Port from Avnet's Internet Of Things full WiGo demo: SmartConfig - WebServer - Exosite - Android sensor Fusion App

Dependencies:   NVIC_set_all_priorities mbed cc3000_hostdriver_mbedsocket TEMT6200 TSI Wi-Go_eCompass_Lib_V3 WiGo_BattCharger

Wi-Go Reference Design Overview


For additional information on Wi-Go, please visit http://www.em.avnet.com/wi-go
For additional information on Freescale eCompass, please visit
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=E-Compass
Ported from Avnet's Wi-Go KEIL code.
Special thanks to Jim Carver from Avnet for providing the Wi-Go board and for his assistance.


Multiple Wi-Fi applications are provided within the latest version of Wi-Go software:

  • SmartConfig App for auto-setup of Wi-Go network parameters.
  • WebServer display of live sensor data.
  • Exosite portal sensor data feed by Wi-Go.
  • Freescale's Sensor Fusion App data feed by Wi-Go.

Wi-Go is intended for "untethered" portable operation (using it's high-capacity Lithium-Polymer battery). The serial terminal text interface is only required for initial setup, thereafter selection of an application from those available is via finger position on the Touch Slider during the initial 6 second startup period.

Running the Wi-Go Demo Suite

Warning

The on-board Firmware must be updated to mbed enable a Wi-Go system.
Goto the Component page to get the FirmwareUpdate tool (scroll down to the FirmwareUpdate topic).

MAG3110 sensor and eCompass Calibration!

As with the other sensor applications, the eCompass function requires quality calibration data to achieve best accuracy.
For the first 15 seconds after power-up it is recommended that "Figure 8" movements with Wi-Go be done in a smooth, repetitive pattern. Don't touch the slider pad during calibration.

Startup
The RGB LED blinks in a GREEN-ORANGE sequence to inform the user the module is waiting for input.
The RGB LED color designates which of the following Apps to launch.

RGB LED ColorApplication to Launch
OrangeErase all wireless profiles
PurpleSmartConfig
BlueWebServer
RedExosite Data Client
GreenAndroid Server

Swipe your index finger across the slider pad, the RGB LED color will change at approximately 20% intervals.
Removing your finger latches the last color displayed. After about 3 seconds, the selected app will start.
Another app can be selected when the slider pad is touched again within the 3 seconds timeout.

After launch of Exosite or Android Server Apps, the eCompass function then controls the RGB LED.
(not in WebServer mode where RGB LEDs are manually controlled by the User).

RGB LED ColorDirection Indication
BlueNear to North
GreenNorth
RedEast / West
PurpleSouth

__Note!__ The D1, D2 and D3 User LEDs on Wi-Go adhere to the following convention for the different Apps

User LED#Description of function controlling the LED
D1is the board heartbeat, derived from the timer interrupt
D2indicates network activity as follows:
Web Server Wi-Go webpage is being served.
Exosite Client Wi-Go is sending data.
Android App Wi-Go is sending data
D3WLAN Network is Connected

Detail of Wi-Go Applications

App #1: SmartConfig
See TI's pages on how to use the SmartConfig tool:

  • Preferred method : Configuration using the SmartConfig tool
  • SmartConfig download: Smart Config and Home Automation
    • iOS app : available at Apple app store.
    • Android app : download and install the Android SmartConfig Application on a PC.
      This file contains the source code as well as the compiled APK file.
      The APK file is stored in ti\CC3000AndroidApp\SmartConfigCC3X\bin.

App #2: WebServer display of live sensor data
__Note!__
When using the WebServer for the first time on a Wi-Fi network you will need to determine the IP address that's assigned to Wi-Go by the DHCP Server. To do this, it is recommended you use one of the following two methods:

  • While Wi-Go is initially tethered to a laptop via USB, launch of the WebServer Application and note the IP address that is reported on the terminal screen immediately after selection of this App.
  • Alternatively, use a 3rd party LAN SCAN type tool to view Wi-Go's IP address.
    eg. FING, - available for free download from Google Play or iTunes App Stores…

Wi-Go's WebServer Application is selected as follows:

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page).
    Then use index finger on slider to select the WebServer App (RGB LED = BLUE).
    At end of the 3 second selection period the WebServer App shall launch.
  • If you are tethered to a laptop and have a terminal open the Wi-Fi network connection confirmation will be seen, eg.

