Port from Avnet's Internet Of Things full WiGo demo: SmartConfig - WebServer - Exosite - Android sensor Fusion App

Dependencies:   NVIC_set_all_priorities mbed cc3000_hostdriver_mbedsocket TEMT6200 TSI Wi-Go_eCompass_Lib_V3 WiGo_BattCharger

Wi-Go Reference Design Overview


For additional information on Wi-Go, please visit http://www.em.avnet.com/wi-go
For additional information on Freescale eCompass, please visit
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=E-Compass
Ported from Avnet's Wi-Go KEIL code.
Special thanks to Jim Carver from Avnet for providing the Wi-Go board and for his assistance.


Multiple Wi-Fi applications are provided within the latest version of Wi-Go software:

  • SmartConfig App for auto-setup of Wi-Go network parameters.
  • WebServer display of live sensor data.
  • Exosite portal sensor data feed by Wi-Go.
  • Freescale's Sensor Fusion App data feed by Wi-Go.

Wi-Go is intended for "untethered" portable operation (using it's high-capacity Lithium-Polymer battery). The serial terminal text interface is only required for initial setup, thereafter selection of an application from those available is via finger position on the Touch Slider during the initial 6 second startup period.

Running the Wi-Go Demo Suite

Warning

The on-board Firmware must be updated to mbed enable a Wi-Go system.
Goto the Component page to get the FirmwareUpdate tool (scroll down to the FirmwareUpdate topic).

MAG3110 sensor and eCompass Calibration!

As with the other sensor applications, the eCompass function requires quality calibration data to achieve best accuracy.
For the first 15 seconds after power-up it is recommended that "Figure 8" movements with Wi-Go be done in a smooth, repetitive pattern. Don't touch the slider pad during calibration.

Startup
The RGB LED blinks in a GREEN-ORANGE sequence to inform the user the module is waiting for input.
The RGB LED color designates which of the following Apps to launch.

RGB LED ColorApplication to Launch
OrangeErase all wireless profiles
PurpleSmartConfig
BlueWebServer
RedExosite Data Client
GreenAndroid Server

Swipe your index finger across the slider pad, the RGB LED color will change at approximately 20% intervals.
Removing your finger latches the last color displayed. After about 3 seconds, the selected app will start.
Another app can be selected when the slider pad is touched again within the 3 seconds timeout.

After launch of Exosite or Android Server Apps, the eCompass function then controls the RGB LED.
(not in WebServer mode where RGB LEDs are manually controlled by the User).

RGB LED ColorDirection Indication
BlueNear to North
GreenNorth
RedEast / West
PurpleSouth

__Note!__ The D1, D2 and D3 User LEDs on Wi-Go adhere to the following convention for the different Apps

User LED#Description of function controlling the LED
D1is the board heartbeat, derived from the timer interrupt
D2indicates network activity as follows:
Web Server Wi-Go webpage is being served.
Exosite Client Wi-Go is sending data.
Android App Wi-Go is sending data
D3WLAN Network is Connected

Detail of Wi-Go Applications

App #1: SmartConfig
See TI's pages on how to use the SmartConfig tool:

  • Preferred method : Configuration using the SmartConfig tool
  • SmartConfig download: Smart Config and Home Automation
    • iOS app : available at Apple app store.
    • Android app : download and install the Android SmartConfig Application on a PC.
      This file contains the source code as well as the compiled APK file.
      The APK file is stored in ti\CC3000AndroidApp\SmartConfigCC3X\bin.

App #2: WebServer display of live sensor data
__Note!__
When using the WebServer for the first time on a Wi-Fi network you will need to determine the IP address that's assigned to Wi-Go by the DHCP Server. To do this, it is recommended you use one of the following two methods:

  • While Wi-Go is initially tethered to a laptop via USB, launch of the WebServer Application and note the IP address that is reported on the terminal screen immediately after selection of this App.
  • Alternatively, use a 3rd party LAN SCAN type tool to view Wi-Go's IP address.
    eg. FING, - available for free download from Google Play or iTunes App Stores…

Wi-Go's WebServer Application is selected as follows:

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page).
    Then use index finger on slider to select the WebServer App (RGB LED = BLUE).
    At end of the 3 second selection period the WebServer App shall launch.
  • If you are tethered to a laptop and have a terminal open the Wi-Fi network connection confirmation will be seen, eg.

