

void BlinkRed(int n)
{
    for (int i=0; i<n; i++) {
        myledred = 0;
        myledgreen = 0;
        myledblue = 0;
        wait(0.1);
        myledred = 1;
        myledgreen = 0;
        myledblue = 0;
        wait(0.1);
    }
}

// Ticker voor groen knipperen, zodat tijdens dit knipperen presets gekozen kunnen worden
Ticker ledticker;

void greenblink()
{
    if(myledgreen.read())
        myledgreen = 0;
    else
        myledgreen = 1;
}

void BlinkGreen()
{
    myledred= 0;
    myledblue =0;
    ledticker.attach(&greenblink,.5);
}

void stopblinkgreen()
{
    ledticker.detach();
}

// Groen schijnen
void ShineGreen ()
{
    myledred = 0;
    myledgreen = 1;
    myledblue = 0;
}

// Blauw schijnen
void ShineBlue ()
{
    myledred = 0;
    myledgreen = 0;
    myledblue = 1;
}

// Rood schijnen
void ShineRed ()
{
    myledred = 1;
    myledgreen = 0;
    myledblue = 0;
}

// MOTORFUNCTIES

// Motor1 = batje
// Motor2 = arm

void clamp(float* in, float min, float max) //Clamp geeft een maximum en minimum limiet aan een functie
{
*in > min ? /*(*/*in < max? : *in = max : *in = min;
}

// PI-regelaar motor1: batje
float pid1(float setpoint1, float measurement1)
{
    float error1;
    float           out_p1 = 0;
    static float    out_i1 = 0;
    error1  = (setpoint1 - measurement1);
    out_p1  = error1*K_P1;
    out_i1 += error1*K_I1;
    clamp(&out_i1,-I_LIMIT,I_LIMIT);
    return out_p1 + out_i1;
}

// PI-regelaar motor2: arm
float pid2(float setpoint2, float measurement2)
{
    float error2;
    float           out_p2 = 0;
    static float    out_i2 = 0;
    error2  = (setpoint2 - measurement2);
    out_p2  = error2*K_P2;
    out_i2 += error2*K_I2;
    clamp(&out_i2,-I_LIMIT,I_LIMIT);
    return out_p2 + out_i2;
}

// Variabelen
float prev_setpoint1 = 0;
float setpoint1 = 0;
float prev_setpoint2 = 0;
float setpoint2 = 0;

// Functies motoren

// Motor1 links draaien
void batje_links ()
{
    speed1_rad = -1.0; //positief is CCW, negatief CW (boven aanzicht)
    setpoint1 = prev_setpoint1 + TSAMP * speed1_rad; //bepalen van de setpoint
    if(setpoint1 > (11.3*2.3*2.0*PI/360)) { //Het eerste getal geeft een aantal graden weer, dus alleen dit hoeft aangepast te worden/
        setpoint1 = (11.3*2.3*2.0*PI/360); //Hier wordt er een grens bepaald voor de hoek.
    }
    if(setpoint1 < -(11.3*2.3*2.0*PI/360)) {
        setpoint1 = -(11.3*2.3*2.0*PI/360);
    }
    if(setpoint1 <= -(11.3*2.3*2.0*PI/360)-0.1) {
        staat1 = 1;
        prev_setpoint1 = setpoint1;
    }
}
// Motor1 rechts draaien
    void batje_rechts () {
        speed1_rad = 1.0;
        setpoint1 = prev_setpoint1 + TSAMP * speed1_rad;
        if(setpoint1 > (11.3*2.3*2.0*PI/360)) {
            setpoint1 = (11.3*2.3*2.0*PI/360);
        }
        if(setpoint1 < -(11.3*2.3*2.0*PI/360)) {
            setpoint1 = -(11.3*2.3*2.0*PI/360);
        }
        prev_setpoint1 = setpoint1;
        if(setpoint1 >= (11.3*2.3*2.0*PI/360)-0.1) {
            staat1 = 1;
        }
    }

//Motor1 na links draaien weer terug laten draaien naar beginstand
    void batje_begin_links () {
        speed1_rad = 1.0;
        setpoint1 = prev_setpoint1 + TSAMP * speed1_rad;
        if(setpoint1 > (0*2.3*2.0*PI/360)) {
            setpoint1 = (0*2.3*2.0*PI/360);
        }
        if(setpoint1 < -(0*2.3*2.0*PI/360)) {
            setpoint1 = -(0*2.3*2.0*PI/360);
        }
        prev_setpoint1 = setpoint1;
    }

//Motor1 na links draaien weer terug laten draaien naar beginstand
    void batje_begin_rechts () {
        speed1_rad = -1.0;
        setpoint1 = prev_setpoint1 + TSAMP * speed1_rad;
        if(setpoint1 > (0*2.3*2.0*PI/360)) {
            setpoint1 = (0*2.3*2.0*PI/360);
        }
        if(setpoint1 < -(0.0*2.3*2.0*PI/360)) {
            setpoint1 = -(0.0*2.3*2.0*PI/360);
        }
        prev_setpoint1 = setpoint1;
    }

