Port from Avnet's Internet Of Things full WiGo demo: SmartConfig - WebServer - Exosite - Android sensor Fusion App

Dependencies:   mbed CC3000_Hostdriver TEMT6200 TSI Wi-Go_eCompass_Lib_V3 WiGo_BattCharger

Fork of CC3000_Simple_Socket by Frank Vannieuwkerke

Information

This demo uses the old HostDriver.
A newer release using the mbed socket compatible API HostDriver is available at Wi-Go_IOT_Demo_MKII.

Wi-Go Reference Design Overview


For additional information on Wi-Go, please visit http://www.em.avnet.com/wi-go
For additional information on Freescale eCompass, please visit
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=E-Compass
Ported from Avnet's Wi-Go KEIL code.
Special thanks to Jim Carver from Avnet for providing the Wi-Go board and for his assistance.


Multiple Wi-Fi applications are provided within the latest version of Wi-Go software:

  • SmartConfig App for auto-setup of Wi-Go network parameters.
  • WebServer display of live sensor data.
  • Exosite portal sensor data feed by Wi-Go.
  • Freescale's Sensor Fusion App data feed by Wi-Go.

Wi-Go is intended for "untethered" portable operation (using it's high-capacity Lithium-Polymer battery). The serial terminal text interface is only required for initial setup, thereafter selection of an application from those available is via finger position on the Touch Slider during the initial 6 second startup period.

Running the Wi-Go Demo Suite

Warning

  • We need a large amount of free RAM for the eCompass library:
    Before compiling the code, check if CC3000_MAXIMAL_RX_SIZE is set to (511 + 1) in cc3000_common.h.
  • The on-board Firmware must be updated to mbed enable a Wi-Go system. Goto the Component page to get the FirmwareUpdate tool (scroll down to the FirmwareUpdate topic).

MAG3110 sensor and eCompass Calibration!

As with the other sensor applications, the eCompass function requires quality calibration data to achieve best accuracy.
For the first 15 seconds after power-up it is recommended that "Figure 8" movements with Wi-Go be done in a smooth, repetitive pattern. Don't touch the slider pad during calibration.

Startup
The RGB LED blinks in a GREEN-ORANGE sequence to inform the user the module is waiting for input.
The RGB LED color designates which of the following Apps to launch.

RGB LED ColorApplication to Launch
PurpleSmartConfig
BlueWebServer
RedExosite Data Client
GreenAndroid Server

Swipe your index finger across the slider pad, the RGB LED color will change at approximately 25% intervals.
Removing your finger latches the last color displayed. After about 3 seconds, the selected app will start.
Another app can be selected when the slider pad is touched again within the 3 seconds timeout.

After launch of Exosite or Android Server Apps, the eCompass function then controls the RGB LED.
(not in WebServer mode where RGB LEDs are manually controlled by the User).

RGB LED ColorDirection Indication
BlueNear to North
GreenNorth
RedEast / West
PurpleSouth

__Note!__ The D1, D2 and D3 User LEDs on Wi-Go adhere to the following convention for the different Apps

User LED#Description of function controlling the LED
D1is the board heartbeat, derived from the timer interrupt
D2indicates network activity as follows:
Web Server Wi-Go webpage is being served.
Exosite Client Wi-Go is sending data.
Android App Wi-Go is sending data
D3WLAN Network is Connected

Detail of Wi-Go Applications

App #1: SmartConfig
See TI's pages on how to use the SmartConfig tool:

  • Preferred method : Configuration using the SmartConfig tool
  • SmartConfig download: Smart Config and Home Automation
    • iOS app : available at Apple app store.
    • Android app : download and install the Android SmartConfig Application on a PC.
      This file contains the source code as well as the compiled APK file.
      The APK file is stored in ti\CC3000AndroidApp\SmartConfigCC3X\bin.