'*** Wi-Go board DHCP assigned IP Address = 192.168.43.102
  • Once you have noted Wi-Go's reported IP address, the USB cable may be disconnected and Wi-Go then used as intended, running on it's own battery power.
  • Use an Internet Browser on SmartPhone/Tablet/Laptop (connected to same Hot-Spot/Wireless Router subnet), to now connect to the noted Wi-Go IP address and view the WebServer output: /media/uploads/frankvnk/wi-go_webserver.png
  • the Webserver sensor data is auto-updated every 2 seconds a manual refresh (F5 on laptop).
  • In the event of an error, press refresh to regenerate the screen.
  • Use the mouse (or touch-screen) to exercise the RGB LED output.

App #3: Exosite Data Client
Wi-Go's sensor data gets transmitted via Wi-Fi to a cloud-based Exosite portal where the sensor measurements are displayed graphically on a "dashboard". Users can create unique customized dashboards using drag and drop GUI widgets from the library provided on the Exosite website.
__Note!__ For the Exosite application a "live" connection to the Internet is required !!!

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page).
    Then use index finger on slider to select the Exosite Client App (RGB LED = RED)
  • On launching this App, note Wi-Go's MAC address displayed on your terminal
    (if not running a terminal use FING or other WLAN Scan tool to determine Wi-Go's MAC address) /media/uploads/frankvnk/mac_address.png
  • Using your computer's internet browser, go to avnet.exosite.com and sign-up for a free Avnet Trial Exosite Account: /media/uploads/frankvnk/avnet_trial_exosite.png
  • On the next screen, click on the Sign-Up Now button in the displayed Avnet Trial account option.
  • Complete the Account Info and Contact Info then click on Create Account (make sure to use a valid email address!).
  • Check for new incoming email from avnet.exosite.com to the address you provided and click on the link in this email to activate your new Exosite account.
  • Once activated, login using the email address and password that you chose in your registration. Your Exosite Portal and Dashboard should now display. The first time you log-in to your new account, the default Home dashboard will be displayed, pre-configured with two widgets. On the left is the Welcome widget for tips and information. On the right is the Device List widget.
    Dashboards are configurable, so at any time this default dashboard can be changed, widgets deleted and added (Clicking the upside-down triangle icon in a widget's Title bar will allow you to edit it).
  • Before going further with the Dashboard, you need to connect your Wi-Go device to your Exosite account. Do this by going to the left sidebar and selecting Devices followed by selecting the +Add Device link (on right of screen). /media/uploads/frankvnk/add_device.png
  • In the Setup screens that follow, enter the following
Select a supported deviceWi-Go
Enter device MAC Addressnn:nn:nn:nn:nn:nn [your Wi-Go's MAC address including colons]
Enter device Name[choose a descriptive name]
Enter device Location[description of your location]
  • Once completed, under Devices the name chosen for the added Wi-Go device should now be listed.
  • Click on this new Wi-Go device to examine (and edit if necessary) it's Device Information screen.
    /media/uploads/frankvnk/device_information.png
  • Click the CLOSE button to exit the Device Information screen.
  • On your Wi-Go kit now press RESET, followed by the eCompass Calibration (mentioned at the top of this page)
    and again select the Exosite Client App (RGB LED = RED) using your index finger.
  • Refresh your browser (press F5) a couple've times until the Active indicator changes to On (Green).
    /media/uploads/frankvnk/active_indicator.png
  • From the left sidebar click on Home and click on the recently named Wi-Go device which is located under the Device List.
    This will bring-up a default dashboard display similar to what's shown below.
    (Dashboards are typically accessed via the Dashboards menu entry). Check the dashboard is updating with live data by moving your Wi-Go Kit through different orientations.
    /media/uploads/frankvnk/dashboard.png
  • To create a custom dashboard, select Dashboards from the sidebar menu, followed by +Add Dashboard (on right side of Your Dashboards title bar). After completion of the initial configuration screen you will then be able to add Widgets to display the various Wi-Go data sources as well as pictures and text to support your application.
  • More guidance on the creation, editing and sharing of custom dashboards is available under the Exosite support pages

