This is a fork of the mbed port of axTLS

Dependents:   TLS_axTLS-Example HTTPSClientExample

Overview

This library is a fork from the mbed port of axTLS. It attempts to :

  • reduce the usage of dynamic memory
  • verify certificates with key size up to 2048 bits
  • provide a simple interface

Encryption

This library uses either RC4 or AES for encryption.

Memory usage

During the establishment of a connection, about 10KB of memory is allocated dynamically (it depends on certificates). Once the connection is established, the memory consumption is relatively low. This means that your program must not use too much static memory or allocate memory before you establish a TLS connection.

Certificates

Certificates are the major source of problem and will often be the reason why your program will crash. Due to memory constraint, there are some limitations on certificates :

  • Each certificate must not be bigger than 2KB
  • TLS client can only handle a chain of up to three certificates (excluding the root certificate). This means that the server must not send more than three certificates.

Also, this library can only load certificates following these specifications :

  • encoded in binary DER format (PKCS1)
  • The public key must use RSA only

Once the connection is established, you should free all loaded certificates by calling CertificateManager::clear(). This will free a few kilobytes (it depends on your certificates). In addition, to enable certificate verification during the connection, this library has a "precomputed mode". This mode uses much less memory than a normal certificate verification.

Normal mode

You need to copy the root certificate in binary-DER format on the mbed. Then in your code, let's say that your root certificate is saved on the mbed as "root.der", assuming that you include CertificateManager.h and that you created a LocalFileSystem, you can load this certificate as this ;

Load root certificate

CertificateManager::add("/local/root.der");
CertificateManager::load();

Do not forget that this mode takes quite a lot of memory ( the memory peak is high while verifying certificates) and will only work if the key size is not bigger than 1024 bits (otherwise it will crash while verifying certificates).

Precomputed mode

In this mode, you need to save the entire chain of certificates (in binary-DER format) including the root certificate on the mbed. In practice, this means that you must first retrieve all certificates that the server sends during a connection and then find the right root certificate. In your code, you must call CertificateManager::add for each certificate and in the right order : from the server certificate to the root certificate. Here is how you shoud load certificates in this mode :

Loadcertificates in precomputed mode

CertificateManager::add("/local/server1.der");
CertificateManager::add("/local/server2.der");
CertificateManager::add("/local/server3.der");
CertificateManager::add("/local/root.der");
CertificateManager::load(true);

Using this mode, you should be able to verify certificates with key size up to 2048 bits.

How do I find these certificates ?

I posted an entry in my notebook detailing how to get certificates from a server. You should be able to get all certificates you need except the root certificate. Here is a way how to get the root certificate on windows :

  1. Open (double-click) the last certificate sent by the server
  2. Go to details panel and click on the entry called Issuer. The first line gives you the name of this certificate and the second line indicates the company who created this certificate
  3. Open firefox
  4. Go to options, advanced panel and click on View Certificates
  5. Go to Authorities panel
  6. Choose the certificate whose name match the issuer of the last certificate sent by the server
  7. Export this certificate to binary-DER format.

Connect to mbed.org !

Import programTLS_axTLS-Example

Establishing a connection to mbed.org using TLS

axTLS/crypto/aes.c

Committer:
feb11
Date:
2013-09-12
Revision:
0:85fceccc1a7c

File content as of revision 0:85fceccc1a7c:

/*
 * Copyright (c) 2007, Cameron Rich
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions are met:
 *
 * * Redistributions of source code must retain the above copyright notice, 
 *   this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright notice, 
 *   this list of conditions and the following disclaimer in the documentation 
 *   and/or other materials provided with the distribution.
 * * Neither the name of the axTLS project nor the names of its contributors 
 *   may be used to endorse or promote products derived from this software 
 *   without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/**
 * AES implementation - this is a small code version. There are much faster
 * versions around but they are much larger in size (i.e. they use large 
 * submix tables).
 */