// Motor2 balletje op zn hoogst slaan
    void arm_hoog () {
        speed2_rad = 6.0;
        setpoint2 = prev_setpoint2 + TSAMP * speed2_rad;
        if(setpoint2 > (155.0*2.0*PI/360)) {
            setpoint2 = (155.0*2.0*PI/360);
        }
        if(setpoint2 < -(155.0*2.0*PI/360)) {
            setpoint2 = -(155.0*2.0*PI/360);
        }
        prev_setpoint2 = setpoint2;
        if(setpoint2 >= (155.0*2.0*PI/360)-0.1) {
            staat2 = 1;
        }
    }

// Motor2 balletje in het midden slaan
    void arm_mid () {
        speed2_rad = 4.0;
        setpoint2 = prev_setpoint2 + TSAMP * speed2_rad;
        if(setpoint2 > (155.0*2.0*PI/360)) {
            setpoint2 = (155.0*2.0*PI/360);
        }
        if(setpoint2 < -(155.0*2.0*PI/360)) {
            setpoint2 = -(155.0*2.0*PI/360);
        }
        prev_setpoint2 = setpoint2;
        if(setpoint2 >= (155.0*2.0*PI/360)-0.1) {
            staat2 = 1;
        }
    }

// Motor2 balletje op het laagst slaan
    void arm_laag () {
        speed2_rad = 2.0;
        setpoint2 = prev_setpoint2 + TSAMP * speed2_rad;
        if(setpoint2 > (155*2.0*PI/360)) {
            setpoint2 = (155*2.0*PI/360);
        }
        if(setpoint2 < -(155.0*2.0*PI/360)) {
            setpoint2 = -(155.0*2.0*PI/360);
        }
        prev_setpoint2 = setpoint2;
        if(setpoint2 >= (155.0*2.0*PI/360)-0.1) {
            staat2 = 1;
        }
    }

// Motor2 arm terug zetten in beginstand
    void arm_begin () {
        speed2_rad = 1.0;
        setpoint2 = prev_setpoint2 + TSAMP * speed2_rad;
        if(setpoint2 > (0.0*2.0*PI/360)) {
            setpoint2 = (0.0*2.0*PI/360);
        }
        if(setpoint2 < -(0.0*2.0*PI/360)) {
            setpoint2 = -(0.0*2.0*PI/360);
        }
        prev_setpoint2 = setpoint2;
    }

// MOTOR aansturing
    void looper_motor() {
        pc.printf("%d, %f \r\n", motor1.getPosition(), motor2.getPosition()); //Geeft de posities weer van beide motoren met een sample frequentie van 0.005

        //MOTOR1
        \
        cur_pos_motor1 = motor1.getPosition();
        pos_motor1_rad = (float)cur_pos_motor1/(4128.0/(2.0*PI)); //voor 1 rotatie van de motoras geldt 24(aantal cpr vd encoder)*172(gearbox ratio)=4128 counts.
        pwm_out1 = pid1(setpoint1, pos_motor1_rad);
        if (pwm_out1 < -1.0) { //Hier wordt de grens voor de pwm waarde ingesteld.
            pwm_out1 = -1.0;
        }
        if (pwm_out1 > 1.0) {
            pwm_out1 = 1.0;
        }
        pwm_motor1.write(abs(pwm_out1));
        if(pwm_out1 > 0) {
            motordir1 = 0;
        } else {
            motordir1 = 1;
        }

        //MOTOR2
        cur_pos_motor2 = motor2.getPosition();
        pos_motor2_rad = (float)cur_pos_motor2/(3200.0/(2.0*PI));
        pwm_out2 = pid2(setpoint2, pos_motor2_rad); //
        if (pwm_out2 < -1.0) {
            pwm_out2 = -1.0;
        }
        if (pwm_out2 > 1.0) {
            pwm_out2 = 1.0;
        }
        pwm_motor2.write(abs(pwm_out2));
        if(pwm_out2 > 0) {
            motordir2 = 0;
        } else {
            motordir2 = 1;
        }