App #2: WebServer display of live sensor data
__Note!__
When using the WebServer for the first time on a Wi-Fi network you will need to determine the IP address that's assigned to Wi-Go by the DHCP Server. To do this, it is recommended you use one of the following two methods:

  • While Wi-Go is initially tethered to a laptop via USB, launch of the WebServer Application and note the IP address that is reported on the terminal screen immediately after selection of this App.
  • Alternatively, use a 3rd party LAN SCAN type tool to view Wi-Go's IP address.
    eg. FING, - available for free download from Google Play or iTunes App Stores…

Wi-Go's WebServer Application is selected as follows:

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page).
    Then use index finger on slider to select the WebServer App (RGB LED = BLUE).
    At end of the 3 second selection period the WebServer App shall launch.
  • If you are tethered to a laptop and have a terminal open the Wi-Fi network connection confirmation will be seen, eg.

'*** Wi-Go board DHCP assigned IP Address = 192.168.43.102
  • Once you have noted Wi-Go's reported IP address, the USB cable may be disconnected and Wi-Go then used as intended, running on it's own battery power.
  • Use an Internet Browser on SmartPhone/Tablet/Laptop (connected to same Hot-Spot/Wireless Router subnet), to now connect to the noted Wi-Go IP address and view the WebServer output: /media/uploads/frankvnk/wi-go_webserver.png
  • the Webserver sensor data is auto-updated every 2 seconds a manual refresh (F5 on laptop).
  • In the event of an error, press refresh to regenerate the screen.
  • Use the mouse (or touch-screen) to exercise the RGB LED output.

App #3: Exosite Data Client
Wi-Go's sensor data gets transmitted via Wi-Fi to a cloud-based Exosite portal where the sensor measurements are displayed graphically on a "dashboard". Users can create unique customized dashboards using drag and drop GUI widgets from the library provided on the Exosite website.
__Note!__ For the Exosite application a "live" connection to the Internet is required !!!

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page).
    Then use index finger on slider to select the Exosite Client App (RGB LED = RED)
  • On launching this App, note Wi-Go's MAC address displayed on your terminal
    (if not running a terminal use FING or other WLAN Scan tool to determine Wi-Go's MAC address) /media/uploads/frankvnk/mac_address.png
  • Using your computer's internet browser, go to avnet.exosite.com and sign-up for a free Avnet Trial Exosite Account: /media/uploads/frankvnk/avnet_trial_exosite.png
  • On the next screen, click on the Sign-Up Now button in the displayed Avnet Trial account option.
  • Complete the Account Info and Contact Info then click on Create Account (make sure to use a valid email address!).
  • Check for new incoming email from avnet.exosite.com to the address you provided and click on the link in this email to activate your new Exosite account.
  • Once activated, login using the email address and password that you chose in your registration. Your Exosite Portal and Dashboard should now display. The first time you log-in to your new account, the default Home dashboard will be displayed, pre-configured with two widgets. On the left is the Welcome widget for tips and information. On the right is the Device List widget.
    Dashboards are configurable, so at any time this default dashboard can be changed, widgets deleted and added (Clicking the upside-down triangle icon in a widget's Title bar will allow you to edit it).
  • Before going further with the Dashboard, you need to connect your Wi-Go device to your Exosite account. Do this by going to the left sidebar and selecting Devices followed by selecting the +Add Device link (on right of screen). /media/uploads/frankvnk/add_device.png
  • In the Setup screens that follow, enter the following
Select a supported deviceWi-Go
Enter device MAC Addressnn:nn:nn:nn:nn:nn [your Wi-Go's MAC address including colons]
Enter device Name[choose a descriptive name]
Enter device Location[description of your location]
  • Once completed, under Devices the name chosen for the added Wi-Go device should now be listed.
  • Click on this new Wi-Go device to examine (and edit if necessary) it's Device Information screen.
    /media/uploads/frankvnk/device_information.png
  • Click the CLOSE button to exit the Device Information screen.
  • On your Wi-Go kit now press RESET, followed by the eCompass Calibration (mentioned at the top of this page)
    and again select the Exosite Client App (RGB LED = RED) using your index finger.
  • Refresh your browser (press F5) a couple've times until the Active indicator changes to On (Green).
    /media/uploads/frankvnk/active_indicator.png
  • From the left sidebar click on Home and click on the recently named Wi-Go device which is located under the Device List.
    This will bring-up a default dashboard display similar to what's shown below.
    (Dashboards are typically accessed via the Dashboards menu entry). Check the dashboard is updating with live data by moving your Wi-Go Kit through different orientations.
    /media/uploads/frankvnk/dashboard.png
  • To create a custom dashboard, select Dashboards from the sidebar menu, followed by +Add Dashboard (on right side of Your Dashboards title bar). After completion of the initial configuration screen you will then be able to add Widgets to display the various Wi-Go data sources as well as pictures and text to support your application.
  • More guidance on the creation, editing and sharing of custom dashboards is available under the Exosite support pages