'*** Wi-Go board DHCP assigned IP Address = 192.168.43.102
  • Once you have noted Wi-Go's reported IP address, the USB cable may be disconnected and Wi-Go then used as intended, running on it's own battery power.
  • Use an Internet Browser on SmartPhone/Tablet/Laptop (connected to same Hot-Spot/Wireless Router subnet), to now connect to the noted Wi-Go IP address and view the WebServer output: /media/uploads/frankvnk/wi-go_webserver.png
  • the Webserver sensor data is auto-updated every 2 seconds a manual refresh (F5 on laptop).
  • In the event of an error, press refresh to regenerate the screen.
  • Use the mouse (or touch-screen) to exercise the RGB LED output.

App #3: Exosite Data Client
Wi-Go's sensor data gets transmitted via Wi-Fi to a cloud-based Exosite portal where the sensor measurements are displayed graphically on a "dashboard". Users can create unique customized dashboards using drag and drop GUI widgets from the library provided on the Exosite website.
__Note!__ For the Exosite application a "live" connection to the Internet is required !!!

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page).
    Then use index finger on slider to select the Exosite Client App (RGB LED = RED)
  • On launching this App, note Wi-Go's MAC address displayed on your terminal
    (if not running a terminal use FING or other WLAN Scan tool to determine Wi-Go's MAC address) /media/uploads/frankvnk/mac_address.png
  • Using your computer's internet browser, go to avnet.exosite.com and sign-up for a free Avnet Trial Exosite Account: /media/uploads/frankvnk/avnet_trial_exosite.png
  • On the next screen, click on the Sign-Up Now button in the displayed Avnet Trial account option.
  • Complete the Account Info and Contact Info then click on Create Account (make sure to use a valid email address!).
  • Check for new incoming email from avnet.exosite.com to the address you provided and click on the link in this email to activate your new Exosite account.
  • Once activated, login using the email address and password that you chose in your registration. Your Exosite Portal and Dashboard should now display. The first time you log-in to your new account, the default Home dashboard will be displayed, pre-configured with two widgets. On the left is the Welcome widget for tips and information. On the right is the Device List widget.
    Dashboards are configurable, so at any time this default dashboard can be changed, widgets deleted and added (Clicking the upside-down triangle icon in a widget's Title bar will allow you to edit it).
  • Before going further with the Dashboard, you need to connect your Wi-Go device to your Exosite account. Do this by going to the left sidebar and selecting Devices followed by selecting the +Add Device link (on right of screen). /media/uploads/frankvnk/add_device.png
  • In the Setup screens that follow, enter the following
Select a supported deviceWi-Go
Enter device MAC Addressnn:nn:nn:nn:nn:nn [your Wi-Go's MAC address including colons]
Enter device Name[choose a descriptive name]
Enter device Location[description of your location]
  • Once completed, under Devices the name chosen for the added Wi-Go device should now be listed.
  • Click on this new Wi-Go device to examine (and edit if necessary) it's Device Information screen.
    /media/uploads/frankvnk/device_information.png
  • Click the CLOSE button to exit the Device Information screen.
  • On your Wi-Go kit now press RESET, followed by the eCompass Calibration (mentioned at the top of this page)
    and again select the Exosite Client App (RGB LED = RED) using your index finger.
  • Refresh your browser (press F5) a couple've times until the Active indicator changes to On (Green).
    /media/uploads/frankvnk/active_indicator.png
  • From the left sidebar click on Home and click on the recently named Wi-Go device which is located under the Device List.
    This will bring-up a default dashboard display similar to what's shown below.
    (Dashboards are typically accessed via the Dashboards menu entry). Check the dashboard is updating with live data by moving your Wi-Go Kit through different orientations.
    /media/uploads/frankvnk/dashboard.png
  • To create a custom dashboard, select Dashboards from the sidebar menu, followed by +Add Dashboard (on right side of Your Dashboards title bar). After completion of the initial configuration screen you will then be able to add Widgets to display the various Wi-Go data sources as well as pictures and text to support your application.
  • More guidance on the creation, editing and sharing of custom dashboards is available under the Exosite support pages

