RTOS enabled i2c-driver based on the official i2c-C-api.

Dependencies:   mbed-rtos

Fork of mbed-RtosI2cDriver by Helmut Schmücker

I2cRtosDriver

Overview

  • Based on RTOS
    • Less busy wait waste of CPU cycles
    • ... but some waste of CPU cycles by context switches
    • Frees up to 80% of CPU resources
  • Fixes the bug described in https://mbed.org/forum/bugs-suggestions/topic/4128/
  • Spends minimal time in interrupt context
  • Supports I2C Master and Slave mode
  • Interface compatible to official I2C lib
  • Supports LPC1768 and LPC11U24.
  • Reuses parts of the official I2C implementation
  • The test and example programs work quite well and the results look promising. But this is by no means a thoroughly regression tested library. There might be some surprises left.
  • If you want to avoid the RTOS overhead MODI2C might be a better choice.

Usage

  • In existing projects simply replace in the I2C interface class declaration the official type by one of the adapters I2CMasterRtos or I2CSlaveRtos described below. The behavior should be the same.
  • You can also use the I2CDriver interface directly.
  • You can create several instances of I2CMasterRtos, I2CSlaveRtos and I2CDriver. The interface classes are lightweight and work in parallel.
  • See also the tests/examples in I2CDriverTest01.h - I2CDriverTest05.h
  • The I2CDriver class is the central interface
    • I2CDriver provides a "fat" API for I2C master and slave access
    • It supports on the fly changes between master and slave mode.
    • All requests are blocking. Other threads might do their work while the calling thread waits for the i2c requests to be completed.
    • It ensures mutual exclusive access to the I2C HW.
      • This is realized by a static RTOS mutex for each I2C channel. The mutex is taken by the calling thread on any call of an I2CDriver-function.
      • Thus accesses are prioritized automatically by the priority of the calling user threads.
      • Once having access to the interface the requests are performed with high priority and cannot be interrupted by other threads.
      • Optionally the interface can be locked manually. Useful if one wants to perform a sequence of commands without interruption.
  • I2CMasterRtos and I2CSlaveRtos provide an interface compatible to the official mbed I2C interface. Additionally
    • the constructors provide parameters for defining the frequency and the slave address
    • I2CMasterRtos provides a function to read data from a given slave register
    • In contrast to the original interface the I2CSlaveRtos::receive() function is blocking, i.e it returns, when the master sends a request to the listening slave. There is no need to poll the receive status in a loop. Optionally a timeout value can be passed to the function.
    • The stop function provides a timeout mechanism and returns the status. Thus if someone on the bus inhibits the creation of a stop condition by keeping the scl or the sda line low the mbed master won't get freezed.
    • The interface adapters are implemented as object adapters, i.e they hold an I2CDriver-instance, to which they forward the user requests by simple inline functions. The overhead is negligible.

Design

The i2c read and write sequences have been realized in an interrupt service routine. The communicaton between the calling thread and the ISR is realized by a simple static transfer struct and a semaphore ... see i2cRtos_api.c
The start and stop functions still use the busy wait approach. They are not entered that frequently and usually they take less than 12µs at 100kHz bus speed. At 400kHz even less time is consumed. Thus there wouldn't be much benefit if one triggers the whole interrupt/task wait/switch sequence for that short period of time.

Performance

The following performance data have been measured with the small test applications in I2CDriverTest01.h and I2CDriverTest04.h . In these applications a high priority thread, triggered at a rate of 1kHz, reads on each trigger a data packet of given size with given I2C bus speed from a SRF08 ultra sonic ranger or a MPU6050 accelerometer/gyro. At the same time the main thread - running at a lower priority - counts in an endless loop adjacent increments of the mbed's µs-ticker API and calculates a duty cycle from this. These duty cycle measurements are shown in the table below together with the time measured for one read sequence (write address+register; write address and read x byte of data). The measurements have been performed with the ISR/RTOS approach used by this driver and with the busy wait approach used by the official mbed I2C implementation. The i2c implementation can be selected via #define PREFIX in I2CDriver.cpp.