App #4: Android Sensor Fusion App

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page)
    , then use index finger on slider to select the Android App (RGB LED = GREEN)
  • Freescale's ''Xtrinsic Sensor Fusion Toolbox'" will run on Android 3.0 or above phone or tablet. Free to download from Google Play, type Sensor fusion in the search box to find it. freescale.sensors.sfusion /media/uploads/frankvnk/sensor_fusion_toolbox.png
  • The Freescale App is well documented. To access the built-in documentation, press the NAV button at top of screen followed by Documentation from the scroll-down menu:
    /media/uploads/frankvnk/sensor_fusion_doc.png
  • Freescale's sensors site provides additional resources such as this overview: free-android-app-teaches-sensor-fusion-basics
  • Go to the Options Menu and select Preferences… /media/uploads/frankvnk/sensor_fusion_preferences.png
  • The following items need to be taken care of:
Enter WiGo's IP address
Enter the SSID (of the Hot-Spot or Wireless Access Point used by Wi-Go)
  • Press Save and Exit!
    /media/uploads/frankvnk/sensor_fusion_save_and_exit.png
  • Exit the Application completely then re-launch the Sensor Fusion Application.
  • Select the ''Source/Algorithm'" menu and change the data source to Wi-Go mag/accel /media/uploads/frankvnk/sensor_fusion_wigo_mag_accel.png
  • The Android App should now be displaying a 3-D image of Wi-Go that you can rotate and flip-over by moving the Wi-Go board accordingly…
  • Use NAV > Device View to display if this view does not come-up by default. /media/uploads/frankvnk/sensor_fusion_nav_device_view.png
  • A Serial Terminal connection is not necessary but if you happen to have one open you should see the following messages as Wi-Go connects to the Android App:
    "Server waiting for connection" followed by
    "connected, transmit buffer size= 96", and then
    "input = 0123456789"
    at which time Wi-Go starts streaming data to the Android App.
Committer:
frankvnk
Date:
Wed Oct 23 12:01:30 2013 +0000
Revision:
1:99bfc8d68fd3
Child:
3:1851b5d6f69d
Webserver functional using ProcessWlanInterrupt flag instead of NVIC

Who changed what in which revision?