App #4: Android Sensor Fusion App

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page)
    , then use index finger on slider to select the Android App (RGB LED = GREEN)
  • Freescale's ''Xtrinsic Sensor Fusion Toolbox'" will run on Android 3.0 or above phone or tablet. Free to download from Google Play, type Sensor fusion in the search box to find it. freescale.sensors.sfusion /media/uploads/frankvnk/sensor_fusion_toolbox.png
  • The Freescale App is well documented. To access the built-in documentation, press the NAV button at top of screen followed by Documentation from the scroll-down menu:
    /media/uploads/frankvnk/sensor_fusion_doc.png
  • Freescale's sensors site provides additional resources such as this overview: free-android-app-teaches-sensor-fusion-basics
  • Go to the Options Menu and select Preferences… /media/uploads/frankvnk/sensor_fusion_preferences.png
  • The following items need to be taken care of:
Enter WiGo's IP address
Enter the SSID (of the Hot-Spot or Wireless Access Point used by Wi-Go)
  • Press Save and Exit!
    /media/uploads/frankvnk/sensor_fusion_save_and_exit.png
  • Exit the Application completely then re-launch the Sensor Fusion Application.
  • Select the ''Source/Algorithm'" menu and change the data source to Wi-Go mag/accel /media/uploads/frankvnk/sensor_fusion_wigo_mag_accel.png
  • The Android App should now be displaying a 3-D image of Wi-Go that you can rotate and flip-over by moving the Wi-Go board accordingly…
  • Use NAV > Device View to display if this view does not come-up by default. /media/uploads/frankvnk/sensor_fusion_nav_device_view.png
  • A Serial Terminal connection is not necessary but if you happen to have one open you should see the following messages as Wi-Go connects to the Android App:
    "Server waiting for connection" followed by
    "connected, transmit buffer size= 96", and then
    "input = 0123456789"
    at which time Wi-Go starts streaming data to the Android App.
Committer:
frankvnk
Date:
Wed Oct 23 12:01:30 2013 +0000
Revision:
1:99bfc8d68fd3
Webserver functional using ProcessWlanInterrupt flag instead of NVIC

Who changed what in which revision?