  • The time for one read cycle is almost the same for both approaches
  • At full load the duty cycle of the low priority thread drops almost to zero for the busy wait approach, whereas with the RTOS/ISR enabled driver it stays at 80%-90% on the LPC1768 and above 65% on the LPC11U24.
  • => Especially at low bus speeds and/or high data transfer loads the driver is able to free a significant amount of CPU time.
LPC17681byte/ms4byte/ms6byte/ms1byte/ms6byte/ms12byte/ms25byte/ms
SRF08@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.791.090.593.391.990.386.8
t[µs]421714910141314518961
busy waitDC[%]57.127.78.185.868.748.23.8
t[µs]415710907128299503949
LPC17681byte/ms4byte/ms7byte/ms1byte/ms6byte/ms12byte/ms36byte/ms
MPU6050@ 100kHz@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]91.590.789.393.091.690.084.2
t[µs]415687959133254398977
busy waitDC[%]57.730.53.386.574.359.71.2
t[µs]408681953121243392974
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms23byte/ms
SRF08@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.277.581.178.771.4
t[µs]474975199374978
busy waitDC[%]51.82.480.5633.3
t[µs]442937156332928
LPC11U241byte/ms6byte/ms1byte/ms6byte/ms32byte/ms
MPU6050@ 100kHz@ 100kHz@ 400kHz@ 400kHz@ 400kHz
rtos/ISRDC[%]79.176.881.078.667.1
t[µs]466922188316985
busy waitDC[%]52.87.281.769.87.4
t[µs]433893143268895
Committer:
humlet
Date:
Fri May 10 20:38:35 2013 +0000
Revision:
13:530968937ccb
Parent:
9:65aae53a34de
Child:
14:352609d395c1
happyhappyjoyjoy

Who changed what in which revision?