UserRevisionLine numberNew contents of line
frankvnk 1:99bfc8d68fd3 1 /*****************************************************************************
frankvnk 1:99bfc8d68fd3 2 *
frankvnk 1:99bfc8d68fd3 3 * C++ interface/implementation created by Martin Kojtal (0xc0170). Thanks to
frankvnk 1:99bfc8d68fd3 4 * Jim Carver and Frank Vannieuwkerke for their inital cc3000 mbed port and
frankvnk 1:99bfc8d68fd3 5 * provided help.
frankvnk 1:99bfc8d68fd3 6 *
frankvnk 1:99bfc8d68fd3 7 * This version of "host driver" uses CC3000 Host Driver Implementation. Thus
frankvnk 1:99bfc8d68fd3 8 * read the following copyright:
frankvnk 1:99bfc8d68fd3 9 *
frankvnk 1:99bfc8d68fd3 10 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
frankvnk 1:99bfc8d68fd3 11 *
frankvnk 1:99bfc8d68fd3 12 * Redistribution and use in source and binary forms, with or without
frankvnk 1:99bfc8d68fd3 13 * modification, are permitted provided that the following conditions
frankvnk 1:99bfc8d68fd3 14 * are met:
frankvnk 1:99bfc8d68fd3 15 *
frankvnk 1:99bfc8d68fd3 16 * Redistributions of source code must retain the above copyright
frankvnk 1:99bfc8d68fd3 17 * notice, this list of conditions and the following disclaimer.
frankvnk 1:99bfc8d68fd3 18 *
frankvnk 1:99bfc8d68fd3 19 * Redistributions in binary form must reproduce the above copyright
frankvnk 1:99bfc8d68fd3 20 * notice, this list of conditions and the following disclaimer in the
frankvnk 1:99bfc8d68fd3 21 * documentation and/or other materials provided with the
frankvnk 1:99bfc8d68fd3 22 * distribution.
frankvnk 1:99bfc8d68fd3 23 *
frankvnk 1:99bfc8d68fd3 24 * Neither the name of Texas Instruments Incorporated nor the names of
frankvnk 1:99bfc8d68fd3 25 * its contributors may be used to endorse or promote products derived
frankvnk 1:99bfc8d68fd3 26 * from this software without specific prior written permission.
frankvnk 1:99bfc8d68fd3 27 *
frankvnk 1:99bfc8d68fd3 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
frankvnk 1:99bfc8d68fd3 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
frankvnk 1:99bfc8d68fd3 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
frankvnk 1:99bfc8d68fd3 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
frankvnk 1:99bfc8d68fd3 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
frankvnk 1:99bfc8d68fd3 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
frankvnk 1:99bfc8d68fd3 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
frankvnk 1:99bfc8d68fd3 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
frankvnk 1:99bfc8d68fd3 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
frankvnk 1:99bfc8d68fd3 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
frankvnk 1:99bfc8d68fd3 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
frankvnk 1:99bfc8d68fd3 39 *
frankvnk 1:99bfc8d68fd3 40 *****************************************************************************/
frankvnk 1:99bfc8d68fd3 41 #include "cc3000.h"
frankvnk 1:99bfc8d68fd3 42 #include "cc3000_spi.h"
frankvnk 1:99bfc8d68fd3 43
frankvnk 1:99bfc8d68fd3 44 namespace mbed_cc3000 {