UserRevisionLine numberNew contents of line
frankvnk 1:99bfc8d68fd3 1 /*****************************************************************************
frankvnk 1:99bfc8d68fd3 2 *
frankvnk 1:99bfc8d68fd3 3 * C++ interface/implementation created by Martin Kojtal (0xc0170). Thanks to
frankvnk 1:99bfc8d68fd3 4 * Jim Carver and Frank Vannieuwkerke for their inital cc3000 mbed port and
frankvnk 1:99bfc8d68fd3 5 * provided help.
frankvnk 1:99bfc8d68fd3 6 *
frankvnk 1:99bfc8d68fd3 7 * This version of "host driver" uses CC3000 Host Driver Implementation. Thus
frankvnk 1:99bfc8d68fd3 8 * read the following copyright:
frankvnk 1:99bfc8d68fd3 9 *
frankvnk 1:99bfc8d68fd3 10 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
frankvnk 1:99bfc8d68fd3 11 *
frankvnk 1:99bfc8d68fd3 12 * Redistribution and use in source and binary forms, with or without
frankvnk 1:99bfc8d68fd3 13 * modification, are permitted provided that the following conditions
frankvnk 1:99bfc8d68fd3 14 * are met:
frankvnk 1:99bfc8d68fd3 15 *
frankvnk 1:99bfc8d68fd3 16 * Redistributions of source code must retain the above copyright
frankvnk 1:99bfc8d68fd3 17 * notice, this list of conditions and the following disclaimer.
frankvnk 1:99bfc8d68fd3 18 *
frankvnk 1:99bfc8d68fd3 19 * Redistributions in binary form must reproduce the above copyright
frankvnk 1:99bfc8d68fd3 20 * notice, this list of conditions and the following disclaimer in the
frankvnk 1:99bfc8d68fd3 21 * documentation and/or other materials provided with the
frankvnk 1:99bfc8d68fd3 22 * distribution.
frankvnk 1:99bfc8d68fd3 23 *
frankvnk 1:99bfc8d68fd3 24 * Neither the name of Texas Instruments Incorporated nor the names of
frankvnk 1:99bfc8d68fd3 25 * its contributors may be used to endorse or promote products derived
frankvnk 1:99bfc8d68fd3 26 * from this software without specific prior written permission.
frankvnk 1:99bfc8d68fd3 27 *
frankvnk 1:99bfc8d68fd3 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
frankvnk 1:99bfc8d68fd3 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
frankvnk 1:99bfc8d68fd3 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
frankvnk 1:99bfc8d68fd3 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
frankvnk 1:99bfc8d68fd3 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
frankvnk 1:99bfc8d68fd3 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
frankvnk 1:99bfc8d68fd3 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
frankvnk 1:99bfc8d68fd3 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
frankvnk 1:99bfc8d68fd3 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
frankvnk 1:99bfc8d68fd3 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
frankvnk 1:99bfc8d68fd3 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