#include <string.h>
//#include "os_port.h"
#include "crypto.h"
#include <lwip/def.h>

/* all commented out in skeleton mode */
#ifndef CONFIG_SSL_SKELETON_MODE

#define rot1(x) (((x) << 24) | ((x) >> 8))
#define rot2(x) (((x) << 16) | ((x) >> 16))
#define rot3(x) (((x) <<  8) | ((x) >> 24))

/* 
 * This cute trick does 4 'mul by two' at once.  Stolen from
 * Dr B. R. Gladman <brg@gladman.uk.net> but I'm sure the u-(u>>7) is
 * a standard graphics trick
 * The key to this is that we need to xor with 0x1b if the top bit is set.
 * a 1xxx xxxx   0xxx 0xxx First we mask the 7bit,
 * b 1000 0000   0000 0000 then we shift right by 7 putting the 7bit in 0bit,
 * c 0000 0001   0000 0000 we then subtract (c) from (b)
 * d 0111 1111   0000 0000 and now we and with our mask
 * e 0001 1011   0000 0000
 */
#define mt  0x80808080
#define ml  0x7f7f7f7f
#define mh  0xfefefefe
#define mm  0x1b1b1b1b
#define mul2(x,t)    ((t)=((x)&mt), \
            ((((x)+(x))&mh)^(((t)-((t)>>7))&mm)))

#define inv_mix_col(x,f2,f4,f8,f9) (\
            (f2)=mul2(x,f2), \
            (f4)=mul2(f2,f4), \
            (f8)=mul2(f4,f8), \
            (f9)=(x)^(f8), \
            (f8)=((f2)^(f4)^(f8)), \
            (f2)^=(f9), \
            (f4)^=(f9), \
            (f8)^=rot3(f2), \
            (f8)^=rot2(f4), \
            (f8)^rot1(f9))

/*
 * AES S-box
 */
static const uint8_t aes_sbox[256] =
{
    0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,
    0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
    0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,
    0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
    0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,
    0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
    0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,
    0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
    0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,
    0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
    0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,
    0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
    0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,
    0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
    0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,
    0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
    0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,
    0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
    0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,
    0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
    0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,
    0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
    0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,
    0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
    0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,
    0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
    0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,
    0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
    0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,
    0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
    0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,
    0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16,
};

/*
 * AES is-box
 */
static const uint8_t aes_isbox[256] = 
{
    0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38,
    0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb,
    0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87,
    0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb,
    0x54,0x7b,0x94,0x32,0xa6,0xc2,0x23,0x3d,
    0xee,0x4c,0x95,0x0b,0x42,0xfa,0xc3,0x4e,
    0x08,0x2e,0xa1,0x66,0x28,0xd9,0x24,0xb2,
    0x76,0x5b,0xa2,0x49,0x6d,0x8b,0xd1,0x25,
    0x72,0xf8,0xf6,0x64,0x86,0x68,0x98,0x16,
    0xd4,0xa4,0x5c,0xcc,0x5d,0x65,0xb6,0x92,
    0x6c,0x70,0x48,0x50,0xfd,0xed,0xb9,0xda,
    0x5e,0x15,0x46,0x57,0xa7,0x8d,0x9d,0x84,
    0x90,0xd8,0xab,0x00,0x8c,0xbc,0xd3,0x0a,
    0xf7,0xe4,0x58,0x05,0xb8,0xb3,0x45,0x06,
    0xd0,0x2c,0x1e,0x8f,0xca,0x3f,0x0f,0x02,
    0xc1,0xaf,0xbd,0x03,0x01,0x13,0x8a,0x6b,
    0x3a,0x91,0x11,0x41,0x4f,0x67,0xdc,0xea,
    0x97,0xf2,0xcf,0xce,0xf0,0xb4,0xe6,0x73,
    0x96,0xac,0x74,0x22,0xe7,0xad,0x35,0x85,
    0xe2,0xf9,0x37,0xe8,0x1c,0x75,0xdf,0x6e,
    0x47,0xf1,0x1a,0x71,0x1d,0x29,0xc5,0x89,
    0x6f,0xb7,0x62,0x0e,0xaa,0x18,0xbe,0x1b,
    0xfc,0x56,0x3e,0x4b,0xc6,0xd2,0x79,0x20,
    0x9a,0xdb,0xc0,0xfe,0x78,0xcd,0x5a,0xf4,
    0x1f,0xdd,0xa8,0x33,0x88,0x07,0xc7,0x31,
    0xb1,0x12,0x10,0x59,0x27,0x80,0xec,0x5f,
    0x60,0x51,0x7f,0xa9,0x19,0xb5,0x4a,0x0d,
    0x2d,0xe5,0x7a,0x9f,0x93,0xc9,0x9c,0xef,
    0xa0,0xe0,0x3b,0x4d,0xae,0x2a,0xf5,0xb0,
    0xc8,0xeb,0xbb,0x3c,0x83,0x53,0x99,0x61,
    0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26,
    0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d
};