        //STATES

        //Het batje draait naar opgegeven positie, doet dan een bepaalde tijd niks (wait_iterator), en draait daarna weer terug
        if (batje_hoek == 1) {
            if(staat1 == 0) {
                batje_rechts();
                wait_iterator1 = 0;
            } else if(staat1 ==1) {
                wait_iterator1++;
                if(wait_iterator1 > 1200) {
                    staat1 = 2;

                    batje_begin_rechts();
                }
            }
        }
        if (batje_hoek == 2) {
            if(staat1 == 0) {
                batje_links();
                wait_iterator1 = 0;
            } else if(staat1 ==1) {
                wait_iterator1++;
                if(wait_iterator1 > 1200) {
                    staat1 = 2;

                    batje_begin_links ();
                }
            }
        }

        if(arm_hoogte == 1) {
            if(staat2 == 0) {
                arm_laag();
                wait_iterator2 = 0;
            } else if(staat2 == 1) {
                wait_iterator2++;
                if(wait_iterator2 > 400) {
                    staat2 = 2;

                    arm_begin();
                }
            }
        }
        if(arm_hoogte == 2) {
            if(staat2 == 0) {
                arm_mid();
                wait_iterator2 = 0;
            } else if(staat2 == 1) {
                wait_iterator2++;
                if(wait_iterator2 > 400) {
                    staat2 = 2;

                    arm_begin();
                }
            }
        }
        if(arm_hoogte == 3) {
            if(staat2 == 0) {
                arm_hoog();
                wait_iterator2 = 0;
            } else if(staat2 == 1) {
                wait_iterator2++;
                if(wait_iterator2 > 400) {
                    staat2 = 2;

                    arm_begin();
                }
            }
        }

    }


// Hoofdprogramma, hierin staat de aansturing vd LED
    int main() {

        pwm_motor1.period_us(100);
        motor1.setPosition(0);
        pwm_motor2.period_us(100);
        motor2.setPosition(0);
        pc.baud(115200);
        // Ticker EMG signaal meten
        Ticker log_timer;
        //set up filters. Use external array for constants
        arm_biquad_cascade_df1_init_f32(&lowpass_biceps,1 , lowpass_const, lowpass_biceps_states);
        arm_biquad_cascade_df1_init_f32(&lowpass_deltoid,1 , lowpass_const, lowpass_deltoid_states);
        arm_biquad_cascade_df1_init_f32(&highnotch_biceps,2 ,highnotch_const,highnotch_biceps_states);
        arm_biquad_cascade_df1_init_f32(&highnotch_deltoid,2 ,highnotch_const,highnotch_deltoid_states);
        // Uitvoeren van ticker EMG, sample frequentie 500Hz
        log_timer.attach(looper, 0.002);

        // Aanroepen van motoraansturing in motor ticker
        Ticker looptimer;
        looptimer.attach(looper_motor,TSAMP);

        while(1) {

            while(1) {
                pc.printf("Span de biceps aan om het instellen te starten.\n");
                do {
                    ShineRed();
                } while(filtered_average_bi < 0.05 && filtered_average_del <0.05); // In rust, geen meting
                if (filtered_average_bi > 0.05) { // Beginnen met meting wanneer biceps wordt aangespannen
                    BlinkRed(10); // 2 seconden rood knipperen, geen signaal verwerking
                    BlinkGreen(); // groen knipperen, meten van spieraanspanning
                    while (1) { // eerste loop, keuze voor de positie van het batje
                        pc.printf("In de loop.\n");
                        if (filtered_average_bi > 0.05 && filtered_average_del > 0.045) { //bi en del aangespannen --> batje in het midden
                            stopblinkgreen();
                            pc.printf("ShineGreen.\n");
                            ShineGreen();
                            wait (4);
                            break;
                        }
                        if (filtered_average_bi < 0.05 && filtered_average_del > 0.045) { // del aanspannen --> batje naar links
                            stopblinkgreen();
                            pc.printf("ShineBlue.\n");
                            ShineBlue();
                            batje_hoek = 2;
                            wait(4);
                            break;
                        } else if (filtered_average_bi > 0.05 && filtered_average_del < 0.045) { // bi aanspannen --> batje naar rechts
                            stopblinkgreen();
                            pc.printf("ShineRed.\n");
                            ShineRed();
                            batje_hoek = 1;
                            wait (4);
                            break;
                        }
                    }
                    BlinkGreen();
                    while (1) { // loop voor het instellen van de kracht
                        pc.printf("In de loop.\n");
                        if (filtered_average_bi > 0.05 && filtered_average_del > 0.045) { // bi en del aanspannen --> hoog slaan
                            stopblinkgreen();
                            pc.printf("ShineGreen.\n");
                            ShineGreen();
                            arm_hoogte = 3;
                            wait (4);
                            break;
                        }
                        if (filtered_average_bi < 0.05 && filtered_average_del > 0.045) { // del aanspannen --> laag slaan
                            stopblinkgreen();
                            pc.printf("ShineBlue.\n");
                            ShineBlue();
                            arm_hoogte = 1;
                            wait(4);
                            break;
                        } else if (filtered_average_bi > 0.05 && filtered_average_del < 0.045) { // bi aanspannen --> midden slaan
                            stopblinkgreen();
                            pc.printf("ShineRed.\n");
                            ShineRed();
                            arm_hoogte = 2;
                            wait (4);
                            break;
                        }
                    }

                }

            }
        }
    }