frankvnk 1:99bfc8d68fd3 39 *
frankvnk 1:99bfc8d68fd3 40 *****************************************************************************/
frankvnk 1:99bfc8d68fd3 41 #ifndef CC3000_SOCKET_H
frankvnk 1:99bfc8d68fd3 42 #define CC3000_SOCKET_H
frankvnk 1:99bfc8d68fd3 43
frankvnk 1:99bfc8d68fd3 44 #define SOCKET_MAX_FREE_BUFFERS 6
frankvnk 1:99bfc8d68fd3 45
frankvnk 1:99bfc8d68fd3 46 #define SOCKET_STATUS_ACTIVE 0
frankvnk 1:99bfc8d68fd3 47 #define SOCKET_STATUS_INACTIVE 1
frankvnk 1:99bfc8d68fd3 48
frankvnk 1:99bfc8d68fd3 49 #define SOCKET_STATUS_INIT_VAL 0xFFFF
frankvnk 1:99bfc8d68fd3 50 #define M_IS_VALID_SD(sd) ((0 <= (sd)) && ((sd) <= 7))
frankvnk 1:99bfc8d68fd3 51 #define M_IS_VALID_STATUS(status) (((status) == SOCKET_STATUS_ACTIVE)||((status) == SOCKET_STATUS_INACTIVE))
frankvnk 1:99bfc8d68fd3 52
frankvnk 1:99bfc8d68fd3 53 #ifdef _API_USE_BSD_CLOSE
frankvnk 1:99bfc8d68fd3 54 #define close(sd) closesocket(sd)
frankvnk 1:99bfc8d68fd3 55 #endif
frankvnk 1:99bfc8d68fd3 56
frankvnk 1:99bfc8d68fd3 57 //Enable this flag if and only if you must comply with BSD socket read() and
frankvnk 1:99bfc8d68fd3 58 //write() functions
frankvnk 1:99bfc8d68fd3 59 #ifdef _API_USE_BSD_READ_WRITE
frankvnk 1:99bfc8d68fd3 60 #define read(sd, buf, len, flags) recv(sd, buf, len, flags)
frankvnk 1:99bfc8d68fd3 61 #define write(sd, buf, len, flags) send(sd, buf, len, flags)
frankvnk 1:99bfc8d68fd3 62 #endif
frankvnk 1:99bfc8d68fd3 63
frankvnk 1:99bfc8d68fd3 64 #define SOCKET_OPEN_PARAMS_LEN (12)
frankvnk 1:99bfc8d68fd3 65 #define SOCKET_CLOSE_PARAMS_LEN (4)
frankvnk 1:99bfc8d68fd3 66 #define SOCKET_ACCEPT_PARAMS_LEN (4)
frankvnk 1:99bfc8d68fd3 67 #define SOCKET_BIND_PARAMS_LEN (20)
frankvnk 1:99bfc8d68fd3 68 #define SOCKET_LISTEN_PARAMS_LEN (8)
frankvnk 1:99bfc8d68fd3 69 #define SOCKET_GET_HOST_BY_NAME_PARAMS_LEN (9)
frankvnk 1:99bfc8d68fd3 70 #define SOCKET_CONNECT_PARAMS_LEN (20)
frankvnk 1:99bfc8d68fd3 71 #define SOCKET_SELECT_PARAMS_LEN (44)
frankvnk 1:99bfc8d68fd3 72 #define SOCKET_SET_SOCK_OPT_PARAMS_LEN (20)
frankvnk 1:99bfc8d68fd3 73 #define SOCKET_GET_SOCK_OPT_PARAMS_LEN (12)
frankvnk 1:99bfc8d68fd3 74 #define SOCKET_RECV_FROM_PARAMS_LEN (12)
frankvnk 1:99bfc8d68fd3 75 #define SOCKET_SENDTO_PARAMS_LEN (24)
frankvnk 1:99bfc8d68fd3 76 #define SOCKET_MDNS_ADVERTISE_PARAMS_LEN (12)
frankvnk 1:99bfc8d68fd3 77
frankvnk 1:99bfc8d68fd3 78 //#define NULL 0
frankvnk 1:99bfc8d68fd3 79
frankvnk 1:99bfc8d68fd3 80 // The legnth of arguments for the SEND command: sd + buff_offset + len + flags,
frankvnk 1:99bfc8d68fd3 81 // while size of each parameter is 32 bit - so the total length is 16 bytes;
frankvnk 1:99bfc8d68fd3 82
frankvnk 1:99bfc8d68fd3 83 #define HCI_CMND_SEND_ARG_LENGTH (16)