App #4: Android Sensor Fusion App

  • Press RESET, followed by the eCompass Calibration (mentioned at the top of this page)
    , then use index finger on slider to select the Android App (RGB LED = GREEN)
  • Freescale's ''Xtrinsic Sensor Fusion Toolbox'" will run on Android 3.0 or above phone or tablet. Free to download from Google Play, type Sensor fusion in the search box to find it. freescale.sensors.sfusion /media/uploads/frankvnk/sensor_fusion_toolbox.png
  • The Freescale App is well documented. To access the built-in documentation, press the NAV button at top of screen followed by Documentation from the scroll-down menu:
    /media/uploads/frankvnk/sensor_fusion_doc.png
  • Freescale's sensors site provides additional resources such as this overview: free-android-app-teaches-sensor-fusion-basics
  • Go to the Options Menu and select Preferences… /media/uploads/frankvnk/sensor_fusion_preferences.png
  • The following items need to be taken care of:
Enter WiGo's IP address
Enter the SSID (of the Hot-Spot or Wireless Access Point used by Wi-Go)
  • Press Save and Exit!
    /media/uploads/frankvnk/sensor_fusion_save_and_exit.png
  • Exit the Application completely then re-launch the Sensor Fusion Application.
  • Select the ''Source/Algorithm'" menu and change the data source to Wi-Go mag/accel /media/uploads/frankvnk/sensor_fusion_wigo_mag_accel.png
  • The Android App should now be displaying a 3-D image of Wi-Go that you can rotate and flip-over by moving the Wi-Go board accordingly…
  • Use NAV > Device View to display if this view does not come-up by default. /media/uploads/frankvnk/sensor_fusion_nav_device_view.png
  • A Serial Terminal connection is not necessary but if you happen to have one open you should see the following messages as Wi-Go connects to the Android App:
    "Server waiting for connection" followed by
    "connected, transmit buffer size= 96", and then
    "input = 0123456789"
    at which time Wi-Go starts streaming data to the Android App.
Committer:
frankvnk
Date:
Thu Aug 15 12:12:52 2013 +0000
Revision:
1:32d1ef95eceb
Parent:
0:a8e46e27d041
Child:
2:13ced2cb5933
Common code moved to cc3000_common
; HostDriver library updated

Who changed what in which revision?