frankvnk 1:99bfc8d68fd3 45
frankvnk 1:99bfc8d68fd3 46 cc3000_spi::cc3000_spi(PinName cc3000_irq, PinName cc3000_en, PinName cc3000_cs, SPI cc3000_spi, IRQn_Type irq_port, cc3000_event &event, cc3000_simple_link &simple_link)
frankvnk 1:99bfc8d68fd3 47 : _wlan_irq(cc3000_irq), _wlan_en(cc3000_en), _wlan_cs(cc3000_cs), _wlan_spi(cc3000_spi), _irq_port(irq_port),
frankvnk 1:99bfc8d68fd3 48 _event(event), _simple_link(simple_link) {
frankvnk 1:99bfc8d68fd3 49 /* TODO = clear pending interrupts for PORTS. This is dependent on the used chip */
frankvnk 1:99bfc8d68fd3 50
frankvnk 1:99bfc8d68fd3 51 _wlan_spi.format(8,1);
frankvnk 1:99bfc8d68fd3 52 _wlan_spi.frequency(12000000);
frankvnk 1:99bfc8d68fd3 53 _function_pointer = _wlan_irq.fall(this, &cc3000_spi::WLAN_IRQHandler);
frankvnk 1:99bfc8d68fd3 54
frankvnk 1:99bfc8d68fd3 55 _wlan_en = 0;
frankvnk 1:99bfc8d68fd3 56 _wlan_cs = 1;
frankvnk 1:99bfc8d68fd3 57 }
frankvnk 1:99bfc8d68fd3 58
frankvnk 1:99bfc8d68fd3 59 cc3000_spi::~cc3000_spi() {
frankvnk 1:99bfc8d68fd3 60
frankvnk 1:99bfc8d68fd3 61 }
frankvnk 1:99bfc8d68fd3 62
frankvnk 1:99bfc8d68fd3 63 void cc3000_spi::wlan_irq_enable()
frankvnk 1:99bfc8d68fd3 64 {
frankvnk 1:99bfc8d68fd3 65 ProcessWlanInterrupt = 1;
frankvnk 1:99bfc8d68fd3 66 // NVIC_EnableIRQ(_irq_port);
frankvnk 1:99bfc8d68fd3 67
frankvnk 1:99bfc8d68fd3 68 if(wlan_irq_read() == 0) {
frankvnk 1:99bfc8d68fd3 69 WLAN_IRQHandler();
frankvnk 1:99bfc8d68fd3 70 }
frankvnk 1:99bfc8d68fd3 71 }
frankvnk 1:99bfc8d68fd3 72
frankvnk 1:99bfc8d68fd3 73 void cc3000_spi::wlan_irq_disable() {
frankvnk 1:99bfc8d68fd3 74 ProcessWlanInterrupt = 0;
frankvnk 1:99bfc8d68fd3 75 // NVIC_DisableIRQ(_irq_port);
frankvnk 1:99bfc8d68fd3 76 }
frankvnk 1:99bfc8d68fd3 77
frankvnk 1:99bfc8d68fd3 78 uint32_t cc3000_spi::wlan_irq_read() {
frankvnk 1:99bfc8d68fd3 79 return _wlan_irq.read();
frankvnk 1:99bfc8d68fd3 80 }
frankvnk 1:99bfc8d68fd3 81
frankvnk 1:99bfc8d68fd3 82 void cc3000_spi::close() {
frankvnk 1:99bfc8d68fd3 83 wlan_irq_disable();
frankvnk 1:99bfc8d68fd3 84 }
frankvnk 1:99bfc8d68fd3 85
frankvnk 1:99bfc8d68fd3 86 void cc3000_spi::open() {
frankvnk 1:99bfc8d68fd3 87 _spi_info.spi_state = eSPI_STATE_POWERUP;
frankvnk 1:99bfc8d68fd3 88 _spi_info.tx_packet_length = 0;
frankvnk 1:99bfc8d68fd3 89 _spi_info.rx_packet_length = 0;
frankvnk 1:99bfc8d68fd3 90 wlan_irq_enable();
frankvnk 1:99bfc8d68fd3 91 }
frankvnk 1:99bfc8d68fd3 92
frankvnk 1:99bfc8d68fd3 93 uint32_t cc3000_spi::first_write(uint8_t *buffer, uint16_t length) {
frankvnk 1:99bfc8d68fd3 94 _wlan_cs = 0;
frankvnk 1:99bfc8d68fd3 95 wait_us(50);
frankvnk 1:99bfc8d68fd3 96
frankvnk 1:99bfc8d68fd3 97 /* first 4 bytes of the data */
frankvnk 1:99bfc8d68fd3 98 write_synchronous(buffer, 4);
frankvnk 1:99bfc8d68fd3 99 wait_us(50);
frankvnk 1:99bfc8d68fd3 100 write_synchronous(buffer + 4, length - 4);
frankvnk 1:99bfc8d68fd3 101 _spi_info.spi_state = eSPI_STATE_IDLE;
frankvnk 1:99bfc8d68fd3 102 _wlan_cs = 1;
frankvnk 1:99bfc8d68fd3 103
frankvnk 1:99bfc8d68fd3 104 return 0;
frankvnk 1:99bfc8d68fd3 105 }
frankvnk 1:99bfc8d68fd3 106