frankvnk 1:99bfc8d68fd3 84 #define SELECT_TIMEOUT_MIN_MICRO_SECONDS 5000
frankvnk 1:99bfc8d68fd3 85 #define HEADERS_SIZE_DATA (SPI_HEADER_SIZE + 5)
frankvnk 1:99bfc8d68fd3 86 #define SIMPLE_LINK_HCI_CMND_TRANSPORT_HEADER_SIZE (SPI_HEADER_SIZE + SIMPLE_LINK_HCI_CMND_HEADER_SIZE)
frankvnk 1:99bfc8d68fd3 87 #define MDNS_DEVICE_SERVICE_MAX_LENGTH (32)
frankvnk 1:99bfc8d68fd3 88
frankvnk 1:99bfc8d68fd3 89
frankvnk 1:99bfc8d68fd3 90 #define HOSTNAME_MAX_LENGTH (230) // 230 bytes + header shouldn't exceed 8 bit value
frankvnk 1:99bfc8d68fd3 91
frankvnk 1:99bfc8d68fd3 92 //--------- Address Families --------
frankvnk 1:99bfc8d68fd3 93
frankvnk 1:99bfc8d68fd3 94 #define AF_INET 2
frankvnk 1:99bfc8d68fd3 95 #define AF_INET6 23
frankvnk 1:99bfc8d68fd3 96
frankvnk 1:99bfc8d68fd3 97 //------------ Socket Types ------------
frankvnk 1:99bfc8d68fd3 98
frankvnk 1:99bfc8d68fd3 99 #define SOCK_STREAM 1
frankvnk 1:99bfc8d68fd3 100 #define SOCK_DGRAM 2
frankvnk 1:99bfc8d68fd3 101 #define SOCK_RAW 3 // Raw sockets allow new IPv4 protocols to be implemented in user space. A raw socket receives or sends the raw datagram not including link level headers
frankvnk 1:99bfc8d68fd3 102 #define SOCK_RDM 4
frankvnk 1:99bfc8d68fd3 103 #define SOCK_SEQPACKET 5
frankvnk 1:99bfc8d68fd3 104
frankvnk 1:99bfc8d68fd3 105 //----------- Socket Protocol ----------
frankvnk 1:99bfc8d68fd3 106
frankvnk 1:99bfc8d68fd3 107 #define IPPROTO_IP 0 // dummy for IP
frankvnk 1:99bfc8d68fd3 108 #define IPPROTO_ICMP 1 // control message protocol
frankvnk 1:99bfc8d68fd3 109 #define IPPROTO_IPV4 IPPROTO_IP // IP inside IP
frankvnk 1:99bfc8d68fd3 110 #define IPPROTO_TCP 6 // tcp
frankvnk 1:99bfc8d68fd3 111 #define IPPROTO_UDP 17 // user datagram protocol
frankvnk 1:99bfc8d68fd3 112 #define IPPROTO_IPV6 41 // IPv6 in IPv6
frankvnk 1:99bfc8d68fd3 113 #define IPPROTO_NONE 59 // No next header
frankvnk 1:99bfc8d68fd3 114 #define IPPROTO_RAW 255 // raw IP packet
frankvnk 1:99bfc8d68fd3 115 #define IPPROTO_MAX 256
frankvnk 1:99bfc8d68fd3 116
frankvnk 1:99bfc8d68fd3 117 //----------- Socket retunr codes -----------
frankvnk 1:99bfc8d68fd3 118
frankvnk 1:99bfc8d68fd3 119 #define SOC_ERROR (-1) // error
frankvnk 1:99bfc8d68fd3 120 #define SOC_IN_PROGRESS (-2) // socket in progress
frankvnk 1:99bfc8d68fd3 121
frankvnk 1:99bfc8d68fd3 122 //----------- Socket Options -----------
frankvnk 1:99bfc8d68fd3 123 #define SOL_SOCKET 0xffff // socket level
frankvnk 1:99bfc8d68fd3 124 #define SOCKOPT_RECV_TIMEOUT 1 // optname to configure recv and recvfromtimeout
frankvnk 1:99bfc8d68fd3 125 #define SOCKOPT_NONBLOCK 2 // accept non block mode set SOCK_ON or SOCK_OFF (default block mode )
frankvnk 1:99bfc8d68fd3 126 #define SOCK_ON 0 // socket non-blocking mode is enabled