static const unsigned char Rcon[30]=
{
    0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,
    0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f,
    0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4,
    0xb3,0x7d,0xfa,0xef,0xc5,0x91,
};

/* ----- static functions ----- */
static void AES_encrypt(const AES_CTX *ctx, uint32_t *data);
static void AES_decrypt(const AES_CTX *ctx, uint32_t *data);

/* Perform doubling in Galois Field GF(2^8) using the irreducible polynomial
   x^8+x^4+x^3+x+1 */
static unsigned char AES_xtime(uint32_t x)
{
    return (x&0x80) ? (x<<1)^0x1b : x<<1;
}

/**
 * Set up AES with the key/iv and cipher size.
 */
void AES_set_key(AES_CTX *ctx, const uint8_t *key, 
        const uint8_t *iv, AES_MODE mode)
{
    int i, ii;
    uint32_t *W, tmp, tmp2;
    const unsigned char *ip;
    int words;

    switch (mode)
    {
        case AES_MODE_128:
            i = 10;
            words = 4;
            break;

        case AES_MODE_256:
            i = 14;
            words = 8;
            break;

        default:        /* fail silently */
            return;
    }

    ctx->rounds = i;
    ctx->key_size = words;
    W = ctx->ks;
    for (i = 0; i < words; i+=2)
    {
        W[i+0]=    ((uint32_t)key[ 0]<<24)|
            ((uint32_t)key[ 1]<<16)|
            ((uint32_t)key[ 2]<< 8)|
            ((uint32_t)key[ 3]    );
        W[i+1]=    ((uint32_t)key[ 4]<<24)|
            ((uint32_t)key[ 5]<<16)|
            ((uint32_t)key[ 6]<< 8)|
            ((uint32_t)key[ 7]    );
        key += 8;
    }

    ip = Rcon;
    ii = 4 * (ctx->rounds+1);
    for (i = words; i<ii; i++)
    {
        tmp = W[i-1];

        if ((i % words) == 0)
        {
            tmp2 =(uint32_t)aes_sbox[(tmp    )&0xff]<< 8;
            tmp2|=(uint32_t)aes_sbox[(tmp>> 8)&0xff]<<16;
            tmp2|=(uint32_t)aes_sbox[(tmp>>16)&0xff]<<24;
            tmp2|=(uint32_t)aes_sbox[(tmp>>24)     ];
            tmp=tmp2^(((unsigned int)*ip)<<24);
            ip++;
        }

        if ((words == 8) && ((i % words) == 4))
        {
            tmp2 =(uint32_t)aes_sbox[(tmp    )&0xff]    ;
            tmp2|=(uint32_t)aes_sbox[(tmp>> 8)&0xff]<< 8;
            tmp2|=(uint32_t)aes_sbox[(tmp>>16)&0xff]<<16;
            tmp2|=(uint32_t)aes_sbox[(tmp>>24)     ]<<24;
            tmp=tmp2;
        }