UserRevisionLine numberNew contents of line
frankvnk 0:a8e46e27d041 1 /****************************************************************************
frankvnk 0:a8e46e27d041 2 *
frankvnk 0:a8e46e27d041 3 * doTCPIP.cpp - CC3000 TCP/IP
frankvnk 0:a8e46e27d041 4 * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/
frankvnk 0:a8e46e27d041 5 *
frankvnk 0:a8e46e27d041 6 * Redistribution and use in source and binary forms, with or without
frankvnk 0:a8e46e27d041 7 * modification, are permitted provided that the following conditions
frankvnk 0:a8e46e27d041 8 * are met:
frankvnk 0:a8e46e27d041 9 *
frankvnk 0:a8e46e27d041 10 * Redistributions of source code must retain the above copyright
frankvnk 0:a8e46e27d041 11 * notice, this list of conditions and the following disclaimer.
frankvnk 0:a8e46e27d041 12 *
frankvnk 0:a8e46e27d041 13 * Redistributions in binary form must reproduce the above copyright
frankvnk 0:a8e46e27d041 14 * notice, this list of conditions and the following disclaimer in the
frankvnk 0:a8e46e27d041 15 * documentation and/or other materials provided with the
frankvnk 0:a8e46e27d041 16 * distribution.
frankvnk 0:a8e46e27d041 17 *
frankvnk 0:a8e46e27d041 18 * Neither the name of Texas Instruments Incorporated nor the names of
frankvnk 0:a8e46e27d041 19 * its contributors may be used to endorse or promote products derived
frankvnk 0:a8e46e27d041 20 * from this software without specific prior written permission.
frankvnk 0:a8e46e27d041 21 *
frankvnk 0:a8e46e27d041 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
frankvnk 0:a8e46e27d041 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
frankvnk 0:a8e46e27d041 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
frankvnk 0:a8e46e27d041 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
frankvnk 0:a8e46e27d041 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
frankvnk 0:a8e46e27d041 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
frankvnk 0:a8e46e27d041 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
frankvnk 0:a8e46e27d041 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
frankvnk 0:a8e46e27d041 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
frankvnk 0:a8e46e27d041 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
frankvnk 0:a8e46e27d041 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
frankvnk 0:a8e46e27d041 33 *
frankvnk 0:a8e46e27d041 34 *****************************************************************************/
frankvnk 0:a8e46e27d041 35
frankvnk 0:a8e46e27d041 36 #include "doTCPIP.h"
frankvnk 0:a8e46e27d041 37
frankvnk 0:a8e46e27d041 38 volatile unsigned char newData;
frankvnk 0:a8e46e27d041 39 int server_running;
frankvnk 0:a8e46e27d041 40 unsigned char ForceFixedSSID;
frankvnk 0:a8e46e27d041 41 char runSmartConfig; // Flag indicating whether user requested to perform Smart Config
frankvnk 0:a8e46e27d041 42 volatile unsigned long ulCC3000Connected;
frankvnk 0:a8e46e27d041 43 unsigned char ConnectUsingSmartConfig;
frankvnk 0:a8e46e27d041 44 unsigned char myMAC[8];
frankvnk 0:a8e46e27d041 45 userFS_t userFS;
frankvnk 0:a8e46e27d041 46
frankvnk 0:a8e46e27d041 47 // Setup the functions to handle our CGI parameters
frankvnk 0:a8e46e27d041 48 tNetappIpconfigRetArgs ipinfo2;
frankvnk 0:a8e46e27d041 49 char requestBuffer[REQ_BUFFER_SIZE];