UserRevisionLine numberNew contents of line
humlet 0:13c962fecb13 1 #ifndef I2CDRIVER_H
humlet 0:13c962fecb13 2 #define I2CDRIVER_H
humlet 0:13c962fecb13 3
humlet 0:13c962fecb13 4 #include "stdint.h"
humlet 0:13c962fecb13 5
humlet 0:13c962fecb13 6 #include "I2C.h"
humlet 0:13c962fecb13 7
humlet 0:13c962fecb13 8 #include "Mutex.h"
humlet 0:13c962fecb13 9
humlet 0:13c962fecb13 10 namespace mbed
humlet 0:13c962fecb13 11 {
humlet 5:8a418c89e515 12 /// I2C driver based on mbed RTOS and I2C-C-API.
humlet 5:8a418c89e515 13 /// Supports Master and Slave mode
humlet 3:967dde37e712 14 class I2CDriver
humlet 0:13c962fecb13 15 {
humlet 0:13c962fecb13 16 public:
humlet 5:8a418c89e515 17 /// Status returned by the receiveSlave() function
humlet 3:967dde37e712 18 enum SlaveRxStatus {
humlet 3:967dde37e712 19 NoData = 0,
humlet 3:967dde37e712 20 ReadAddressed = 1,
humlet 3:967dde37e712 21 WriteGeneral = 2,
humlet 3:967dde37e712 22 WriteAddressed = 3
humlet 3:967dde37e712 23 };
humlet 0:13c962fecb13 24
humlet 5:8a418c89e515 25 /** Create an I2C Master interface, connected to the specified pins.
humlet 0:13c962fecb13 26 *
humlet 0:13c962fecb13 27 * @param sda I2C data line pin
humlet 0:13c962fecb13 28 * @param scl I2C clock line pin
humlet 5:8a418c89e515 29 *
humlet 5:8a418c89e515 30 * @note Has to be created in a thread context, i.e. within the main or some other function. A global delaration does not work
humlet 0:13c962fecb13 31 */
humlet 3:967dde37e712 32 I2CDriver(PinName sda, PinName scl, int hz=100000, int slaveAdr=0);
humlet 3:967dde37e712 33
humlet 3:967dde37e712 34 /** Set the frequency of the I2C interface
humlet 3:967dde37e712 35 *
humlet 3:967dde37e712 36 * @param hz The bus frequency in hertz
humlet 3:967dde37e712 37 */
humlet 3:967dde37e712 38 void frequency(int hz) {
humlet 3:967dde37e712 39 m_freq = hz;
humlet 3:967dde37e712 40 }
humlet 0:13c962fecb13 41
humlet 0:13c962fecb13 42 /** Read from an I2C slave
humlet 0:13c962fecb13 43 *
humlet 0:13c962fecb13 44 * Performs a complete read transaction. The bottom bit of
humlet 0:13c962fecb13 45 * the address is forced to 1 to indicate a read.
humlet 0:13c962fecb13 46 *
humlet 0:13c962fecb13 47 * @param address 8-bit I2C slave address [ addr | 1 ]
humlet 0:13c962fecb13 48 * @param data Pointer to the byte-array to read data in to
humlet 0:13c962fecb13 49 * @param length Number of bytes to read
humlet 0:13c962fecb13 50 * @param repeated Repeated start, true - don't send stop at end
humlet 0:13c962fecb13 51 *
humlet 0:13c962fecb13 52 * @returns
humlet 0:13c962fecb13 53 * 0 on success (ack),
humlet 0:13c962fecb13 54 * non-0 on failure (nack)
humlet 0:13c962fecb13 55 */
humlet 7:04824382eafb 56 int readMaster(int address, char* data, int length, bool repeated = false);
humlet 0:13c962fecb13 57
humlet 3:967dde37e712 58 /** Read from a given I2C slave register
humlet 3:967dde37e712 59 *
humlet 3:967dde37e712 60 * Performs a complete write-register-read-data-transaction. The bottom bit of
humlet 3:967dde37e712 61 * the address is forced to 1 to indicate a read.
humlet 3:967dde37e712 62 *
humlet 3:967dde37e712 63 * @param address 8-bit I2C slave address [ addr | 1 ]
humlet 3:967dde37e712 64 * @param _register 8-bit regster address
humlet 3:967dde37e712 65 * @param data Pointer to the byte-array to read data in to
humlet 3:967dde37e712 66 * @param length Number of bytes to read
humlet 3:967dde37e712 67 * @param repeated Repeated start, true - don't send stop at end
humlet 3:967dde37e712 68 *
humlet 3:967dde37e712 69 * @returns
humlet 3:967dde37e712 70 * 0 on success (ack),
humlet 3:967dde37e712 71 * non-0 on failure (nack)
humlet 3:967dde37e712 72 */
humlet 7:04824382eafb 73 int readMaster(int address, uint8_t _register, char* data, int length, bool repeated = false);
humlet 1:90455d5bdd8c 74
humlet 0:13c962fecb13 75 /** Read a single byte from the I2C bus
humlet 0:13c962fecb13 76 *
humlet 0:13c962fecb13 77 * @param ack indicates if the byte is to be acknowledged (1 = acknowledge)