frankvnk 1:99bfc8d68fd3 107
frankvnk 1:99bfc8d68fd3 108 uint32_t cc3000_spi::write(uint8_t *buffer, uint16_t length) {
frankvnk 1:99bfc8d68fd3 109 uint8_t pad = 0;
frankvnk 1:99bfc8d68fd3 110 // check the total length of the packet in order to figure out if padding is necessary
frankvnk 1:99bfc8d68fd3 111 if(!(length & 0x0001))
frankvnk 1:99bfc8d68fd3 112 {
frankvnk 1:99bfc8d68fd3 113 pad++;
frankvnk 1:99bfc8d68fd3 114 }
frankvnk 1:99bfc8d68fd3 115 buffer[0] = WRITE;
frankvnk 1:99bfc8d68fd3 116 buffer[1] = HI(length + pad);
frankvnk 1:99bfc8d68fd3 117 buffer[2] = LO(length + pad);
frankvnk 1:99bfc8d68fd3 118 buffer[3] = 0;
frankvnk 1:99bfc8d68fd3 119 buffer[4] = 0;
frankvnk 1:99bfc8d68fd3 120
frankvnk 1:99bfc8d68fd3 121 length += (SPI_HEADER_SIZE + pad);
frankvnk 1:99bfc8d68fd3 122
frankvnk 1:99bfc8d68fd3 123 // The magic number resides at the end of the TX/RX buffer (1 byte after the allocated size)
frankvnk 1:99bfc8d68fd3 124 // If the magic number is overwitten - buffer overrun occurred - we will be stuck here forever!
frankvnk 1:99bfc8d68fd3 125 uint8_t * transmit_buffer = _simple_link.get_transmit_buffer();
frankvnk 1:99bfc8d68fd3 126 if (transmit_buffer[CC3000_TX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
frankvnk 1:99bfc8d68fd3 127 {
frankvnk 1:99bfc8d68fd3 128 while (1);
frankvnk 1:99bfc8d68fd3 129 }
frankvnk 1:99bfc8d68fd3 130
frankvnk 1:99bfc8d68fd3 131 if (_spi_info.spi_state == eSPI_STATE_POWERUP)
frankvnk 1:99bfc8d68fd3 132 {
frankvnk 1:99bfc8d68fd3 133 while (_spi_info.spi_state != eSPI_STATE_INITIALIZED);
frankvnk 1:99bfc8d68fd3 134 }
frankvnk 1:99bfc8d68fd3 135
frankvnk 1:99bfc8d68fd3 136 if (_spi_info.spi_state == eSPI_STATE_INITIALIZED)
frankvnk 1:99bfc8d68fd3 137 {
frankvnk 1:99bfc8d68fd3 138 // TX/RX transaction over SPI after powerup: IRQ is low - send read buffer size command
frankvnk 1:99bfc8d68fd3 139 first_write(buffer, length);
frankvnk 1:99bfc8d68fd3 140 }
frankvnk 1:99bfc8d68fd3 141 else
frankvnk 1:99bfc8d68fd3 142 {
frankvnk 1:99bfc8d68fd3 143 // Prevent occurence of a race condition when 2 back to back packets are sent to the
frankvnk 1:99bfc8d68fd3 144 // device, so the state will move to IDLE and once again to not IDLE due to IRQ
frankvnk 1:99bfc8d68fd3 145 wlan_irq_disable();
frankvnk 1:99bfc8d68fd3 146
frankvnk 1:99bfc8d68fd3 147 while (_spi_info.spi_state != eSPI_STATE_IDLE);
frankvnk 1:99bfc8d68fd3 148
frankvnk 1:99bfc8d68fd3 149 _spi_info.spi_state = eSPI_STATE_WRITE_IRQ;
frankvnk 1:99bfc8d68fd3 150 //_spi_info.pTxPacket = buffer;
frankvnk 1:99bfc8d68fd3 151 _spi_info.tx_packet_length = length;
frankvnk 1:99bfc8d68fd3 152
frankvnk 1:99bfc8d68fd3 153 // Assert the CS line and wait until the IRQ line is active, then initialize the write operation
frankvnk 1:99bfc8d68fd3 154 _wlan_cs = 0;
frankvnk 1:99bfc8d68fd3 155
frankvnk 1:99bfc8d68fd3 156 wlan_irq_enable();
frankvnk 1:99bfc8d68fd3 157 }
frankvnk 1:99bfc8d68fd3 158
frankvnk 1:99bfc8d68fd3 159 // Wait until the transaction ends
frankvnk 1:99bfc8d68fd3 160 while (_spi_info.spi_state != eSPI_STATE_IDLE);