frankvnk 0:a8e46e27d041 50 int LAN_Connected = 0;
frankvnk 0:a8e46e27d041 51
frankvnk 0:a8e46e27d041 52 unsigned char SmartConfigProfilestored = 0xff;
frankvnk 0:a8e46e27d041 53
frankvnk 0:a8e46e27d041 54
frankvnk 0:a8e46e27d041 55 /** \brief Flag indicating whether to print CC3000 Connection info */
frankvnk 0:a8e46e27d041 56 static unsigned char obtainIpInfoFlag = FALSE;
frankvnk 0:a8e46e27d041 57 //Device name - used for Smart config in order to stop the Smart phone configuration process
frankvnk 0:a8e46e27d041 58 char DevServname[] = "CC3000";
frankvnk 0:a8e46e27d041 59 volatile unsigned long SendmDNSAdvertisment;
frankvnk 0:a8e46e27d041 60
frankvnk 0:a8e46e27d041 61
frankvnk 0:a8e46e27d041 62
frankvnk 0:a8e46e27d041 63 void sendPython(int port)
frankvnk 0:a8e46e27d041 64 {
frankvnk 0:a8e46e27d041 65 char python_msg[] = "Hello Python\n";
frankvnk 0:a8e46e27d041 66 int stat;
frankvnk 0:a8e46e27d041 67 long sock;
frankvnk 0:a8e46e27d041 68 //new TCP socket descriptor
frankvnk 0:a8e46e27d041 69 long newsock;
frankvnk 0:a8e46e27d041 70 //destination address
frankvnk 0:a8e46e27d041 71 sockaddr destAddr;
frankvnk 0:a8e46e27d041 72 //local address
frankvnk 0:a8e46e27d041 73 sockaddr LocalAddr;
frankvnk 0:a8e46e27d041 74 socklen_t addrlen;
frankvnk 0:a8e46e27d041 75 memset(&LocalAddr, 0, 8);
frankvnk 0:a8e46e27d041 76 LocalAddr.sa_family = AF_INET;
frankvnk 0:a8e46e27d041 77 LocalAddr.sa_data[0] = (port >> 8) & 0xff;
frankvnk 0:a8e46e27d041 78 LocalAddr.sa_data[1] = port & 0xff;
frankvnk 0:a8e46e27d041 79 memset (&LocalAddr.sa_data[2], 0, 4);
frankvnk 0:a8e46e27d041 80 sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
frankvnk 0:a8e46e27d041 81 while(sock == -1) sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_TCP);
frankvnk 0:a8e46e27d041 82 bind(sock,&LocalAddr,sizeof(sockaddr));
frankvnk 0:a8e46e27d041 83 listen(sock, 1);
frankvnk 0:a8e46e27d041 84 addrlen = sizeof(destAddr);
frankvnk 0:a8e46e27d041 85 while(1)
frankvnk 0:a8e46e27d041 86 {
frankvnk 0:a8e46e27d041 87 newsock = -2;
frankvnk 0:a8e46e27d041 88 printf("Server waiting for connection to Python\n");
frankvnk 0:a8e46e27d041 89 LED_D2_ON;
frankvnk 0:a8e46e27d041 90 while((newsock == -1) || (newsock == -2))
frankvnk 0:a8e46e27d041 91 {
frankvnk 0:a8e46e27d041 92 newsock = accept(sock,&destAddr, &addrlen);
frankvnk 0:a8e46e27d041 93 }
frankvnk 0:a8e46e27d041 94 printf("Connected\n");
frankvnk 0:a8e46e27d041 95 //receive TCP data
frankvnk 0:a8e46e27d041 96 if(newsock >= 0)
frankvnk 0:a8e46e27d041 97 {
frankvnk 0:a8e46e27d041 98 recv(newsock, requestBuffer,20,0);
frankvnk 0:a8e46e27d041 99 printf("Input = %s\n", requestBuffer);
frankvnk 0:a8e46e27d041 100 stat = -2;
frankvnk 0:a8e46e27d041 101 stat = send(newsock, python_msg, strlen(python_msg), 0);
frankvnk 0:a8e46e27d041 102 printf("status= %d\n", stat);
frankvnk 0:a8e46e27d041 103 LED_D2_OFF;
frankvnk 0:a8e46e27d041 104 } else printf("bad socket= %d\n", newsock);
frankvnk 0:a8e46e27d041 105 closesocket(newsock);
frankvnk 0:a8e46e27d041 106 printf("Done, press any key to repeat\n");
frankvnk 0:a8e46e27d041 107 getchar();
frankvnk 1:32d1ef95eceb 108 // printf("\x1B[2J"); //VT100 erase screen
frankvnk 1:32d1ef95eceb 109 // printf("\x1B[H"); //VT100 home
frankvnk 0:a8e46e27d041 110 }