frankvnk 1:99bfc8d68fd3 127 #define SOCK_OFF 1 // socket blocking mode is enabled
frankvnk 1:99bfc8d68fd3 128
frankvnk 1:99bfc8d68fd3 129 #define TCP_NODELAY 0x0001
frankvnk 1:99bfc8d68fd3 130 #define TCP_BSDURGENT 0x7000
frankvnk 1:99bfc8d68fd3 131
frankvnk 1:99bfc8d68fd3 132 #define MAX_PACKET_SIZE 1500
frankvnk 1:99bfc8d68fd3 133 #define MAX_LISTEN_QUEUE 4
frankvnk 1:99bfc8d68fd3 134
frankvnk 1:99bfc8d68fd3 135 #define IOCTL_SOCKET_EVENTMASK
frankvnk 1:99bfc8d68fd3 136
frankvnk 1:99bfc8d68fd3 137 #define __FD_SETSIZE 32
frankvnk 1:99bfc8d68fd3 138
frankvnk 1:99bfc8d68fd3 139 #define ASIC_ADDR_LEN 8
frankvnk 1:99bfc8d68fd3 140
frankvnk 1:99bfc8d68fd3 141 #define NO_QUERY_RECIVED -3
frankvnk 1:99bfc8d68fd3 142
frankvnk 1:99bfc8d68fd3 143
frankvnk 1:99bfc8d68fd3 144 typedef struct _in_addr_t
frankvnk 1:99bfc8d68fd3 145 {
frankvnk 1:99bfc8d68fd3 146 uint32_t s_addr; // load with inet_aton()
frankvnk 1:99bfc8d68fd3 147 } in_addr;
frankvnk 1:99bfc8d68fd3 148
frankvnk 1:99bfc8d68fd3 149 /*typedef struct _sockaddr_t
frankvnk 1:99bfc8d68fd3 150 {
frankvnk 1:99bfc8d68fd3 151 unsigned short int sa_family;
frankvnk 1:99bfc8d68fd3 152 unsigned char sa_data[14];
frankvnk 1:99bfc8d68fd3 153 } sockaddr;*/
frankvnk 1:99bfc8d68fd3 154
frankvnk 1:99bfc8d68fd3 155 typedef struct _sockaddr_in_t
frankvnk 1:99bfc8d68fd3 156 {
frankvnk 1:99bfc8d68fd3 157 int16_t sin_family; // e.g. AF_INET
frankvnk 1:99bfc8d68fd3 158 uint16_t sin_port; // e.g. htons(3490)
frankvnk 1:99bfc8d68fd3 159 in_addr sin_addr; // see struct in_addr, below
frankvnk 1:99bfc8d68fd3 160 uint8_t sin_zero[8]; // zero this if you want to
frankvnk 1:99bfc8d68fd3 161 } sockaddr_in;
frankvnk 1:99bfc8d68fd3 162
frankvnk 1:99bfc8d68fd3 163 typedef uint32_t socklen_t;
frankvnk 1:99bfc8d68fd3 164
frankvnk 1:99bfc8d68fd3 165 // The fd_set member is required to be an array of longs.
frankvnk 1:99bfc8d68fd3 166 typedef int32_t __fd_mask;
frankvnk 1:99bfc8d68fd3 167
frankvnk 1:99bfc8d68fd3 168 // It's easier to assume 8-bit bytes than to get CHAR_BIT.
frankvnk 1:99bfc8d68fd3 169 #define __NFDBITS (8 * sizeof (__fd_mask))
frankvnk 1:99bfc8d68fd3 170 #define __FDELT(d) ((d) / __NFDBITS)
frankvnk 1:99bfc8d68fd3 171 #define __FDMASK(d) ((__fd_mask) 1 << ((d) % __NFDBITS))
frankvnk 1:99bfc8d68fd3 172
frankvnk 1:99bfc8d68fd3 173 #ifndef FD_SET
frankvnk 1:99bfc8d68fd3 174 //not used in the current code
frankvnk 1:99bfc8d68fd3 175 #define ENOBUFS 55 // No buffer space available
frankvnk 1:99bfc8d68fd3 176
frankvnk 1:99bfc8d68fd3 177 // Access macros for 'fd_set'.
frankvnk 1:99bfc8d68fd3 178 #define FD_SET(fd, fdsetp) __FD_SET (fd, fdsetp)
frankvnk 1:99bfc8d68fd3 179 #define FD_CLR(fd, fdsetp) __FD_CLR (fd, fdsetp)
frankvnk 1:99bfc8d68fd3 180 #define FD_ISSET(fd, fdsetp) __FD_ISSET (fd, fdsetp)