        W[i]=W[i-words]^tmp;
    }

    /* copy the iv across */
    memcpy(ctx->iv, iv, 16);
}

/**
 * Change a key for decryption.
 */
void AES_convert_key(AES_CTX *ctx)
{
    int i;
    uint32_t *k,w,t1,t2,t3,t4;

    k = ctx->ks;
    k += 4;

    for (i= ctx->rounds*4; i > 4; i--)
    {
        w= *k;
        w = inv_mix_col(w,t1,t2,t3,t4);
        *k++ =w;
    }
}

/**
 * Encrypt a byte sequence (with a block size 16) using the AES cipher.
 */
void AES_cbc_encrypt(AES_CTX *ctx, const uint8_t *msg, uint8_t *out, int length)
{
    int i;
    uint32_t tin[4], tout[4], iv[4];

    memcpy(iv, ctx->iv, AES_IV_SIZE);
    for (i = 0; i < 4; i++)
        tout[i] = ntohl(iv[i]);

    for (length -= AES_BLOCKSIZE; length >= 0; length -= AES_BLOCKSIZE)
    {
        uint32_t msg_32[4];
        uint32_t out_32[4];
        memcpy(msg_32, msg, AES_BLOCKSIZE);
        msg += AES_BLOCKSIZE;

        for (i = 0; i < 4; i++)
            tin[i] = ntohl(msg_32[i])^tout[i];

        AES_encrypt(ctx, tin);

        for (i = 0; i < 4; i++)
        {
            tout[i] = tin[i]; 
            out_32[i] = htonl(tout[i]);
        }

        memcpy(out, out_32, AES_BLOCKSIZE);
        out += AES_BLOCKSIZE;
    }

    for (i = 0; i < 4; i++)
        iv[i] = htonl(tout[i]);
    memcpy(ctx->iv, iv, AES_IV_SIZE);
}

/**
 * Decrypt a byte sequence (with a block size 16) using the AES cipher.
 */
void AES_cbc_decrypt(AES_CTX *ctx, const uint8_t *msg, uint8_t *out, int length)
{
    int i;
    uint32_t tin[4], xor[4], tout[4], data[4], iv[4];

    memcpy(iv, ctx->iv, AES_IV_SIZE);
    for (i = 0; i < 4; i++)
        xor[i] = ntohl(iv[i]);
    for (length -= 16; length >= 0; length -= 16)
    {
        uint32_t msg_32[4];
        uint32_t out_32[4];
        memcpy(msg_32, msg, AES_BLOCKSIZE);
        msg += AES_BLOCKSIZE;

        for (i = 0; i < 4; i++)
        {
            tin[i] = ntohl(msg_32[i]);
            data[i] = tin[i];
        }

        AES_decrypt(ctx, data);

        for (i = 0; i < 4; i++)
        {
            tout[i] = data[i]^xor[i];
            xor[i] = tin[i];
            out_32[i] = htonl(tout[i]);
        }

        memcpy(out, out_32, AES_BLOCKSIZE);
        out += AES_BLOCKSIZE;

    }

    for (i = 0; i < 4; i++)
        iv[i] = htonl(xor[i]);
    memcpy(ctx->iv, iv, AES_IV_SIZE);

}

/**
 * Encrypt a single block (16 bytes) of data
 */
static void AES_encrypt(const AES_CTX *ctx, uint32_t *data)
{
    /* To make this code smaller, generate the sbox entries on the fly.
     * This will have a really heavy effect upon performance.
     */
    uint32_t tmp[4];
    uint32_t tmp1, old_a0, a0, a1, a2, a3, row;
    int curr_rnd;
    int rounds = ctx->rounds; 
    const uint32_t *k = ctx->ks;

    /* Pre-round key addition */
    for (row = 0; row < 4; row++)
        data[row] ^= *(k++);