frankvnk 1:99bfc8d68fd3 161
frankvnk 1:99bfc8d68fd3 162 return 0;
frankvnk 1:99bfc8d68fd3 163 }
frankvnk 1:99bfc8d68fd3 164
frankvnk 1:99bfc8d68fd3 165 void cc3000_spi::write_synchronous(uint8_t *data, uint16_t size) {
frankvnk 1:99bfc8d68fd3 166 while(size)
frankvnk 1:99bfc8d68fd3 167 {
frankvnk 1:99bfc8d68fd3 168 _wlan_spi.write(*data++);
frankvnk 1:99bfc8d68fd3 169 size--;
frankvnk 1:99bfc8d68fd3 170 }
frankvnk 1:99bfc8d68fd3 171 }
frankvnk 1:99bfc8d68fd3 172
frankvnk 1:99bfc8d68fd3 173 void cc3000_spi::read_synchronous(uint8_t *data, uint16_t size) {
frankvnk 1:99bfc8d68fd3 174 for (uint32_t i = 0; i < size; i++)
frankvnk 1:99bfc8d68fd3 175 {
frankvnk 1:99bfc8d68fd3 176 data[i] = _wlan_spi.write(0x03);;
frankvnk 1:99bfc8d68fd3 177 }
frankvnk 1:99bfc8d68fd3 178 }
frankvnk 1:99bfc8d68fd3 179
frankvnk 1:99bfc8d68fd3 180 uint32_t cc3000_spi::read_data_cont() {
frankvnk 1:99bfc8d68fd3 181 long data_to_recv;
frankvnk 1:99bfc8d68fd3 182 unsigned char *evnt_buff, type;
frankvnk 1:99bfc8d68fd3 183
frankvnk 1:99bfc8d68fd3 184 //determine the packet type
frankvnk 1:99bfc8d68fd3 185 evnt_buff = _simple_link.get_received_buffer();
frankvnk 1:99bfc8d68fd3 186 data_to_recv = 0;
frankvnk 1:99bfc8d68fd3 187 STREAM_TO_UINT8((uint8_t *)(evnt_buff + SPI_HEADER_SIZE), HCI_PACKET_TYPE_OFFSET, type);
frankvnk 1:99bfc8d68fd3 188
frankvnk 1:99bfc8d68fd3 189 switch(type)
frankvnk 1:99bfc8d68fd3 190 {
frankvnk 1:99bfc8d68fd3 191 case HCI_TYPE_DATA:
frankvnk 1:99bfc8d68fd3 192 {
frankvnk 1:99bfc8d68fd3 193 // Read the remaining data..
frankvnk 1:99bfc8d68fd3 194 STREAM_TO_UINT16((uint8_t *)(evnt_buff + SPI_HEADER_SIZE), HCI_DATA_LENGTH_OFFSET, data_to_recv);
frankvnk 1:99bfc8d68fd3 195 if (!((HEADERS_SIZE_EVNT + data_to_recv) & 1))
frankvnk 1:99bfc8d68fd3 196 {
frankvnk 1:99bfc8d68fd3 197 data_to_recv++;
frankvnk 1:99bfc8d68fd3 198 }
frankvnk 1:99bfc8d68fd3 199
frankvnk 1:99bfc8d68fd3 200 if (data_to_recv)
frankvnk 1:99bfc8d68fd3 201 {
frankvnk 1:99bfc8d68fd3 202 read_synchronous(evnt_buff + 10, data_to_recv);
frankvnk 1:99bfc8d68fd3 203 }
frankvnk 1:99bfc8d68fd3 204 break;
frankvnk 1:99bfc8d68fd3 205 }
frankvnk 1:99bfc8d68fd3 206 case HCI_TYPE_EVNT:
frankvnk 1:99bfc8d68fd3 207 {
frankvnk 1:99bfc8d68fd3 208 // Calculate the rest length of the data
frankvnk 1:99bfc8d68fd3 209 STREAM_TO_UINT8((char *)(evnt_buff + SPI_HEADER_SIZE), HCI_EVENT_LENGTH_OFFSET, data_to_recv);
frankvnk 1:99bfc8d68fd3 210 data_to_recv -= 1;
frankvnk 1:99bfc8d68fd3 211 // Add padding byte if needed
frankvnk 1:99bfc8d68fd3 212 if ((HEADERS_SIZE_EVNT + data_to_recv) & 1)
frankvnk 1:99bfc8d68fd3 213 {
frankvnk 1:99bfc8d68fd3 214 data_to_recv++;
frankvnk 1:99bfc8d68fd3 215 }
frankvnk 1:99bfc8d68fd3 216
frankvnk 1:99bfc8d68fd3 217 if (data_to_recv)
frankvnk 1:99bfc8d68fd3 218 {
frankvnk 1:99bfc8d68fd3 219 read_synchronous(evnt_buff + 10, data_to_recv);
frankvnk 1:99bfc8d68fd3 220 }
frankvnk 1:99bfc8d68fd3 221
frankvnk 1:99bfc8d68fd3 222 _spi_info.spi_state = eSPI_STATE_READ_EOT;
frankvnk 1:99bfc8d68fd3 223 break;
frankvnk 1:99bfc8d68fd3 224 }
frankvnk 1:99bfc8d68fd3 225 }