humlet 0:13c962fecb13 78 *
humlet 0:13c962fecb13 79 * @returns
humlet 0:13c962fecb13 80 * the byte read
humlet 0:13c962fecb13 81 */
humlet 3:967dde37e712 82 int readMaster(int ack=1);
humlet 0:13c962fecb13 83
humlet 0:13c962fecb13 84 /** Write to an I2C slave
humlet 0:13c962fecb13 85 *
humlet 0:13c962fecb13 86 * Performs a complete write transaction. The bottom bit of
humlet 0:13c962fecb13 87 * the address is forced to 0 to indicate a write.
humlet 0:13c962fecb13 88 *
humlet 0:13c962fecb13 89 * @param address 8-bit I2C slave address [ addr | 0 ]
humlet 0:13c962fecb13 90 * @param data Pointer to the byte-array data to send
humlet 0:13c962fecb13 91 * @param length Number of bytes to send
humlet 0:13c962fecb13 92 * @param repeated Repeated start, true - do not send stop at end
humlet 0:13c962fecb13 93 *
humlet 0:13c962fecb13 94 * @returns
humlet 0:13c962fecb13 95 * 0 on success (ack),
humlet 0:13c962fecb13 96 * non-0 on failure (nack)
humlet 0:13c962fecb13 97 */
humlet 3:967dde37e712 98 int writeMaster(int address, const char *data, int length, bool repeated = false);
humlet 0:13c962fecb13 99
humlet 0:13c962fecb13 100 /** Write single byte out on the I2C bus
humlet 0:13c962fecb13 101 *
humlet 0:13c962fecb13 102 * @param data data to write out on bus
humlet 0:13c962fecb13 103 *
humlet 0:13c962fecb13 104 * @returns
humlet 0:13c962fecb13 105 * '1' if an ACK was received,
humlet 0:13c962fecb13 106 * '0' otherwise
humlet 0:13c962fecb13 107 */
humlet 3:967dde37e712 108 int writeMaster(int data);
humlet 3:967dde37e712 109
humlet 3:967dde37e712 110 /** Sets the I2C slave address.
humlet 3:967dde37e712 111 *
humlet 3:967dde37e712 112 * @param address The address to set for the slave (ignoring the least
humlet 3:967dde37e712 113 * signifcant bit). If set to 0, the slave will only respond to the
humlet 3:967dde37e712 114 * general call address.
humlet 3:967dde37e712 115 */
humlet 3:967dde37e712 116 void addressSlave(int address) {
humlet 13:530968937ccb 117 m_slaveAdr=(address & 0xff) | 1;
humlet 3:967dde37e712 118 }
humlet 3:967dde37e712 119
humlet 3:967dde37e712 120 /** Checks to see if this I2C Slave has been addressed.
humlet 3:967dde37e712 121 *
humlet 3:967dde37e712 122 * @returns
humlet 3:967dde37e712 123 * A status indicating if the device has been addressed, and how
humlet 3:967dde37e712 124 * - NoData - the slave has not been addressed
humlet 3:967dde37e712 125 * - ReadAddressed - the master has requested a read from this slave
humlet 3:967dde37e712 126 * - WriteAddressed - the master is writing to this slave
humlet 3:967dde37e712 127 * - WriteGeneral - the master is writing to all slave
humlet 3:967dde37e712 128 */
humlet 3:967dde37e712 129 int receiveSlave(uint32_t timeout_ms=osWaitForever);
humlet 3:967dde37e712 130
humlet 3:967dde37e712 131 /** Read from an I2C master.
humlet 3:967dde37e712 132 *
humlet 3:967dde37e712 133 * @param data pointer to the byte array to read data in to
humlet 3:967dde37e712 134 * @param length maximum number of bytes to read
humlet 3:967dde37e712 135 *
humlet 3:967dde37e712 136 * @returns
humlet 3:967dde37e712 137 * 0 on success,
humlet 3:967dde37e712 138 * non-0 otherwise
humlet 13:530968937ccb 139 * ... no! instead it returns number of bytes read minus one ... weird, guess its a bug in the official lib
humlet 3:967dde37e712 140 */
humlet 3:967dde37e712 141 int readSlave(char *data, int length);
humlet 3:967dde37e712 142
humlet 3:967dde37e712 143 /** Read a single byte from an I2C master.
humlet 3:967dde37e712 144 *
humlet 3:967dde37e712 145 * @returns
humlet 3:967dde37e712 146 * the byte read
humlet 3:967dde37e712 147 */
humlet 3:967dde37e712 148 int readSlave(void);
humlet 3:967dde37e712 149
humlet 3:967dde37e712 150 /** Write to an I2C master.
humlet 3:967dde37e712 151 *
humlet 3:967dde37e712 152 * @param data pointer to the byte array to be transmitted
humlet 3:967dde37e712 153 * @param length the number of bytes to transmite