    /* Encrypt one block. */
    for (curr_rnd = 0; curr_rnd < rounds; curr_rnd++)
    {
        /* Perform ByteSub and ShiftRow operations together */
        for (row = 0; row < 4; row++)
        {
            a0 = (uint32_t)aes_sbox[(data[row%4]>>24)&0xFF];
            a1 = (uint32_t)aes_sbox[(data[(row+1)%4]>>16)&0xFF];
            a2 = (uint32_t)aes_sbox[(data[(row+2)%4]>>8)&0xFF]; 
            a3 = (uint32_t)aes_sbox[(data[(row+3)%4])&0xFF];

            /* Perform MixColumn iff not last round */
            if (curr_rnd < (rounds - 1))
            {
                tmp1 = a0 ^ a1 ^ a2 ^ a3;
                old_a0 = a0;
                a0 ^= tmp1 ^ AES_xtime(a0 ^ a1);
                a1 ^= tmp1 ^ AES_xtime(a1 ^ a2);
                a2 ^= tmp1 ^ AES_xtime(a2 ^ a3);
                a3 ^= tmp1 ^ AES_xtime(a3 ^ old_a0);
            }

            tmp[row] = ((a0 << 24) | (a1 << 16) | (a2 << 8) | a3);
        }

        /* KeyAddition - note that it is vital that this loop is separate from
           the MixColumn operation, which must be atomic...*/ 
        for (row = 0; row < 4; row++)
            data[row] = tmp[row] ^ *(k++);
    }
}

/**
 * Decrypt a single block (16 bytes) of data
 */
static void AES_decrypt(const AES_CTX *ctx, uint32_t *data)
{ 
    uint32_t tmp[4];
    uint32_t xt0,xt1,xt2,xt3,xt4,xt5,xt6;
    uint32_t a0, a1, a2, a3, row;
    int curr_rnd;
    int rounds = ctx->rounds;
    const uint32_t *k = ctx->ks + ((rounds+1)*4);
    /* pre-round key addition */
    for (row=4; row > 0;row--)
        data[row-1] ^= *(--k);

    /* Decrypt one block */
    for (curr_rnd = 0; curr_rnd < rounds; curr_rnd++)
    {

        /* Perform ByteSub and ShiftRow operations together */
        for (row = 4; row > 0; row--)
        {

            a0 = aes_isbox[(data[(row+3)%4]>>24)&0xFF];
            a1 = aes_isbox[(data[(row+2)%4]>>16)&0xFF];
            a2 = aes_isbox[(data[(row+1)%4]>>8)&0xFF];
            a3 = aes_isbox[(data[row%4])&0xFF];

            /* Perform MixColumn iff not last round */
            if (curr_rnd<(rounds-1))
            {
                /* The MDS cofefficients (0x09, 0x0B, 0x0D, 0x0E)
                   are quite large compared to encryption; this 
                   operation slows decryption down noticeably. */
                xt0 = AES_xtime(a0^a1);
                xt1 = AES_xtime(a1^a2);
                xt2 = AES_xtime(a2^a3);
                xt3 = AES_xtime(a3^a0);
                xt4 = AES_xtime(xt0^xt1);
                xt5 = AES_xtime(xt1^xt2);
                xt6 = AES_xtime(xt4^xt5);

                xt0 ^= a1^a2^a3^xt4^xt6;
                xt1 ^= a0^a2^a3^xt5^xt6;
                xt2 ^= a0^a1^a3^xt4^xt6;
                xt3 ^= a0^a1^a2^xt5^xt6;
                tmp[row-1] = ((xt0<<24)|(xt1<<16)|(xt2<<8)|xt3);
            }
            else
                tmp[row-1] = ((a0<<24)|(a1<<16)|(a2<<8)|a3);
        }

        for (row = 4; row > 0; row--)
            data[row-1] = tmp[row-1] ^ *(--k);
    }
}

#endif