frankvnk 0:a8e46e27d041 111 }
frankvnk 0:a8e46e27d041 112
frankvnk 0:a8e46e27d041 113 void initTCPIP(void)
frankvnk 0:a8e46e27d041 114 {
frankvnk 0:a8e46e27d041 115 int t;
frankvnk 0:a8e46e27d041 116 LAN_Connected = 0;
frankvnk 0:a8e46e27d041 117 // Start CC3000 State Machine
frankvnk 0:a8e46e27d041 118 resetCC3000StateMachine();
frankvnk 0:a8e46e27d041 119 ulCC3000DHCP = 0;
frankvnk 0:a8e46e27d041 120 ulCC3000Connected = 0;
frankvnk 0:a8e46e27d041 121 // Initialize Board and CC3000
frankvnk 0:a8e46e27d041 122 initDriver();
frankvnk 0:a8e46e27d041 123 printf("RunSmartConfig= %d\n", runSmartConfig);
frankvnk 0:a8e46e27d041 124 if(runSmartConfig == 1 )
frankvnk 0:a8e46e27d041 125 {
frankvnk 0:a8e46e27d041 126 // Clear flag
frankvnk 0:a8e46e27d041 127 //ClearFTCflag();
frankvnk 0:a8e46e27d041 128 unsetCC3000MachineState(CC3000_ASSOC);
frankvnk 0:a8e46e27d041 129 // Start the Smart Config Process
frankvnk 0:a8e46e27d041 130 StartSmartConfig();
frankvnk 0:a8e46e27d041 131 runSmartConfig = 0;
frankvnk 0:a8e46e27d041 132 }
frankvnk 0:a8e46e27d041 133 // If connectivity is good, run the primary functionality
frankvnk 0:a8e46e27d041 134 while(1)
frankvnk 0:a8e46e27d041 135 {
frankvnk 0:a8e46e27d041 136 if(checkWiFiConnected()) break;
frankvnk 0:a8e46e27d041 137 wait(1);
frankvnk 0:a8e46e27d041 138 }
frankvnk 0:a8e46e27d041 139 printf("Connected\n");
frankvnk 0:a8e46e27d041 140 if(!(currentCC3000State() & CC3000_SERVER_INIT))
frankvnk 0:a8e46e27d041 141 {
frankvnk 0:a8e46e27d041 142 // If we're not blocked by accept or others, obtain the latest status
frankvnk 0:a8e46e27d041 143 netapp_ipconfig(&ipinfo2); // data is returned in the ipinfo2 structure
frankvnk 0:a8e46e27d041 144 }
frankvnk 0:a8e46e27d041 145 printf("\n*** Wi-Go board DHCP assigned IP Address = %d.%d.%d.%d\n", ipinfo2.aucIP[3], ipinfo2.aucIP[2], ipinfo2.aucIP[1], ipinfo2.aucIP[0]);
frankvnk 0:a8e46e27d041 146 LED_D3_ON;
frankvnk 0:a8e46e27d041 147 LAN_Connected = 1;
frankvnk 0:a8e46e27d041 148 t = mdnsAdvertiser(1, DevServname, sizeof(DevServname));
frankvnk 0:a8e46e27d041 149 printf("mDNS Status= %x\n", t);
frankvnk 0:a8e46e27d041 150 }
frankvnk 0:a8e46e27d041 151
frankvnk 0:a8e46e27d041 152 void runTCPIPserver(void)
frankvnk 0:a8e46e27d041 153 {
frankvnk 0:a8e46e27d041 154 while(1)
frankvnk 0:a8e46e27d041 155 {
frankvnk 0:a8e46e27d041 156 LED_D3_OFF;
frankvnk 0:a8e46e27d041 157 LAN_Connected = 0;
frankvnk 0:a8e46e27d041 158 LED_D2_OFF;
frankvnk 0:a8e46e27d041 159 printf("\n\nStarting TCP/IP Server\n");
frankvnk 0:a8e46e27d041 160 initTCPIP();
frankvnk 0:a8e46e27d041 161 sendPython(TCPIP_PORT);
frankvnk 0:a8e46e27d041 162 }
frankvnk 0:a8e46e27d041 163 }
frankvnk 0:a8e46e27d041 164
frankvnk 0:a8e46e27d041 165 unsigned char checkWiFiConnected(void)
frankvnk 0:a8e46e27d041 166 {
frankvnk 0:a8e46e27d041 167 int t;
frankvnk 0:a8e46e27d041 168 if(!(currentCC3000State() & CC3000_ASSOC)) //try to associate with an Access Point
frankvnk 0:a8e46e27d041 169 {
frankvnk 0:a8e46e27d041 170 // Check whether Smart Config was run previously. If it was, we
frankvnk 0:a8e46e27d041 171 // use it to connect to an access point. Otherwise, we connect to the
frankvnk 0:a8e46e27d041 172 // default.
frankvnk 0:a8e46e27d041 173 if(((ConnectUsingSmartConfig==0)&&(SmartConfigProfilestored != SMART_CONFIG_SET)) || ForceFixedSSID)