frankvnk 1:99bfc8d68fd3 181 #define FD_ZERO(fdsetp) __FD_ZERO (fdsetp)
frankvnk 1:99bfc8d68fd3 182
frankvnk 1:99bfc8d68fd3 183 // fd_set for select and pselect.
frankvnk 1:99bfc8d68fd3 184 typedef struct
frankvnk 1:99bfc8d68fd3 185 {
frankvnk 1:99bfc8d68fd3 186 __fd_mask fds_bits[__FD_SETSIZE / __NFDBITS];
frankvnk 1:99bfc8d68fd3 187 #define __FDS_BITS(set) ((set)->fds_bits)
frankvnk 1:99bfc8d68fd3 188 } fd_set;
frankvnk 1:99bfc8d68fd3 189
frankvnk 1:99bfc8d68fd3 190 #endif /* FD_SET */
frankvnk 1:99bfc8d68fd3 191
frankvnk 1:99bfc8d68fd3 192 // We don't use `memset' because this would require a prototype and
frankvnk 1:99bfc8d68fd3 193 // the array isn't too big.
frankvnk 1:99bfc8d68fd3 194 #define __FD_ZERO(set) \
frankvnk 1:99bfc8d68fd3 195 do { \
frankvnk 1:99bfc8d68fd3 196 uint32_t __i; \
frankvnk 1:99bfc8d68fd3 197 fd_set *__arr = (set); \
frankvnk 1:99bfc8d68fd3 198 for (__i = 0; __i < sizeof (fd_set) / sizeof (__fd_mask); ++__i) \
frankvnk 1:99bfc8d68fd3 199 __FDS_BITS (__arr)[__i] = 0; \
frankvnk 1:99bfc8d68fd3 200 } while (0)
frankvnk 1:99bfc8d68fd3 201 #define __FD_SET(d, set) (__FDS_BITS (set)[__FDELT (d)] |= __FDMASK (d))
frankvnk 1:99bfc8d68fd3 202 #define __FD_CLR(d, set) (__FDS_BITS (set)[__FDELT (d)] &= ~__FDMASK (d))
frankvnk 1:99bfc8d68fd3 203 #define __FD_ISSET(d, set) (__FDS_BITS (set)[__FDELT (d)] & __FDMASK (d))
frankvnk 1:99bfc8d68fd3 204
frankvnk 1:99bfc8d68fd3 205 //Use in case of Big Endian only
frankvnk 1:99bfc8d68fd3 206
frankvnk 1:99bfc8d68fd3 207 #define htonl(A) ((((uint32_t)(A) & 0xff000000) >> 24) | \
frankvnk 1:99bfc8d68fd3 208 (((uint32_t)(A) & 0x00ff0000) >> 8) | \
frankvnk 1:99bfc8d68fd3 209 (((uint32_t)(A) & 0x0000ff00) << 8) | \
frankvnk 1:99bfc8d68fd3 210 (((uint32_t)(A) & 0x000000ff) << 24))
frankvnk 1:99bfc8d68fd3 211
frankvnk 1:99bfc8d68fd3 212 #define ntohl htonl
frankvnk 1:99bfc8d68fd3 213
frankvnk 1:99bfc8d68fd3 214 //Use in case of Big Endian only
frankvnk 1:99bfc8d68fd3 215 #define htons(A) ((((uint32_t)(A) & 0xff00) >> 8) | \
frankvnk 1:99bfc8d68fd3 216 (((uint32_t)(A) & 0x00ff) << 8))
frankvnk 1:99bfc8d68fd3 217
frankvnk 1:99bfc8d68fd3 218
frankvnk 1:99bfc8d68fd3 219 #define ntohs htons
frankvnk 1:99bfc8d68fd3 220
frankvnk 1:99bfc8d68fd3 221 // mDNS port - 5353 mDNS multicast address - 224.0.0.251
frankvnk 1:99bfc8d68fd3 222 #define SET_mDNS_ADD(sockaddr) sockaddr.sa_data[0] = 0x14; \
frankvnk 1:99bfc8d68fd3 223 sockaddr.sa_data[1] = 0xe9; \
frankvnk 1:99bfc8d68fd3 224 sockaddr.sa_data[2] = 0xe0; \
frankvnk 1:99bfc8d68fd3 225 sockaddr.sa_data[3] = 0x0; \
frankvnk 1:99bfc8d68fd3 226 sockaddr.sa_data[4] = 0x0; \
frankvnk 1:99bfc8d68fd3 227 sockaddr.sa_data[5] = 0xfb;
frankvnk 1:99bfc8d68fd3 228
frankvnk 1:99bfc8d68fd3 229 #endif