frankvnk 1:99bfc8d68fd3 226 return (0);
frankvnk 1:99bfc8d68fd3 227 }
frankvnk 1:99bfc8d68fd3 228
frankvnk 1:99bfc8d68fd3 229 void cc3000_spi::set_wlan_en(uint8_t value) {
frankvnk 1:99bfc8d68fd3 230 if (value) {
frankvnk 1:99bfc8d68fd3 231 _wlan_en = 1;
frankvnk 1:99bfc8d68fd3 232 } else {
frankvnk 1:99bfc8d68fd3 233 _wlan_en = 0;
frankvnk 1:99bfc8d68fd3 234 }
frankvnk 1:99bfc8d68fd3 235 }
frankvnk 1:99bfc8d68fd3 236
frankvnk 1:99bfc8d68fd3 237 void cc3000_spi::WLAN_IRQHandler() {
frankvnk 1:99bfc8d68fd3 238 if(ProcessWlanInterrupt)
frankvnk 1:99bfc8d68fd3 239 {
frankvnk 1:99bfc8d68fd3 240
frankvnk 1:99bfc8d68fd3 241 if (_spi_info.spi_state == eSPI_STATE_POWERUP)
frankvnk 1:99bfc8d68fd3 242 {
frankvnk 1:99bfc8d68fd3 243 // Inform HCI Layer that IRQ occured after powerup
frankvnk 1:99bfc8d68fd3 244 _spi_info.spi_state = eSPI_STATE_INITIALIZED;
frankvnk 1:99bfc8d68fd3 245 }
frankvnk 1:99bfc8d68fd3 246 else if (_spi_info.spi_state == eSPI_STATE_IDLE)
frankvnk 1:99bfc8d68fd3 247 {
frankvnk 1:99bfc8d68fd3 248 _spi_info.spi_state = eSPI_STATE_READ_IRQ;
frankvnk 1:99bfc8d68fd3 249 /* IRQ line goes low - acknowledge it */
frankvnk 1:99bfc8d68fd3 250 _wlan_cs = 0;
frankvnk 1:99bfc8d68fd3 251 read_synchronous(_simple_link.get_received_buffer(), 10);
frankvnk 1:99bfc8d68fd3 252 _spi_info.spi_state = eSPI_STATE_READ_EOT;
frankvnk 1:99bfc8d68fd3 253
frankvnk 1:99bfc8d68fd3 254
frankvnk 1:99bfc8d68fd3 255 // The header was read - continue with the payload read
frankvnk 1:99bfc8d68fd3 256 if (!read_data_cont())
frankvnk 1:99bfc8d68fd3 257 {
frankvnk 1:99bfc8d68fd3 258 // All the data was read - finalize handling by switching to the task
frankvnk 1:99bfc8d68fd3 259 // Trigger Rx processing
frankvnk 1:99bfc8d68fd3 260 wlan_irq_disable();
frankvnk 1:99bfc8d68fd3 261 _wlan_cs = 1;
frankvnk 1:99bfc8d68fd3 262 // The magic number resides at the end of the TX/RX buffer (1 byte after the allocated size)
frankvnk 1:99bfc8d68fd3 263 // If the magic number is overwitten - buffer overrun occurred - we will be stuck here forever!
frankvnk 1:99bfc8d68fd3 264 uint8_t *received_buffer = _simple_link.get_received_buffer();
frankvnk 1:99bfc8d68fd3 265 if (received_buffer[CC3000_RX_BUFFER_SIZE - 1] != CC3000_BUFFER_MAGIC_NUMBER)
frankvnk 1:99bfc8d68fd3 266 {
frankvnk 1:99bfc8d68fd3 267 while (1);
frankvnk 1:99bfc8d68fd3 268 }
frankvnk 1:99bfc8d68fd3 269 _spi_info.spi_state = eSPI_STATE_IDLE;
frankvnk 1:99bfc8d68fd3 270 _event.received_handler(received_buffer + SPI_HEADER_SIZE);
frankvnk 1:99bfc8d68fd3 271 }
frankvnk 1:99bfc8d68fd3 272 }
frankvnk 1:99bfc8d68fd3 273 else if (_spi_info.spi_state == eSPI_STATE_WRITE_IRQ)
frankvnk 1:99bfc8d68fd3 274 {
frankvnk 1:99bfc8d68fd3 275 write_synchronous(_simple_link.get_transmit_buffer(), _spi_info.tx_packet_length);
frankvnk 1:99bfc8d68fd3 276 _spi_info.spi_state = eSPI_STATE_IDLE;
frankvnk 1:99bfc8d68fd3 277 _wlan_cs = 1;
frankvnk 1:99bfc8d68fd3 278 }
frankvnk 1:99bfc8d68fd3 279 }
frankvnk 1:99bfc8d68fd3 280 }
frankvnk 1:99bfc8d68fd3 281
frankvnk 1:99bfc8d68fd3 282 }
frankvnk 1:99bfc8d68fd3 283