frankvnk 0:a8e46e27d041 174 {
frankvnk 0:a8e46e27d041 175 // Smart Config not set, check whether we have an SSID
frankvnk 0:a8e46e27d041 176 // from the assoc terminal command. If not, use fixed SSID.
frankvnk 0:a8e46e27d041 177 printf("Attempting SSID Connection\n");
frankvnk 0:a8e46e27d041 178 ConnectUsingSSID(SSID);
frankvnk 0:a8e46e27d041 179 }
frankvnk 0:a8e46e27d041 180 //unsolicicted_events_timer_init();
frankvnk 0:a8e46e27d041 181 // Wait until connection is finished
frankvnk 0:a8e46e27d041 182 while ((ulCC3000DHCP == 0) || (ulCC3000Connected == 0))
frankvnk 0:a8e46e27d041 183 {
frankvnk 0:a8e46e27d041 184 wait_ms(500);
frankvnk 0:a8e46e27d041 185 printf("waiting\n");
frankvnk 0:a8e46e27d041 186 }
frankvnk 0:a8e46e27d041 187 }
frankvnk 0:a8e46e27d041 188 // Check if we are in a connected state. If so, set flags and LED
frankvnk 0:a8e46e27d041 189 if(ulCC3000Connected == 1)
frankvnk 0:a8e46e27d041 190 {
frankvnk 0:a8e46e27d041 191 if (obtainIpInfoFlag == FALSE)
frankvnk 0:a8e46e27d041 192 {
frankvnk 0:a8e46e27d041 193 obtainIpInfoFlag = TRUE; // Set flag so we don't constantly turn the LED on
frankvnk 0:a8e46e27d041 194 LED_D3_ON;
frankvnk 0:a8e46e27d041 195 }
frankvnk 0:a8e46e27d041 196 if (obtainIpInfoFlag == TRUE)
frankvnk 0:a8e46e27d041 197 {
frankvnk 0:a8e46e27d041 198 //If Smart Config was performed, we need to send complete notification to the configure (Smart Phone App)
frankvnk 0:a8e46e27d041 199 if (ConnectUsingSmartConfig==1)
frankvnk 0:a8e46e27d041 200 {
frankvnk 0:a8e46e27d041 201 ConnectUsingSmartConfig = 0;
frankvnk 0:a8e46e27d041 202 SmartConfigProfilestored = SMART_CONFIG_SET;
frankvnk 0:a8e46e27d041 203 }
frankvnk 0:a8e46e27d041 204
frankvnk 0:a8e46e27d041 205 }
frankvnk 0:a8e46e27d041 206 t = mdnsAdvertiser(1, DevServname, sizeof(DevServname));
frankvnk 0:a8e46e27d041 207 printf("mDNS Status= %x\n", t);
frankvnk 0:a8e46e27d041 208 return TRUE;
frankvnk 0:a8e46e27d041 209 }
frankvnk 0:a8e46e27d041 210 return FALSE;
frankvnk 0:a8e46e27d041 211 }
frankvnk 0:a8e46e27d041 212
frankvnk 0:a8e46e27d041 213 void print_mac(void)
frankvnk 0:a8e46e27d041 214 {
frankvnk 0:a8e46e27d041 215 printf("\n\nWi-Go MAC address %02x:%02x:%02x:%02x:%02x:%02x\n\n", myMAC[0], myMAC[1], myMAC[2], myMAC[3], myMAC[4], myMAC[5]);
frankvnk 0:a8e46e27d041 216 }
frankvnk 0:a8e46e27d041 217
frankvnk 0:a8e46e27d041 218 void do_FTC(void)
frankvnk 0:a8e46e27d041 219 {
frankvnk 0:a8e46e27d041 220 printf("Running First Time Configuration\n");
frankvnk 0:a8e46e27d041 221 server_running = 1;
frankvnk 0:a8e46e27d041 222 runSmartConfig = 1;
frankvnk 0:a8e46e27d041 223 initTCPIP();
frankvnk 0:a8e46e27d041 224 RED_OFF;
frankvnk 0:a8e46e27d041 225 GREEN_OFF;
frankvnk 0:a8e46e27d041 226 BLUE_OFF;
frankvnk 0:a8e46e27d041 227 userFS.FTC = 1;
frankvnk 0:a8e46e27d041 228 nvmem_write( NVMEM_USER_FILE_1_FILEID, sizeof(userFS), 0, (unsigned char *) &userFS);
frankvnk 0:a8e46e27d041 229 runSmartConfig = 0;
frankvnk 0:a8e46e27d041 230 SmartConfigProfilestored = SMART_CONFIG_SET;
frankvnk 0:a8e46e27d041 231 wlan_stop();
frankvnk 0:a8e46e27d041 232 printf("FTC finished\n");
frankvnk 0:a8e46e27d041 233 }
frankvnk 0:a8e46e27d041 234
frankvnk 0:a8e46e27d041 235
frankvnk 1:32d1ef95eceb 236