humlet 3:967dde37e712 154 *
humlet 3:967dde37e712 155 * @returns
humlet 3:967dde37e712 156 * 0 on success,
humlet 13:530968937ccb 157 * non-0 otherwise
humlet 3:967dde37e712 158 */
humlet 3:967dde37e712 159 int writeSlave(const char *data, int length);
humlet 3:967dde37e712 160
humlet 3:967dde37e712 161 /** Write a single byte to an I2C master.
humlet 3:967dde37e712 162 *
humlet 3:967dde37e712 163 * @data the byte to write
humlet 3:967dde37e712 164 *
humlet 3:967dde37e712 165 * @returns
humlet 3:967dde37e712 166 * '1' if an ACK was received,
humlet 3:967dde37e712 167 * '0' otherwise
humlet 3:967dde37e712 168 */
humlet 3:967dde37e712 169 int writeSlave(int data);
humlet 3:967dde37e712 170
humlet 0:13c962fecb13 171
humlet 0:13c962fecb13 172 /// Creates a start condition on the I2C bus
humlet 3:967dde37e712 173 void startMaster(void);
humlet 0:13c962fecb13 174
humlet 0:13c962fecb13 175 ///Creates a stop condition on the I2C bus
humlet 3:967dde37e712 176 void stopSlave(void);
humlet 3:967dde37e712 177
humlet 13:530968937ccb 178 /// Creates a stop condition on the I2C bus
humlet 13:530968937ccb 179 /// If unsccessful because someone on the bus holds the scl line down it returns "false" after 23µs
humlet 13:530968937ccb 180 /// In normal operation the stop shouldn't take longer than 12µs @ 100kHz and 3-4µs @ 400kHz.
humlet 13:530968937ccb 181 bool stopMaster(void);
humlet 3:967dde37e712 182
humlet 0:13c962fecb13 183 /// Wait until the i2c driver becomes available.
humlet 3:967dde37e712 184 ///
humlet 3:967dde37e712 185 /// Useful if you want to run a sequence of command without interrution by another thread.
humlet 3:967dde37e712 186 /// There's no need to call this function for running single request, because all driver functions
humlet 3:967dde37e712 187 /// will lock the device for exclusive access automatically.
humlet 6:5b98c902a659 188 void lock();
humlet 0:13c962fecb13 189
humlet 3:967dde37e712 190 /// Unlock the driver that has previously been locked by the same thread.
humlet 6:5b98c902a659 191 void unlock();
humlet 0:13c962fecb13 192
humlet 0:13c962fecb13 193 protected:
humlet 13:530968937ccb 194 void config();
humlet 13:530968937ccb 195 void lockNconfig() {
humlet 13:530968937ccb 196 lock();
humlet 13:530968937ccb 197 config();
humlet 13:530968937ccb 198 }
humlet 13:530968937ccb 199
humlet 13:530968937ccb 200 // structure that holds I2C channels status
humlet 13:530968937ccb 201 struct Channel {
humlet 13:530968937ccb 202 rtos::Mutex mutex;
humlet 13:530968937ccb 203 i2c_t i2c;
humlet 13:530968937ccb 204 int freq;
humlet 13:530968937ccb 205 int slaveAdr;
humlet 13:530968937ccb 206 bool modeSlave;
humlet 1:90455d5bdd8c 207 };
humlet 6:5b98c902a659 208
humlet 13:530968937ccb 209 // curren i2c configuration of this driver interface
humlet 13:530968937ccb 210 int m_freq;
humlet 13:530968937ccb 211 int m_slaveAdr;
humlet 13:530968937ccb 212 bool m_modeSlave;
humlet 0:13c962fecb13 213
humlet 13:530968937ccb 214 // id and prio of current caller thread
humlet 13:530968937ccb 215 osThreadId m_callerID;
humlet 6:5b98c902a659 216 osPriority m_callerPrio;
humlet 13:530968937ccb 217
humlet 6:5b98c902a659 218
humlet 6:5b98c902a659 219 // i2c driver prio
humlet 6:5b98c902a659 220 static const osPriority c_drvPrio = osPriorityRealtime;
humlet 5:8a418c89e515 221 // the pin names fo the i2c channels
humlet 1:90455d5bdd8c 222 static const PinName c_sdas[2];
humlet 1:90455d5bdd8c 223 static const PinName c_scls[2];
humlet 0:13c962fecb13 224
humlet 6:5b98c902a659 225 // static storage for the I2C channel access objects
humlet 2:514105beb343 226 static Channel* s_channels[2];
humlet 6:5b98c902a659 227
humlet 13:530968937ccb 228 // i2c channel object of this driver interface, in fact just a pointer
humlet 5:8a418c89e515 229 /// to one of the entries in s_channels
humlet 2:514105beb343 230 Channel* m_channel;
humlet 1:90455d5bdd8c 231 };
humlet 0:13c962fecb13 232 }
humlet 0:13c962fecb13 233 #endif